An Agent-Ensemble for Thresholded Multi-Target Classification

Applied Sciences


We propose an ensemble approach for multi-target binary classification, where the target class breaks down into a disparate set of pre-defined target-types. The system goal is to maximize the probability of alerting on targets from any type while excluding background clutter. The agent-classifiers that make up the ensemble are binary classifiers trained to classify between one of the target-types vs. clutter. The agent ensemble approach offers several benefits for multi-target classification including straightforward in-situ tuning of the ensemble to drift in the target population and the ability to give an indication to a human operator of which target-type causes an alert. We propose a combination strategy that sums weighted likelihood ratios of the individual agent-classifiers, where the likelihood ratio is between the target-type for the agent vs. clutter. We show that this combination strategy is optimal under a conditionally non-discriminative assumption. We compare this combiner to the common strategy of selecting the maximum of the normalized agent-scores as the combiner score. We show experimentally that the proposed combiner gives excellent performance on the multi-target binary classification problems of pin-less verification of human faces and vehicle classification using acoustic signatures.


@articleParrish_2020 doi: 10.3390/app10041376 url: year: 2020 month: feb publisher: MDPI AG volume: 10 number: 4 pages: 1376 author: Parrish Nathan H. and Llorens Ashley J. and Driskell Alex E. title: An Agent-Ensemble for Thresholded Multi-Target Classification journal: Applied Sciences

Contact Us

Ashley Llorens

Physical Address
7701 Montpelier Road
Laurel, MD 20723

The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.