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APL Artificial Intelligence Technology Roadmap 
 

Inventing the future of intelligent systems for our nation 
 

Introduction 
 
“Discovery consists of seeing what everyone has seen and thinking what no one has thought.”   

Albert Szent-György 

 
Imagine a future in which a legion of autonomous systems collects and shares intelligence, senses 
the environment, continuously assimilates new data, learns, makes decisions, communicates, and 
acts cooperatively with humans and each other to carry out a mission while ensuring that the 
integrity and purpose of the system is not compromised or co-opted by cyber-attacks, insider 
threats, or misguided evolution.  
 
Imagine a comprehensive home medical monitoring and diagnosis system that can be trusted to 
partner with a human on a daily basis to perceive and detect early-stage symptoms of all major 
chronic diseases, seasonal infections, and emerging health threats, and recommend courses of 
prevention and intervention.  
 
Imagine a non-invasive brain-computer interface device that allows humans to communicate with 
machines at the speed of thought to solve complex problems, optimize mutual learning, develop 
research strategies, and create new works of art.  
 
Imagine a fully autonomous mission to another planet in which robotic systems are trusted to 
develop their own courses of action to identify and explore interesting new phenomena, deploy 
sensors, collect data, and communicate results to researchers on Earth.  
 
These are just a few of the many envisioned futures that are driving research initiatives in artificial 
intelligence across the Johns Hopkins University Applied Physics Laboratory (APL). As a nonprofit 
University-Affiliated Research Center, APL serves as a bridge between academia, industry and 
government to develop technologies that achieve mission impact in national security, space 
exploration and health. The enormous potential for artificial intelligence to dramatically 
transform most of the core technical activities of the Laboratory resulted in a decision by APL 
leadership to create a technology roadmap along with associated execution and engagement 
strategies. This report contains a description of APL’s technology roadmap, which is the 
culmination of critical thinking by technical experts from across APL. In this introduction we 
provide context for the roadmap and an outline for this report. 
 

https://www.jhuapl.edu/
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As everyone engaged in science and technology knows, there has been an explosion of interest 
in artificial intelligence (AI) across the planet in recent years. The power of modern computing 
engines and the ability to store and access vast amounts of data have enabled the realization of 
a dream that started with the creation of the perceptron learning algorithm by Frank Rosenblatt 
in 1957. Today, the capability to develop deep neural networks and apply machine learning 
algorithms to complex systems has brought the power of AI to almost every discipline in science, 
technology, and the commercial world. The level of activity in the realm of AI theory and 
applications has literally reached the point of frenzy. Experienced researchers might be secretly 
worried about the danger of a technology trough of disillusionment followed by another “AI 
winter” given this extreme investment of human talent and computer resources. However, the 
applications of AI in image and speech recognition alone are so profound that this emerging field 
will endure even after we have reached the maximum on the hype cycle. To be clear, however, 
we have not reached that maximum yet! 
 
In light of the intense interest in AI across the globe, the need for an APL roadmap to help guide 
internal research and development and external engagement was evident. Roadmaps are, of 
course, focused on the future. However, the roadmap that we will present is informed by the 
Laboratory’s long history in space exploration, missile defense systems, undersea warfare, 
robotics, and autonomous systems. Building on this collective wealth of knowledge and 
experience, the roadmap development process began with envisioned futures in which AI is 
expected to play an essential role. Making exact predictions about the future is impossible, but 
this was not the purpose of our envisioned futures. The real goal here was to identify the common 
AI threads running through each story and to highlight these threads as the strategic vectors that 
will guide new research initiatives and future applications of AI. These strategic technology 
vectors form the foundation for the roadmap.  
 
Amid a global landscape of institutions and researchers, APL has been deeply engaged in the 
theory and application of AI since its inception. The Laboratory’s first defining innovation, the 
proximity fuze, was an intelligent system that could perceive its environment, decide whether 
the conditions for optimal impact were met, and then, at just the right moment, act. Every APL 
spacecraft ever built ventured into the extreme environment of our solar system with some level 
of autonomous reasoning to sense, navigate, and perform a mission. The Modular Prosthetic 
Limb with its neural interface demonstrated the amazing potential of human-machine teaming. 
More recently, APL has realized mission applications of AI in problems involving signal and image 
classification such as Deep Mine, the APL-developed system for autonomous classification of 
underwater mines, and a wide range of other problem domains. Applications of AI to health 
monitoring and medical diagnosis are expanding daily. APL has recently established a deeper 
partnership with Johns Hopkins Medicine resulting in new advancements such as the 
development of a deep convolutional neural network capable of classifying retinal images for 
age-related macular degeneration. APL’s Intelligent Systems Center was established in 2015 to 

https://www.jhuapl.edu/About/DefiningInnovations
https://www.jhuapl.edu/Prosthetics/ResearchMPL
https://www.jhuapl.edu/Prosthetics/ResearchMPL
https://www.jhuapl.edu/isc
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catalyze cross-displinary research and development in artificial intelligence, robotics and applied 
neuroscience and help accelerate the pace of breakthroughs like these. 
 
At a high level, we have observed that there are three essential elements to successful 
application of AI to complex real-world problems: domain expertise, data, and experimentation. 
A brief discussion of these points will help frame the roadmap presentation that follows.  
 
First of all, one might think that the term domain expertise refers to knowledge and expertise in 
using the tools of AI, such as machine learning and neural networks. On the contrary, here we 
are speaking of deep domain expertise in application areas such as undersea operations, space 
exploration, health systems, and numerous other domains of vital importance to APL and its 
sponsors. The tools and techniques of machine learning and neural networks that are essential 
for applications of AI can be straightforward to learn for technical staff with an advanced degree 
in physics, engineering, biology, computer science, or mathematics. In contrast, there is no 
substitute for the deep technical knowledge gained through years of applying foundational 
science and engineering skills to critical challenges. For this reason, an important component of 
our execution of the technology roadmap presented here is focused on workforce development 
and education, with the specific goal of providing a path for everyone at APL to augment their 
existing domain expertise with AI tools and techniques. Given the pace of technological 
advancement and the growing need for cross-disciplinary solutions, we seek to foster lifelong 
learning as an essential career pursuit. 
 
The second essential element for success in AI is data. Deep learning, currently the most 
prominent technique in AI, is typically utilized as a supervised learning approach that requires a 
large dataset of examples that have been properly classified and labeled by experts. The 
algorithm uses the labeled data to learn how to classify the examples in a training set and is then 
ideally able to properly classify previously unseen test examples. The training process for deep 
learning takes serious computing resources and often a very long time, but once the algorithm 
has been trained, it can classify new examples with relatively efficient computation. However, 
the real world is messy and presents many domain-unique challenges. For example, intelligent 
systems must often address rare events, such as actually encountering an underwater mine on 
an ocean floor that contains mostly rocks and garbage. In fact, for most real-world problems, a 
dataset, no matter how massive or well-curated, can never tell the whole story. Domain expertise 
is invaluable because it is necessary to fill in the gaps – inferring causal relationships that may not 
be present in the data – and using these insights to clean data, create synthetic data, develop 
simulations and otherwise find creative ways to train AI algorithms to perform the desired task.  
 
General techniques like transfer learning have also proven to be valuable in data-limited 
situations. Computer simulations are especially important in the area of reinforcement learning. 
In this context, systems can learn to perform a task through thousands of randomized trials 
without wearing out a physical system in the process or making costly mistakes during real-world 
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operation. Once the skill has been acquired in the simulation environment, the algorithms can 
be transferred to the physical system. For decades, APL has served in test and evaluation roles 
for various programs. The datasets and modeling and simulation capabilities developed in 
support of these programs may hold the key to enabling the development of AI-enabled real-
world systems through emerging machine learning paradigms. 
 
The third essential element of success in AI is experimentation. At present, a great deal of AI 
research is at the empirical stage and is not supported by a well-understood theoretical 
foundation. For example, the backpropagation algorithm that is used to train a neural network 
in deep learning gradually adjusts the parameters of each “neuron” in a large network of 
interconnected components. However, our understanding of just how the resulting trained 
network achieves the impressive performance that often follows this gradual tweaking of the 
parameters is still something of a mystery. AI researchers need the courage to experiment and 
the determination to persevere through noble failures. There is a human-machine team at work 
in every AI project: researcher plus computer. Success requires a lot of hard work by both 
members of the team. As a Laboratory, we aim to channel the results of these individual 
experiments into a larger body of knowledge that can be applied to current and future missions 
and, as appropriate, contribute new knowledge to our broader society. 
 
One of the key characteristics of APL’s long-term vision for AI is to enable human designers to get 
more out of a system than they are capable of putting in. That is, we anticipate an increasing 
level of creativity and innovation in which a system, provided with high-level guidance, generates 
novel solutions to complex problems. Consequently, there will be an element of emergent 
behavior in the systems that we seek to create, presenting both exciting opportunities and 
significant challenges to overcome in realizing them.  
 
This document is organized into the following two sections: 
 
Section 1: What is an Intelligent System?  
This opening section of the report offers our clearest and most relevant definitions of artificial 
intelligence, intelligent systems, machine learning, and related concepts. We discuss the 
common attributes of intelligent systems and provide a basic context for understanding the 
technology roadmap. These concepts are summarized in the APL Intelligent Systems 
Framework. 
 
Section 2: The Technology Roadmap 
The major technical elements of the roadmap are presented in this section. Based on envisioned 
futures formulated by experts from across APL, the technology roadmap is presented in the form 
of four technology vectors. Along each technology vector, a series of technical challenges of 
increasing complexity is identified. These challenges represent near, mid-range, and long-term 
technical goals and research focus areas that we believe will position APL among leading 
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institutions in the application of AI to critical challenges. In this context, we define near-term 
goals as objectives in the range of 0 – 3 years, mid-term goals as objectives in the range of 3 – 10 

years, and long-term goals as objectives in the range of 10 to  years.  
 

1. What is an intelligent system?  
 
Perceive, Decide, Act, Team, Trust 
 
“Intelligence is the ability of an entity to achieve complex goals.”  Max Tegmark, Life 3.0 
 
We define an intelligent system as an agent that has the ability to perceive its environment, 
decide upon a course of action, act within a framework of acceptable actions, and team with 
humans and other agents to accomplish human-specified goals. In addition to these qualities, we 
also require that the agent be able to achieve its objectives at the required level of trust. That is, 
we expect that humans and other agents will have an appropriately calibrated level of confidence 
in the ability of the system to perform as designed and in an ethical manner. Whether agents are 
embodied as robotic systems or exist only as computer software, to be regarded as intelligent 
systems they should have the attributes we have listed. Agents are usually implemented as 
systems in which the interactions among the components of the system give rise to intelligent 
behavior. Multi-agent systems may themselves be thought of as intelligent systems, where the 
intelligence arises from the ability of the agents to collectively accomplish a common goal. In all 
cases, trust is essential for effective teaming among agents as they perform complex tasks in 
challenging environments.  
 
An autonomous system is a system that has been delegated the authority to act within specific 
bounds. A driverless car is a good example of a system that is both intelligent and autonomous. 
Another example is the automatic landing system on an aircraft. The term machine learning 
generally encompasses a wide range of algorithms that improve their performance through data 
and experience and which can be generally categorized as supervised learning, unsupervised 
learning, or reinforcement learning.  
 
In general, the term artificial intelligence refers to an agent that has one or more of the attributes 
of an intelligent system — that is, some ability to perceive, decide, act, or team in a trusted 
manner. A deep neural network that classifies images as either being a photograph of a cat or 
not being a photograph of a cat perceives the environment and makes a decision, but it probably 
does not take any actions based on that decision. We would like to include this as an example of 
AI, but we might stop short of calling this neural network an intelligent system. At the same time 
it is possible that a neural network of this sort could be a component of an intelligent system.  
 
The experts sometimes refer to narrow AI as distinct from general AI. A thermostat would qualify 
as an example of narrow AI, but a fully functioning iRobot as envisioned by Isaac Asimov would 
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be regarded as general AI. One also hears the term artificial general intelligence as a description 
of a machine system capable of human-level thought and reasoning. There is considerable debate 
in the scientific community on the topic of whether artificial general intelligence is even possible.  
 
Along with describing what intelligent systems do, we have also tried to identify how intelligent 
systems achieve their goals. This combination of attributes and means forms the APL Intelligent 
Systems Framework. There are four main elements that capture how intelligent systems achieve 
their goals and we list them in order of increasing sophistication: pattern recognition, knowledge 
representation and reasoning, self-evaluation and self-guided learning, and creativity and 
innovation. The Intelligent Systems Framework can be visualized as follows. 
 
 

The APL Intelligent Systems Framework 
 

 
 
 
In the applications of AI that are most important for APL and our sponsors, trust is a key 
requirement. For this reason, our visualization shows that every aspect of what intelligent 
systems do and how they do it must be grounded in trust. APL’s Intelligent Systems Framework 
provides a basic context for the discussions that follow. By separating the fundamental AI-
enabled capabilities and attributes from the tools we use to enable them (i.e., deep learning 



  
 

Johns Hopkins University Applied Physics Laboratory 
11100 Johns Hopkins Road, Laurel MD 20723-6099 

 

7 

algorithms, knowledge graphs, etc.), this framework has provided us with a basis for long-term 
planning even as the landscape of enabling tools continues to evolve over time.  
 

 
2. The Technology Roadmap 
 
The strategic technology vectors driving our AI future 
 
“I don’t have any magical ability. Before I work out any details, I work on the strategy. Once you 
have a strategy, a very complicated problem can split into a lot of mini-problems.” 

Terrance Tao, Fields Medalist  
 
Based on envisioned futures spanning national security, space exploration and health, we have 
formulated four technology vectors to guide APL research and development for AI over the next 
decade. Each technology vector is presented in the form of an aspirational goal. Along with each 
goal we provide near-term, mid-term, and long-term technological advances that we believe will 
enable us to reach the goal.  
 
 

Technology Vector 1: Autonomous Perception 
 
As we have seen in the Intelligent Systems Framework, the first attribute of an intelligent system 
is the ability to perceive its environment. APL has been in the business of creating sensors 
throughout its entire history, and our experience in sensor development includes radar systems, 
hyperspectral imaging systems, brain-computer interface systems, quantum sensors, geolocation 
systems, and computer vision systems, as well as a wide range of mission-specific sensors. Our 
first technology vector builds on this wealth of experience. The vision of autonomous perception 
is to develop sensing systems with the capability and authority to reason about their 
environment, focus on the mission-critical aspects of a scene, understand the intent of humans 
and other machines, learn through strategic exploration, and demonstrate curiosity-driven 
perception strategies. Systems with these capabilities will deliver more accurate and insighftful 
information about the state of the world and ultimately contribute to the discovery of new forms 
of fundamental knowledge. The steps along the roadmap toward realizing autonomous 
perception are envisioned as follows. 
 
Near-Term: In the near-term we expect research and development to focus on systems that can 
reason over spatial and temporal representations of objects and scenes, and also learn strategies 
for focusing their attention on the salient information in a scene. Representations of objects and 
entities with integrated models of how they relate and interact form an agent’s world model. For 
example, in mobile robotics applications, a world model might contain information on the 
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geometric properties of objects in a scene. A computer vision algorithm with the ability to reason 
spatially and temporally could form hypotheses about the possible locations of an object in a 
scene after it is concealed or becomes occluded. This is a form of what is referred to as object 
permanence reasoning in human psychology, an ability that children learn during their first year 
of life. This level of logical inference, broadly speaking, is beyond the ability of current deep 
learning algorithms. In information retrieval applications, a world model might be constructed as 
a knowledge graph representing relationships among people in a social network. 
 
Mid-Term: The next step in autonomous perception will involve machines that can reason about 
agent intent and also learn to predict behavior. While models of the intent, strategies and 
behaviors of other agents can be considered part of an overall world model, we see reasoning 
about other agents as presenting unique challenges with respect to other components of world 
models such as objects and locations. Next-generation computer vision algorithms will make real-
time predictions about the future actions and locations of people in a scene based on 
observations of past behavior. For example, a person passing by a camera’s field of view carrying 
an empty water bottle might tend to walk in the direction of a water fountain. In defense 
applications, surveillance systems with this capability will be able to infer adversary tactics, and 
eventually high-level strategies, through partial observations of troop movements and logistics. 
In general, the ability to reason about the intent and capabilities of other agents will help to make 
intelligent systems more capable teammates in real-world environments.  
 
Long-Term: Our long-term vision for autonomous perception is to create systems that can form  
hypotheses about the world through causal and counterfactual reasoning as the basis of learning 
through exploration. We envision that in the future, systems will build and refine their world 
models in real time as they explore complex ecosystems. For example, if a robotic system is 
searching a building, we would like it to recognize a door and understand that there is another 
part of the building to search. Space systems like New Horizons have demonstrated an amazing 
ability to achieve onboard fault tolerance to realize highly autonomous yet highly scripted fly-bys 
during long-duration missions. We envision future space exploration systems with the ability to 
select creative ways of using a suite of instruments to pursue scientific goals with only high-level 
direction from scientists and engineers. Future perception systems will build and expand world 
models on the fly, discovering and reporting new insights about the nature of the universe, the 
object and agents therein, and even the physical laws that govern it. 
 

 
Technology Vector 2: Superhuman Decision-Making and Autonomous Action 
 
As we have discussed above, the first attribute of an intelligent system is the ability to perceive 
the environment. The next two key attributes of an intelligent system are the abilities to decide 
and act. Effective decision-making requires the aptitude to search, evaluate, and select a course 
of action among a vast space of possible actions towards accomplishing high-level goals. This past 

http://pluto.jhuapl.edu/
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decade has seen impressive advancements in the facility of robotic systems and platforms to 
walk, run, swim, fly, and even do backflips. APL has conducted leading research in swarming 
systems, such as autonomous sea-surface vehicles and marsupial robot teams for accessing 
physically constrained spaces. We expect that this enhancement of robotic capabilities for both 
commercial systems and national security applications will continue. However, what is needed 
now is to reduce the heavy reliance of these systems on humans to decide how and when to 
perform actions in dynamic scenarios. This reliance can be especially unfortunate given the 
limitations of human intelligence in considering large numbers of complex alternative strategies, 
coupled with limitations on the speed and effectiveness with which we can carry them out. The 
vision of superhuman decision-making and autonomous action is to create systems that blend 
human and artificial intelligence to identify, evaluate, select, and execute effective courses of 
action with superhuman speed and accuracy for real-world challenges. We envision that future 
systems will radically enhance the ability of human decision-makers to coordinate actions and 
effects across large-scale systems of systems to achieve strategic goals for the nation and for 
humanity. Progress along this technology vector will benefit any application that involves 
autonomous action, from distributed search and rescue operations to cyber operations and 
automated drug discovery. With respect to this technology vector we also note that there is, of 
course, considerable controversy over delegating authority for autonomous action to certain 
intelligent systems, including weapons systems, for example. Therefore, it will be essential that 
the available courses of action to a system are grounded in a framework of values, ethics, and 
mission objectives.  

 
The steps along the roadmap towards achieving superhuman decision-making and autonomous 
action are envisioned as follows.  
 
Near-term: In the near term, we expect that research and development will focus on enabling 
systems to autonomously select appropriate sequences of actions as a function of mission state, 
given well-defined yet potentially competing objectives. Current systems rely on scripted 
behaviors and rulesets, sometimes implemented as finite state machines, that spell out how and 
when behaviors should be performed. These rulesets can be brittle and unresponsive to complex 
and rapidly evolving mission scenarios. A near-term goal is to build on recent developments in 
machine learning to create effective decision-making architectures that increasingly incorporate 
learned, data-driven behavior selection. For example, a small team of aerial vehicles with 
effective sequential decision-making capabilities could accomplish competing objectives such as 
protecting teammates and protecting themselves while fluidly shifting tactics as the mission 
evolves. An unmanned aerial vehicle (UAV) would be capable of autonomously selecting 
combinations of actions that accomplish competing objectives such as the need to play defensive 
and offensive roles. A key challenge here is determining the most effective representation of 
possible actions. An AI system controlling a UAV, for example, may be given the ability to choose 
among a coarse set of highly-scripted action sequences. Limiting the AI in this way limits the 
potential performance improvement. However, training is easier and there will be a greater trust 
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factor in the system as well. At the other extreme, the AI may be given the direct control of the 
UAV’s low-level control system, offering the opportunity for novelty and greater performance 
improvement while increasing the difficulty of learning and the realization of trust. In general, 
advances in machine decision-making will enable agents to decide and act at machine speed 
across a broad range of applications.  

 
Mid-term: The next level of research in decision-making and action will involve multi-agent 
systems that generate collective courses of action guided by human intent. Multi-agent systems 
of this type offer the opportunity to realize emergent collective behaviors with the potential to 
solve complex problems in unexpected ways. Systems in this generation will coordinate actions 
across large numbers of agents spanning land, air, sea, space, and cyber domains while mitigating 
the challenges of position, navigation, timing, and communication. A superhuman aspect of 
decision-making for these systems will be the ability to react and act faster than humanly 
possible. For example, distributed groups of maritime platforms will autonomously coordinate 
the scheduling of resources to defend themselves against missile raids while defending the 
homeland against incoming threats such as ballistic missiles. Multi-agent medical systems will 
seamlessly coordinate the flow of patients and resources across institutions and practitioners to 
optimize health outcomes.  
 
Long-term: In the far-term research and development plan for superhuman decision-making and 
autonomous action, we envision systems that are capable of reasoning and shaping our world 
across extended periods of time spanning years or even decades. This will require much more 
abstract reasoning capabilities. Portfolio optimization systems with these attributes could aid 
decision-makers in the Pentagon in selecting the optimal fighting force to build or help guide 
long-term investments at the National Science Foundation in addressing critical challenges like 
global warming.  

 
 
Technology Vector 3: Human-Machine Teaming at the Speed of Thought 
 
All intelligent systems team with humans to some extent, either directly or through acting in 
accordance with human-specified goals. The vision of human-machine teaming at the speed of 
thought is to create systems that can be trusted to understand human intent while 
collaborating to perform tasks that are difficult, dangerous or impossible for humans to carry 
out with speed and accuracy. We envision a progression from humans utilizing machines as tools 
to humans interacting with machines as trusted teammates, and ultimately fusing with machines 
as seamlessly integrated extensions of our bodies and minds. In addition to the ambitious 
technological advancements we outline along this vector, creating effective human-machine 
teams will require appropriate calibration of trust across people and institutions. This will require 
new human-centered methodologies for test and evaluation, along with clear policy guidance for 



  
 

Johns Hopkins University Applied Physics Laboratory 
11100 Johns Hopkins Road, Laurel MD 20723-6099 

 

11 

determining which decisions and actions are appropriate for an intelligent system to perform 
within a framework of societal values and ethics, and in accordance with the system capabilities. 
 
Near-term: As a foundational element of human-machine teaming at the speed of thought, we 
expect that near-term research will focus on establishing common world models for machines 
and humans. Common world models will enable developers to effectively bootstrap learning 
systems with human knowledge while enabling operators to quickly establish shared situational 
awareness. While deep learning algorithms provide powerful pattern recognition capabilities, 
developers primarily interact with the system by providing labeled training data. Richer 
architectures for machine perception are needed to enable a higher level of intuitive 
collaboration between humans and systems. Enabling research along this vector will require 
development environments with human-machine interfaces that allow agents to select actions 
as a function of the intent and state of their human teammates.  
 
Mid-term: The next step after building a foundation of common world models is to create 
systems with the ability to learn physical and cognitive tasks by observing and imitating human 
teachers and to self-improve through simulation. Continued advancements in natural language 
processing and human-centered analytics from industry and the academic world will assist in 
reaching these goals. However, targeted research and development will be necessary to bridge 
the gaps between generalized language understanding and mission-specific workflows and 
interaction paradigms.  
 
Long-term: The intelligent systems of the future will serve as seamlessly integrated extensions of 
our bodies and minds, enabled by shared cognitive models. Achieving this human-machine fusion 
will require significant advances in the ability of machines to essentially read our minds — that 
is, to infer our intent through observation and interaction, enhanced by measurements of our 
physiological and cognitive states.  Towards realizing this future, APL aims to continue advancing 
research in brain-computer interfaces, neurally-integrated prosthetics, and functional analysis of 
the brain, together with a focus on privacy and ethical issues.  
 

 
Technology Vector 4: Safe and Assured Operation 
 
Achieving assured operation of intelligent systems refers to the goal of developing systems that 
are robust, resilient and reliable across the full range of situations that may be encountered 
during the course of their intended use. It will become increasingly vital to advance the science 
and technology of assuring intelligent systems as we seek to employ them in safety-critical 
military and civilian applications. The vision of safe and assured operation is to develop 
intelligent systems that are robust to the perturbations of real-world environments, resilient 
to adversarial attacks, capable of ethical reasoning and guaranteed to pursue goals that remain 
aligned with human intent. In addition to the challenges of operating in the real world, we 
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anticipate that resilience to adversarial attack will become increasingly important over time. 
Cyber attacks, in particular, have been in a constant state of evolution for decades and there is 
no reason to expect that this trend will slow down any time soon. So, we can expect that new 
ways of subverting the intended operation of intelligent systems through cyber attacks will also 
be forthcoming in the years ahead. At the present time, we see at least three approaches to 
altering the intended operation of a system. Adversarial input attacks are designed to evade the 
perception capability of an intelligent system. For example, at APL we have demonstrated that 
by placing a small patch on a person, it is possible to convince a computer vision system that the 
person is a teddy bear. Similar experiments show that using masking tape to slightly alter STOP 
signs can fool the perception system of a driverless car. Data poisoning attacks refer to attempts 
to alter the data on which a perception system is trained so that incorrect conclusions are 
reached. Model stealing attacks are aimed at understanding enough about how a perception 
system works to enable one to disguise objects and evade detection. Clearly, all three of these 
approaches are related and we can expect more sophisticated attacks in the years ahead.  
 
Even without any interference from human adversaries, developing competent intelligent 
systems for real-world applications remains a fundmental challenge – even simple goals can be 
difficult to achieve in a complex world. For these resaons, we fully expect that safe and assured 
operation will be as much an ongoing pursuit as a strategic goal to be achieved.  
 
Near-term: In the near term we expect that work will focus on identifying system designs that 
optimize the tradeoffs between modular architectures that emphasize interoperability and 
assurance and data-driven learning architectures that emphasize system performance. Bridging 
the gap between simulation and real-world testing will be key to enabling impact in complex, 
safety-critical applications.   
 
Mid-term: Building on the foundation of assured single-agent architectures, the mid-term goal 
will be to develop multi-agent architectures that are robust against real-world perturbation and 
adversarial influence. We can expect that the adversaries will attempt to disrupt the operation 
of multi-agent systems by degrading collective perception and decision-making capabilities, as 
well as disrupting the ability of the components to team with other agents and humans. Research 
will also focus on characterizing and bounding the extent to which emergent behaviors arising 
from multi-agent interactions lead to unintended outcomes. 
 
Long-term: The long-term goal of research efforts towards safe and assured operation is to 
produce systems that can achieve goals in challenging environments through creative problem-
solving while producing outcomes that are consistent with human intent. Ensuring that systems 
with this degree of autonomy remain aligned with human-specified goals is a grand challenge 
that will involve decades of research. The emerging academic field of AI Safety has largely focused 
on existential risks that AI might pose to humanity. APL aims to engage with this community by 
helping to align AI Safety research with the practical realities and challenges of developing 
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intelligent systems for real-world operation. Ultimately, we must work together across disciplines 
and institutions to ensure that advances in AI are beneficial to humanity’s future.  

 
The Four Technology Vectors 

 

Technology 
Vector 

Near-Term 
(1-3 years)  

Mid-Term 
(3-10 years)  

Long-Term 
(10-∞ years)  

Autonomous 
Perception 

Machines that learn to 
reason over world models 

and also learn strategies for 
focusing their attention 

Machines that learn to 
reason about humans and 
other machines and learn 

to predict behavior 

Machines that learn to 
perform causal and 

counterfactual reasoning 
and also learn by 

strategic exploration 

Superhuman 
Decision- 

making and 
Autonomous 

Action  

Machines that perform and 
select appropriate 

behaviors using data-driven 
architectures 

Machines that generate 
and execute courses of 

action across multi-agent 
networks 

Machines that reason 
and act strategically and 

learn across levels of 
abstraction and time 

Human-
Machine 

Teaming at the 
Speed of 
Thought  

Machines that depend on 
human support, common 
world models, and labeled 

data 

Machines that interact 
with humans through 
natural language and 

demonstration 

Machines that primarily 
rely on human intent 

inferred through shared 
cognition 

Safe and 
Assured 

Operations 

Machines with assured 
system components and 

architectures 

Machines with assured 
multi-agent architectures 

and resilience to adversary 
attacks  

Machines with goal 
alignment, risk sensitivity, 

and ethical and moral 
reasoning  

 
Note that, with respect to this chart, any particular project aimed at developing an intelligent 
system would occupy a vertical slice. In other words, a project is developed at a specific point in 
time and would make use of the most advanced family of capabilities spanning all four strategic 
vectors at that time. 
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Strategic Research Areas 

Advancements across a broad range of technology areas will be necessary to realize the long-
term goals laid out in the roadmap. Among many related pursuits, the following represent areas 
of increasing emphasis for AI-related R&D at APL. 

Fundamental Advances in Machine Learning Algorithms: The promise of machine learning is to 
automate the development of complex functions that cannot be explicitly encoded. Leveraging 
the current landscape of machine learning algorithms is necessary but not sufficient to drive 
progress along our technology vectors. While there will undoubtedly be continuing research on 
new algorithms in both academia and industry, it will be critical to pursue new ideas in machine 
learning that are tailored to the unique aspects of key applications. 

Supervised machine learning techniques, such as deep neural networks, are generally more 
mature than experiential learning techniques like deep reinforcement learning for real-world 
problems. Deep reinforcement learning has recently shown great success for decision-making 
when applied to board games and video games (like Go and chess), but applications of this 
general family of algorithms to APL problems will require robust world models as discussed 
above. Ensuring adequate representation of real-world conditions in a dataset or simulation is an 
open problem and active area of study.  

Another aspect of fundamental research in machine learning algorithms concerns what APL 
technical experts call “enormously small” datasets that are clutter-rich and target-poor. Training 
an algorithm through supervised learning often requires millions of labeled images, for example. 
However, in some defense and intelligence challenges there are only a few hundred labeled 
images available. Major advances in this area are needed, such as learning from synthetic data, 
learning with fewer labels, and developing techniques for automatically labeling data.  

Online machine learning, or “learning on the fly,” refers to machine learning from incoming data 
in real time. In this case, the algorithm must dynamically adapt to new patterns of data without 
forgetting previously learned information. This challenge applies to any real-time monitoring 
system, including ubiquitous checkpoint and cyber monitoring systems. In some domains, online 
learning will be especially difficult due to austere computing environments where size, weight, 
and power are limited. A danger associated with online learning, in general, is the lack of 
robustness to real-world conditions coupled with the potential for adversaries to subvert system 
goals.  

Multi-modal and contextual learning is another important area of basic research for APL. 
Information used to develop and maintain situational awareness of adversary activities often 
comes from disparate sources, including, but not limited to, images, text, hyperspectral data, 
acoustical data, and radar. Effective integration of information from diverse sources requires 
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contextual awareness of each modality for accurate reasoning. This challenge is also complicated 
by the fact that the data from some sources will be unstructured, noisy, and conflicting. Machine 
learning algorithms that can develop hypotheses by leveraging contextual information from 
multiple domains will be especially important in applications that involve maneuvering in cyber 
space, closed-loop intelligence, surveillance, and reconnaissance, and intelligent control of 
spectrum resources.  

Human-Machine Fusion: Realizing the long-term vision for Human-Machine Teaming at the 
Speed of Thought will require a seamless connection between AI systems and the human brain. 
Developing a non-invasive brain-computer interface system is a promising path towards shared 
cognition and an active area of research at APL. Two important challenges in this area are 
physically accessing brain signals in a non-invasive manner and decoding these signals in a 
reliable way to understand human intent. Past APL research using invasive implants was focused 
on the motor regions of the brain. Future research will focus on accessing and analyzing signals 
carrying more complex thought patterns. Another essential challenge for brain-computer 
interface research is to send signals into the brain. A bi-directional non-invasive device could hold 
the key to dramatic advancements in education, health, scientific discovery, and military 
operations. 
 
Enhanced by measurement and interpretation of neural signals, humans and machines will 
ultimately collaborate to make inferences and decisions based on incomplete and uncertain 
information. New algorithms and teaming paradigms will be needed under these regimes to 
ensure that decisions made and actions taken by human-machine teams are both maximally 
effective and aligned with human values. Therefore, in addition to continuing our research on 
the actual interface system between humans and machines, effective operational use of AI will 
require research on: integrating uncertainty into machine decision processes and communicating 
it to humans; conveying machine recommendations that consider information unseen to 
humans; “explainability” of the often opaque machine learning process; and ensuring that 
machine recommendations are consistent with human intent. 
 
Novel AI Substrates and Neuro-Inspired Computing: A fundamental long-term research 
objective for APL is to use the multidisciplinary power of neuroscientists, computer scientists, 
and mathematicians to discover new computational paradigms modeled on the human brain. In 
pursuing this goal we will continue to explore the use of emerging databases of reconstructed 
neural circuits that has been created as part of programs like the Machine Intelligence from 
Cortical Networks (MICrONS) program. As we noted above, current approaches to deep learning 
tend to rely on heuristically constructed networks rather than exploiting a principled design 
strategy. Similarly, prototype neuromorphic processor platforms have the capacity to simulate 
neurons statistically, but draw little architectural inspiration from biological brains. Of the core 
principles believed to fuel the computational power and efficiency of the biological brain, 
arguably the least explored is the concept of motifs – repeated structural and functional 

https://www.iarpa.gov/index.php/research-programs/microns
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computational units that can be observed at different scales and modalities. We believe that 
motifs account for some key gaps between today’s artificial neural networks and future 
computational architectures that truly approximate the human brain. Recent advances in brain 
imaging and subsequent image processing are making novel, large-scale structural and functional 
brain information available, creating the first significant opportunity for motif and computational 
architecture discovery. Connectomics refers to the emerging science of the interplay between 
brain structure, function, and connectivity across multiple scales. APL is a leader in this field and 
we are actively developing novel, scalable mathematical tools to extract knowledge from brain-
mapping datasets. This work will provide critical insights into the highly efficient processing 
power of the brain and serve as the foundation for a new generation of architectural designs for 
truly neuromorphic processors. Combined with advances in low size, weight, and power 
hardware, connectomics will allow us to push machine perception to the tactical edge. 
Applications for this work will include detecting, tracking, and reacting to time-critical threats by 
carrying out intelligence processing at the sensor.  
 
AI Safety Research: To establish trust in intelligent systems for critical applications, we must 
enhance our understanding of machine learning algorithms in both theory and practice. This will 
require an understanding of the extent to which AI systems are robust to real-world conditions, 
vulnerable to adversarial attack and ultimately, the extent to which they can be trusted to 
perform critical tasks autonomously. In particular, as the Department of Defense and the 
Intelligence Community seek to leverage AI to improve decision-making, automate defense 
systems, and reduce the burden on analysts, the requirements for security and robustness of AI 
systems will be increasingly important. Finding new techniques for identifying and controlling 
bias in AI systems will be key to facilitating near-term progress. Further, we must continue to 
work towards new methods that take advantage of the potential for intelligent systems to learn 
on the fly while mitigating the many inherent risks associated with doing so. Ultimately, we seek 
fundamental advancements towards developing self-aware systems that can identify and 
address their own vulnerabilities, explain their decisions, correctly interpret and safely execute 
human goals, and ask for guidance when necessary.   
 
To help accelerate research in AI Safety and trusted autonomy more generally, Johns Hopkins has 
recently established the Institute for Assured Autonomy (IAA). IAA is an emerging national center 
of excellence ensuring the safe, secure, reliable, and predictable integration of autonomous 
systems into society by covering the full spectrum of research across the three pillars 
of technology, ecosystem, and policy and governance.  
 

 
  

https://www.jhuapl.edu/iaa/
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