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ing of the type we have outlined 
here is necessary.

Toward the end of the study, 
a simulation was conducted to 
deliberately try to capsize the 
capsule, in part to validate the 
modeling approach and to estab-
lish some idea of safety margins. 
It was found that a 1.8-m sig-
nificant wave height random 
wave field with a dominant 
8.5-s period would cause the 
capsule to capsize within 60 s of 
the simulation start (although 
a purely sinusoidal forcing did 
not cause inversion). The cap-
sule could also be reverted 
upright, so it had a 50% chance 
of continuing operation after 
such a violent storm. The cap-
sule, like catamarans and some 
other craft on Earth, was not 

self-righting. The wave height/diameter ratio that could 
lead to capsize for TiME was presumably lower than for 
similarly shaped terrestrial discus buoys39 because of the 
modest static stability permitted by the assumed mass 
distribution: in practice, ballasting could improve the 
static stability, and bilge keels or other damping mea-
sures might be introduced to improve dynamic stability 
depending on the risk posture adopted. The challenge 
would be in affordably implementing such measures 
alongside the demands of hypersonic entry stability, 
power source accommodation, and other spaceflight 
factors not normally demanded of maritime systems. It 
must be stressed that the 3.5-m/s winds required for such 

i.e., the weight of the displaced or missing fluid. Thus 
the acceleration is xA�g/M, where M is the vehicle mass 
and A is the cross-sectional area at the waterline. For the 
usual parameters and a vehicle properties M ~ 700 kg 
A ~ 4.5 m2, we find an acceleration of 0.05 ms–2 (~4 mg) 
for a 1-cm displacement in liquid ethane. The bobbing 
period is T = 2�(M/A�g)0.5 ~ 2.6 s. Similar calculations 
show a similar period for rocking (pitch) motions. The 
proximity of these natural motions to the wave forcing 
period means that the damping characteristics of the 
capsule, which can be tuned by relatively modest hull 
features such as bilge keels, can be important in the 
behavior of a capsule on Titan and that detailed model-
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Figure 12. A bottom interaction model was introduced into the OrcaFlex simulations to examine beaching dynamics. In the time his-
tory shown, bottom contact occurs at about 80 s, and the motion becomes of lower amplitude but with more rapid variations.
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Figure 11. Random wave OrcaFlex simulation results of TiME capsule. The maximum rota-
tional rate of the capsule is shown in blue and plotted against the dominant wave period. The 
significant wave height of the random waves is shown in red.
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rather similar). Values of bottom slope of 1° and 6°, typi-
cal of sandy shores on Earth, were examined.

A notable dynamical signature of shoreline encoun-
ter, of interest for autonomous detection of beaching 
(which might, for example, trigger optimized scientific 
observation sequences such as an imaging panorama), 
is a reduction in the angular rates, but much more rapid 
changes in those rates (see Fig. 12). This is readily inter-
preted as the base and corners of the lower hull bounc-
ing on the bottom: the random waves progressively 
push the capsule higher on the beach, depending on 
the friction coefficient chosen, and intervals of rest are 
punctuated by refloating events. Because wave-breaking 
and tides were not included in the simulations (and of 
course the shoreline characteristics of Titan as a whole, 
let alone the location of beaching, are not known), no 
formal evaluation was made of these results, but they 
demonstrated the capability to address the problem and 
were reassuring overall. Some of these bottom interac-
tion signatures were also seen in field tests40 (performed 
after the TiME study concluded, in support of NASA 

waves are in any case far in excess of the winds predicted 
by global circulation models.

Beaching Simulations
While the TiME mission would be expected to com-

plete its science objectives during the multi-Tsol (several-
week) drift from its splashdown point to the shores of 
Ligeia, the prospect for operation during and after shore-
line encounter (if it occurred) was of obvious interest. 
Because modeling shows that Ligeia Mare has a tidal 
range of a few tens of centimeters,10 the capsule might 
become comfortably beached in low-slope depositional 
environments such as beaches or tidal flats.

A bottom interaction model was constructed using 
terrestrial materials as a guide (the familiar appearance 
of many of Titan’s landforms such as dunes, mountains, 
and river channels attests that while the chemical com-
position of Titan’s surface is very different from that of 
Earth, under the low-temperature, low-gravity condi-
tions on Titan, the mechanical properties end up being 

Figure 13. A field test of a 1/8-scale model (~35 cm diameter) of the TiME capsule at Laguna Negra. A small GoPro camera demonstrated 
the utility of imaging for shoreline morphology as well as the dynamics in waves. The tests shown here showed distinctive accelerom-
eter signatures of beaching. The red flags aided in recovery of the test article.
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by APL, and the Titan Saturn System Mission (TSSM) 
flagship concept that followed, could be launched any 
time, as could missions that address the wide range of 
science elsewhere on Titan, such as hot-air balloons,44 
unmanned aerial vehicles,45 and equatorial landers. The 
appeal of Titan’s seas, however, is only likely to grow as 
Cassini observations continue to come in as we move 
toward northern midsummer in 2017, and interest in 
their future exploration remains high, as evidenced by 
ideas for floating capsules on international missions46 
and even ideas for more ambitious vessels such as sub-
marines. The innovative and imaginative TiME project, 
drawing on APL’s maritime as well as space expertise, 
will rightly be seen as the setting where the challenges of 
sailing the seas of another world—an enterprise perhaps 
first considered by Titan’s discoverer12,47—were first seri-
ously confronted.
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