Neural Reconstruction Integrity: A Metric for Assessing the Connectivity Accuracy of Reconstructed Neural Networks


Abstract

Neuroscientists are actively pursuing high-precision maps, or graphs consisting of networks of neurons and connecting synapses in mammalian and non-mammalian brains. Such graphs, when coupled with physiological and behavioral data, are likely to facilitate greater understanding of how circuits in these networks give rise to complex information processing capabilities. Given that the automated or semi-automated methods required to achieve the acquisition of these graphs are still evolving, we developed a metric for measuring the performance of such methods by comparing their output with those generated by human annotators (“ground truth” data). Whereas classic metrics for comparing annotated neural tissue reconstructions generally do so at the voxel level, the metric proposed here measures the “integrity” of neurons based on the degree to which a collection of synaptic terminals belonging to a single neuron of the reconstruction can be matched to those of a single neuron in the ground truth data. The metric is largely insensitive to small errors in segmentation and more directly measures accuracy of the generated brain graph. It is our hope that use of the metric will facilitate the broader community's efforts to improve upon existing methods for acquiring brain graphs. Herein we describe the metric in detail, provide demonstrative examples of the intuitive scores it generates, and apply it to a synthesized neural network with simulated reconstruction errors. Demonstration code is available.

Citation

@articleReilly_2018 doi: 10.3389/fninf.2018.00074 url: https://doi.org/10.3389/fninf.2018.00074 year: 2018 month: nov publisher: Frontiers Media SA volume: 12 author: Reilly Elizabeth P. and Garretson Jeffrey S. and Roncal William R. Gray and Kleissas Dean M. and Wester Brock A. and Chevillet Mark A. and Roos Matthew J. title: Neural Reconstruction Integrity: A Metric for Assessing the Connectivity Accuracy of Reconstructed Neural Networks journal: Frontiers in Neuroinformatics

Contact Us


Chief
Ashley Llorens
Ashley.Llorens@jhuapl.edu
240-228-0312

Physical Address
7701 Montpelier Road
Laurel, MD 20723


The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.