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Autonomous Systems

David P. Watson and David H. Scheidt

ystems that can change their behavior in response to unanticipated events during 
operation are called “autonomous.” The capability of such systems and their domains of 
application have expanded significantly in recent years, with high-profile successes in both 
civilian and military applications. These successes have also been accompanied by high-
profile failures that compellingly illustrate the real technical difficulties associated with 
seemingly natural behavior specification for truly autonomous systems. The rewards are 
great for advancing this technology, however. Autonomous systems technology is truly 
transformational, with potential benefits in both cost and risk reduction. The technol-
ogy also holds the potential for enabling entirely new capabilities in environments where 
direct human control is not physically possible. Note also that autonomy development is 
a discipline that cuts broadly across traditional engineering domains and system life-cycle 
phases, a true systems engineering discipline. For all of these reasons, APL has identified 
autonomous systems technology as an important element of its science and technology 
vision and a critical area for future development.

BACKGROUND

History
The idea of a machine intelligence embodied in an 

actuated physical system is not new. In fact, early Greek 
myths of Hephaestus and Pygmalion include concepts 
of animated statues or sculptures.1 These ideas have 
persisted throughout history, with periodic attempts 
to achieve some limited set of functionality using the 
technology of the time. Although these efforts some-
times produced extremely complex mechanical devices 
(“automata”) that mimicked human action, they are 
more properly characterized as works of art than of 	
engineering.2 I n more recent history, the field of 	

cybernetics was born in 1940 when N orbert Wiener, 
a mathematics professor at MI T working to develop 
automated rangefinders for anti-aircraft guns, began to 
ponder the seemingly “intelligent” behavior of these 
servomechanisms and the apparent similarity in both 
their nominal and anomalous (failed) operation to 
biologic systems.3 This work led to the formalization 
of a theory of feedback control and its generalization 
to biologic (human) systems. This theory motivated 
the first generation of autonomous systems research 
in which simple sensors and effectors were combined 
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with analog control electronics to create systems 
that could demonstrate a variety of interesting reac-
tive behaviors. I n 1964, for example, the APL Adap-
tive Machines Group, led by Leonard Scheer, demon-
strated an autonomous rover system that could navi-
gate APL’s hallways, identify electrical outlets in the 
wall, and then plug itself in to recharge its battery cells 	
(Fig. 1).

With the advent of digital control electronics in the 
1970s and increased interest in automated perception 
and cognition within the new field of “artificial intelli-
gence,” additional advances were made in autonomous 
systems that could plan and execute relatively complex 
operations with little or no human interaction. As the 
cost of sensors, actuators, and most significantly, pro-
cessors has dropped over the past two decades, there 
has been significant growth in autonomous systems 
research for all operational modalities: air, surface, 
undersea, and space. Today, we are witnessing the 
maturation and transition of this research into a vari-
ety of systems that presents transformational civilian 
and military capabilities. This article describes some 
of these systems and presents a brief survey of the state 
of the art in a variety of autonomy domains. We also 
highlight some critical science and technology (S&T) 
challenges in expanding the application of autonomous 
systems in the future.

Critical Cross-Cutting Science and Technology
Research into autonomy has historically been tied 

closely to particular application domains. A fundamen-
tal premise of the APL vision for this S&T area is that 
there is significant benefit to focusing on cross-domain 
solutions. For example, note the similarity in autonomy 

requirements between spacecraft and underwater vehi-
cles. For low-Earth-orbit missions, human operators have 
a periodic high-quality communications link with the 
system, allowing them to perform almost all high-level 
planning, control, and health management functions. 
In deep-space missions, however, communications link 
quality can be extremely low. In such situations, system 
designers must address these functional requirements in 
the absence of human support. S imilar, if not identi-
cal, challenges face the undersea vehicle system engi-
neer. Although certain missions may provide high-qual-
ity communications, permitting low-level supervisory 
control of vehicle systems, it is more likely that such 
systems will be limited to very low-quality communica-
tions links to the surface, resulting in a set of functional 
requirements identical to that of the deep-space vehicle, 
i.e., the ability to

•	 Develop a well-defined, yet modifiable, mission plan
•	 Execute the mission plan, modifying it if necessary
•	 React appropriately, if not optimally, to anomalous 

events
•	 Coordinate with human controllers

These functional requirements are also shared by 
ground and air systems that must operate with minimal 
human interaction in dynamic environments. There is a 
core set of technology areas that can address these cur-
rent autonomous systems requirements as well as some 
future capabilities such as the ability to

•	 Improve performance through learning
•	 Coordinate with peer autonomous systems in mis-

sion operations

A final, key aspect of the autonomous systems we 
consider in this article is interaction with the physi-
cal world. Although “mobile” software constructs (e.g., 
viruses, agents) exist that can operate without direct 
human interaction, we do not specifically include them 
within the scope of this vision element. There are cer-
tainly analogies between software agent behaviors and 
autonomous systems in the physical world, and some 
overlap in component technologies and architec-
tures, but we are particularly concerned here with the 	
unique problem of interaction with an open physical 
world in the accomplishment of a complex perfor-
mance goal.

APPLICATION DOMAINS
We begin by discussing some relevant application 

domains in terms of current capabilities and particular 
S&T challenges. As described above, APL has had a 
long history of involvement with autonomous systems 
and technologies. This involvement continues today 
in systems operating in maritime, ground, air, and 	
space domains.Figure 1.  The APL “beast” (circa 1965).
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Maritime
Autonomy in the maritime domain has been focused 

primarily on submersible systems, for both shallow-water 
and deep-submergence applications. Torpedo guid-
ance and control capabilities have become increasingly 
sophisticated and have formed the basis for some work 
in more general autonomy, including sophisticated sys-
tems such as the Mk 30 Mod 2 acoustic training target 
that can execute scripted “mission plans” and respond to 
real-time events. I n general, such systems are assumed 
to operate in well-characterized areas and to have good 
connectivity with human operators through either reli-
able acoustic links or optical tethers. Deep-submergence 
vehicle systems, in contrast, may need to operate in 
unfamiliar areas and cannot always rely on a commu-
nications link to the surface. In this aspect, they have 
autonomy requirements similar to those of a science 
spacecraft operating in deep space.

APL has supported the development of unmanned 
underwater vehicle (UUV) systems and technologies 
since the mid-1980s for the Defense Advanced Research 
Projects Agency (DARPA), the N avy P rogram O ffice 
for U nmanned U ndersea Vehicles (PMS-403), the 
Navy Program Office for Explosive Ordnance Disposal 
(PMS-EOD), the Office of Naval Intelligence, the Office 
of N aval R esearch, and others. The Laboratory was 
recently designated the Systems Engineering Agent for 
PMS-403 in support of their acquisition of a 21-in.-dia. 
Mission Reconfigurable UUV System. Laboratory staff 
were also members of the core team that wrote the Navy 
UUV Master Plan in 2000 and its update in 2004.4 The 
plan describes nine critical mission capabilities, with 
highest priority for intelligence, surveillance, and recon-
naissance (ISR) and mine countermeasures. I n a com-
prehensive analysis on enabling technologies for these 
mission capabilities, autonomy was cited as one of the 
critical technologies requiring investment in the future.

Ground
The terrestrial operating domain provides certain 

advantages as well as particular challenges in compari-
son to other domains. Reliable, high-quality communi-
cation between the system and its control station is less 
of an issue. Also, the relative stability of the terrestrial 
environment can provide the opportunity to suspend 
active control in order to maintain safety or perform 
additional processing. This option does not generally 
exist in other domains, where active control is required 
for system stability. O nce a ground system is mobile, 
however, the terrestrial world presents a significantly 
more challenging operating environment in terms of 
obstacles and terrain than other operational domains. 
For these reasons, sensing and mobility have been much 
more of a focus in ground robotics research than high-
level autonomy. The DoD’s Joint R obotics P rogram 

Master Plan5 has identified “semi-autonomous mobility” 
as one of five critical technology development priorities 
and “increased autonomy in manipulation and control” 
as a critical unfunded technology requirement.

Perhaps the most visible ground autonomy work in 
the DoD today is being done by DARPA as part of the 
Army’s Future C ombat S ystem. This work has again 
focused on vehicle design (the U nmanned G round 
Combat Vehicle program) and off-road navigation, sens-
ing, and mobility (the Perception for Off-road Robotics 
program). I n addition, the Army R esearch Laboratory 
Robotics Collaborative Technology Alliance has identi-
fied three technology areas essential to the development 
of semi-autonomous mobility: (1) perception, (2) intel-
ligent control architectures and tactical behaviors, and 
(3) human–machine interfaces. The autonomy technol-
ogies we discuss in this article, in particular the “layered 
control” ideas we consider later, are in complete align-
ment with these requirements.

Air
APL’s work in ground robotics systems (including 

current efforts in ground robotics swarming) has been 
limited to one or two small prototype endeavors. I n 
contrast, the Laboratory has a long history of work in 
unmanned air vehicle (UAV) systems, ranging from 
small radio-controlled vehicles developed for ISR 
applications to significant efforts in mission planning 
and control as part of the Tomahawk missile program. 
Most recently, the Laboratory has been selected as the 
Common O perating S ystem I ntegrator/Broker for the 
Joint Unmanned Combat Air Systems (J-UCAS) pro-
gram. This combined DARPA/Navy/Air Force program 
is developing prototype aircraft to demonstrate the tech-
nical feasibility, utility, and value of networked high-per-
formance autonomous air vehicles in combat missions 
that currently require manned aircraft (Fig. 2). The J-
UCAS Common Operating System will push the limits 
in all aspects of the autonomy technology we discuss in 	
this article.

The J-UCAS program is motivated by the very vis-
ible successes of high-performance UAV systems such as 	
Predator and G lobal H awk in recent ISR  and combat 
actions. At the other end of the warfare spectrum, small 
UAVs are now experiencing unprecedented levels of use 
in tactical applications. Small systems such as Dragon 
Eye are routinely used to provide electro-optic, IR , or 
low-light video imagery directly to warfighters at the 
company/platoon level. Unfortunately, these small sys-
tems require direct human supervision for both control 
and data analysis. Furthermore, they operate as stand-
alone systems with no direct connection to backbone 
networks or other tactical systems. The move toward 
“fire-and-forget” autonomy for these systems and the 
development of ad hoc sensor/control networking capa-
bilities are key research challenges in this area.
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Space
As with the other operational domains we have dis-

cussed, space presents unique enablers and challenges to 
the problem of autonomous operation. First, it is impor-
tant to appreciate the distinction between near-Earth-
orbit missions and deep-space missions. I n the former, 
communications with the system can be assumed to 
be relatively reliable and of moderate to high quality 
in terms of bandwidth and latency. This provides the 
opportunity to perform most supervisory operations 
under direct, real-time human control (though this 
may be cost prohibitive). As with UAV systems, high-
rate control loops are still required onboard to main-
tain stability, but all higher-level planning, scheduling, 	
maintenance, and anomaly management functions can 
be done on the ground and uploaded to the spacecraft 
for execution. Deep-space missions, in contrast, present 
a variety of significant communications issues, includ-
ing low-bandwidth channels that can be accessed only 
intermittently and have significant latencies—up to a 
4-h delay for a one-way communication with the APL 
New H orizon spacecraft when it reaches rendezvous 
with P luto, for example (Fig. 3). I n this case, there is 
no alternative but to perform certain high-level decision 
making onboard without direct human supervision. 
New H orizon’s mission is particularly problematic, for 
example, as traditional anomaly response actions may 
be inappropriate during the actual planetary flyby. 

Space systems engineers have been dealing with these 
problems for many years, generally relying on two strate-
gies: exhaustive analysis of potential mission events with 
a priori design of appropriate response actions, and over-
all simplification of system design. These strategies have 
worked well in the past, but as mission requirements (and 
the resulting systems) become more complex, it will be 
necessary to automate and embed increasingly higher 
levels of autonomous decision-making capability on the 
spacecraft itself. But this autonomy must be amenable 
to verification and validation, consistent with all other 
elements of spacecraft systems engineering. Although 
significant autonomy research has been performed in 
the space community, much of it has failed to transition 
into mission applications as a result of verification and 
validation issues.

AUTONOMY RESEARCH 
AND TECHNOLOGY

There are domain-specific and 
domain-independent aspects to the 
S&T required to address the require-
ments described above. Domain-
specific aspects include sensing and 
perception, manipulation, mobility, 
power, navigation, and communi-
cations. Although these cannot be 
completely decoupled from auton-
omy, our focus here is on aspects 

Figure 2.  J-UCAS prototype aircraft: (a) Boeing X-45C and (b) Northrop Grumman  
X-47B.

of autonomy that may be invariant across operational 
domains. These include automated planning, layered 
control, model-based and reactive control, and behavior 
coordination.

Planning and Scheduling
Autonomous behavior begins with the establishment 

of a plan to accomplish some desired goal or set of goals 
subject to some given set of resources and constraints. 
Imagine a spacecraft transiting interplanetary space, 
with high-level instructions to image a set of objects in 
the free time between trajectory correction maneuvers. 
Each imaging operation requires a complex sequence of 
interdependent attitude thruster and instrument warm-
up and initialization commands. Today this sequence 
would be constructed by the mission operations team 
and uploaded to the spacecraft well before the event, 
but true autonomy would enable the spacecraft control-
ler itself, using formal models of subsystem capabilities 
and constraints, to establish the sequence and modify 
it if necessary during flight. Automation of planning 
processes such as these has been a central problem in 
the field of artificial intelligence for more than 30 years, 
and a number of important approaches, including state-
space search and hierarchical task decomposition, have 

Figure 3.  Artist’s conception of the New Horizons spacecraft at 
Pluto. 
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evolved as a result of work in this area.6 More recently, 
related work from the operations research community 
modeling sequential decision-making problems using 
Markov decision processes7 has also been applied to 
the planning problem. There have been many success-
ful applications of this technology, in domains ranging 
from transportation and military logistics scheduling to 
manufacturing process control. 

Layered Control
The majority of research in automated planning has 

framed the problem as an offline process that can be 
addressed independent of system operation. G iven an 
initial state, a goal state, and a set of operators or actions 
to work with, the objective is to derive a complete, opti-
mal plan that can then be executed. The problem must 
be framed differently for autonomous systems operating 
in open (i.e., not completely modeled) environments, 
however. In that case, planning must generally proceed 
in parallel with plan execution in order to address the 
occurrence of unanticipated events. 

Imagine that our opportunistic imaging spacecraft in 
the previous example is in the process of executing an 
image capture plan for some previously detected object 
when the detection sensor reports a newer, more inter-
esting object to image. The previous plan must be ter-
minated and a new one constructed as soon as possible, 
all the while maintaining overall system stability. The 
problem here is that planning algorithms generally strive 
for global optimality over the known set of resources 
and constraints. This implies computational complexity 
and, indeed, the general problem of state-space search 
planning, for example, is known to be “nonpolynomial-
hard.”8 It is not feasible to put such a process in the real-
time feedback control loop of an autonomous system. 

be characterized as a plan executor. This loop uses fil-
tered perception data to assess the progress of the system 
through a preplanned sequence of states. R esponsive-
ness at this level is limited to contingency plans that 
have been prepared in advance and the event condi-
tions that trigger them. At the highest level of control, 
a deliberative planning process uses explicit, declarative 
models of the system and its environment, combined 
with state information from the plan execution layer, to 
determine if the current situation requires global replan-
ning. All layers operate asynchronously in parallel to 
produce the controlled behavior. This architecture has 
become almost ubiquitous in autonomy systems ranging 
from underwater vehicles to exploratory spacecraft.9 An 
elaborated version has even been proposed as a standard 
for intelligent manufacturing systems.10

Model-Based Reasoning
Within the general framework of planning and 

control that we have described, there are a number of 
dimensions or functional aspects of behavior tailored to 
the particular autonomy domain. These include naviga-
tion, mobility, power, health management, and payload-
specific operations. Although these tend to be primarily 
domain-specific technologies, we can make some general 
observations. Each functional area can have dedicated 
sensing, control, and actuation requirements, yet these 
cannot be strictly partitioned in the system architecture 
because of the inherent coupling of subsystems through 
shared power, mechanical, and computing resources. 
For example, at some point the navigation subsystem 
on an autonomous ground vehicle may require time 
and mobility resources to obtain a GPS fix, and these 
must be coordinated with other, perhaps higher-priority, 
requirements from a surveillance payload package. This 
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Figure 4.  Layered autonomy model.

To address this problem, a canon-
ical architecture has emerged in 
the research community based on 
the notion of layered control loops 
that address the control problem at 	
various timescales (and levels of 
abstraction) to provide a combina-
tion of responsiveness and robust-
ness. Figure 4 shows a simplified 
example of such an architecture, 
where the lowest-level control 
loops are used to provide feedback 
control with deterministic respon-
siveness. This control is reactive in 
the sense that the system will be 
driven to some local optima with 
respect to the overall behavior 
goals (maintaining system safety, 
for example). This local control 
set point is determined by the next 
level of the architecture, which can 
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cross-coupling implies some centralized assessment and 
decision making at the highest level of system control 
for both mission and health management. The model-
ing and manipulation of these various facets of subsys-
tem performance within a single integrated framework 
is a critical challenge for autonomous systems and an 
active area of current research.

In classical control theory, models of system behav-
ior are an essential starting point in the derivation of 
optimal control policy. H owever, as systems expand in 
complexity (becoming, in fact, systems of interrelated 
subsystems), the construction of a single analytical model 
that characterizes the system in the classical sense may 
become infeasible. But the requirement to control such 
systems in a coordinated manner, as described above, is 
critical in autonomous systems. This has led to various 
heuristic, or ad hoc, approaches that generally amount 
to sets of control rules of the form: “If A is true, then do 
B.” The construction of these rule sets may be driven by 
a rigorous systems engineering process (such as a Failure 
Modes, Effects, and Criticality Analysis), but it is funda-
mentally limited by the combinatoric expansion of sub-
system interactions that must be considered in any com-
plex system operating in a dynamic environment. Thus 
such approaches to autonomous control have historically 
been subject to failure as a result of inadequate or (less 
frequently) inconsistent rule sets. The NASA Accident 
Review B oard for the recent M ars P olar Lander failure 
concluded that the spacecraft’s autonomous control rules 
incorrectly shut down the descent engines based on land-
ing leg sensor data before reaching the planet surface, 
despite having the necessary information onboard (inde-
pendent altimeter data) to correctly reason that the leg 
sensor data were spurious transients and not truly indica-
tive of a landed condition. The onboard rule set did not 
address this scenario because autonomy engineers did not 
anticipate it at the time the system was designed.

It is simply not feasible for systems engineers to 
reason through all potential subsystem interactions 

characterization which later proved amenable to exten-
sion into a comprehensive autonomy architecture that 
addresses system diagnosis, fault management, and top-
level behavior control. M ature instantiations of this 
approach were tested in a deep-space experiment12 and 
form the basis for new system development frameworks 
under development at the NASA Jet Propulsion Labo-
ratory13 and MI T.14 The general idea, as illustrated in 	
Fig. 5, is that autonomous behavior is controlled 
through a continuous process of “state estimation” and 
“state control,” where system state and associated attri-
butes, constraints, and transitions are defined in a set 
of declarative component models that capture both the 
nominal and failed behavior of all subsystems. These 
models take the place of rule sets in such controllers. 
Instead of a direct mapping from subsystem telemetry 
to command, an additional inference step is introduced 
that transforms the telemetry values into a state esti-
mate, which is then used to derive commands to drive 
this estimated state to the current goal state. Structur-
ally, this approach is identical to that used in modern 
control theory. The significant difference is in the run-
time synthesis of control actions. To date this has been 
accomplished in a very limited manner using state-space 
search techniques, and extension of the state controller 
synthesis idea into a general theory of autonomous con-
trol represents a primary research challenge. 

There are, however, several advantages of this 
approach for autonomy specification. First, the com-
putational burden of considering all possible subsystem 
state interactions during operation is removed from the 
system designer, who can now focus on the specification 
of individual subsystem behaviors (both nominal and 
faulted). This specification leads to the potential for cor-
rect system response even to unanticipated operational 
scenarios. I ndeed, the use of explicit behavior models 
forms the basis for a significant body of current research 
into the formal validation of autonomous control system 
performance, a critical aspect for use of this technology 
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Figure 5.  Model-based executive concept.

for autonomous systems of signifi-
cant complexity. This realization 
was the motivation behind a new 
approach to autonomy design based 
on the use of explicit system models. 
Although this method resembles a 
control theoretic approach in the 
abstract, the types of system models 
and their use in an embedded con-
troller are very different. 

Current approaches to model-
based reasoning in autonomous 
systems have their roots in early 
work by R andall Davis at MI T in 
digital circuit diagnosis.11 Davis 
proposed a functional constraint 
satisfaction framework for system 
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in high-reliability systems. The explicit computation and 
manipulation of abstract system states in the autonomy 
controller also provides a natural high-level interface to 
human supervisors and collaborators (see the article by 
Gersh et al., this issue). Finally, the use of explicit models 
in the controller provides the potential for model adapta-
tion and learning during operation.

Despite the significant advantages of adopting a 
model-based programming and execution paradigm for 
autonomous systems, critical research and engineering 
issues must be addressed. Most fundamental is the issue 
of the representational framework. A variety of alter-
native approaches have been proposed in the controls 
and computer science communities, including various 
discrete-event dynamic system formulations (finite state 
automata, P etri networks, and M arkov Decision P ro-
cesses), synchronous programming languages, and con-
straint satisfaction logic. E ach has certain advantages 
and disadvantages with regard to the key representa-
tional issues of nondeterminism, hybrid discrete/con-
tinuous behavior, temporal constraint, and computabil-
ity. This last area, computability, is particularly critical 
as the assumption in model-based reasoning systems is 
that the complexity associated with subsystem interac-
tions (which can scale exponentially with the number of 
subsystems) must be managed at run-time by the system 
executive. This rich set of challenges in model-based 
reasoning, combined with the associated benefits of the 
technology, is the rationale behind selecting model-
based reasoning as one of the two major thrusts in the 
APL autonomy S&T vision.

Reactive Behavior
Referring back to the conceptual architecture shown 

in Fig. 4, note that the model-based execution and plan-
ning technology we have been discussing must operate 
in parallel with the reactive control processing that is 
responsible for maintaining local system stability. In the 
simplest case, this consists of a real-time control loop as 
discussed earlier. I n a broader sense, reactive process-
ing can include higher-level functionality, even decision 
logic, to achieve locally optimal (or safe) behavior. The 
key attribute of processing at the reactive level is speed, 
which must be subject to hard, deterministic bounds. 
A classic higher-level function of the reactive layer is 
vehicle “safing.” This generally consists of a periodic 
test to see that a system telemetry vector lies within a 
desired operating envelope. If the test fails, the system 
is immediately commanded to a known safe state. This 
can be nonoptimal from a global mission planning per-
spective, but is intended to “buy time” for higher-level 
reasoning to synthesize a more optimal response/recov-
ery command set.

Researchers have also explored the bounds of reac-
tive control as a general paradigm for autonomy. As 
noted above, early work in closed-loop control revealed 

“emergent” behavior that, while not explicitly specified 
by the system designer, was an appropriate, even seem-
ingly “intelligent,” response to the system environment. 
In the mid-1980s Rodney Brooks proposed the concept 
of a “subsumption” architecture that could produce a 
variety of complex autonomous behaviors through a 
purely reactive control process.15 Subsumption rejected 
the use of global system models, focusing instead on the 
layering and combination of locally optimal controllers 
(e.g., “drive toward light source,” “follow wall edges”) 
to achieve system-level performance goals. Although 
the approach eliminated many of the difficulties asso-
ciated with model specification, implementation, and 
computation, it was ultimately limited in the scope and 
complexity of behaviors that could be implemented. 
Despite these limitations, however, reactive autonomous 
controllers are appropriate for a broad range of system 
applications (Brooks’ company, iRobot, has achieved 
significant public recognition for recently putting into 
production an autonomous home vacuum cleaner) and 
are gaining renewed interest as an approach to autono-
mous behavior coordination, our last major topic area.

Behavior Coordination
The coordination of individual autonomous systems 

to accomplish a single goal is another key functional 
requirement for this technology. Figure 6 shows the set 
of autonomy levels defined by the U nmanned Aerial 
Vehicles Roadmap.16 Notice that higher levels are char-
acterized by coordinated group behavior (note also the 
exponential technology advancement that is expected 
within the next 10 years). S imilar requirements and 
expectations can be found in other domains, from 
underwater glider formations designed to perform envi-
ronmental characterization, to microsatellite constella-
tions that can form extremely large virtual space sensor 
apertures. Obviously, behavior coordination represents 
a critical challenge in autonomous systems and thus has 
been selected as the second major thrust area within the 
Laboratory’s autonomy S&T vision.

There are many current directions to research in 
autonomous behavior coordination. At its most abstract, 
the problem has been investigated within the software 
“agents” community in terms of communications infra-
structure, coordination languages, and formal represen-
tation of knowledge for use in those languages. This 
work has not generally been applied to the coordination 
of autonomous physical systems but may prove valuable 
in the future. Distributed control research, in contrast, 
has focused on more limited functional capabilities 
(such as relative motion control for vehicle forma-
tions), with the traditional emphasis on provable system 	
characteristics. 

As with the research in integrated autonomous 
control systems that we have discussed earlier, distrib-
uted autonomy research can be broadly classified as 	
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“model-based” and “reactive.” M odel-based approaches 
have been developed, for example, to synthesize the 
minimal amount of communication required to maintain 
unambiguous global state knowledge in a set of distrib-
uted discrete event controllers.17 The scaling problems 
associated with model-based approaches in single-vehicle 
systems are exponentially worse in distributed multi-
vehicle systems, however, and this has motivated an 
alternative research thrust focused on reactive methods 
for behavior coordination. I n the early 1990s a number 
of researchers began working with biologically inspired 
control approaches to behavior coordination. This work 
has been labeled “swarm intelligence” in reference to 
the social insect behaviors it seeks to emulate.18 Classic 
examples of swarming behaviors include ant foraging, bird 
flocking, and wolf pack hunting. In each case, researchers 
have been able to replicate the behavior by using simple 
reactive control algorithms for each agent, without the 
requirement for an explicit coordinating plan or global 
communications. In these cases, the behaviors are gener-
ally robust with regard to variations in the environment 
and failures of individual agents. 

The success of these early experiments has motivated 
current work to codify useful distributed autonomy 
applications (e.g., search, pursuit, formation flying) in a 
way that is amenable to solution through swarm intel-
ligence. This work shows significant promise in the near 
term but will be limited, as all purely reactive methods 
are, in the scope of behaviors that can be achieved. A 
critical research challenge in the future will be the inte-
gration of these methods with model-based deliberative 
coordination methods to enable increased operational 
complexity in addition to robust, reactive behavioral 
synchronization.

CONCLUSION
We have described a variety of autonomous system 

domains and discussed some common technology 

A
ut

on
om

ou
s 

co
nt

ro
l l

ev
el

s 

Fully autonomous swarms

Group strategic goals

Distributed control

Group tactical goals

Group tactical replan

Group coordination

Onboard route replan

Adapt to failures/flight conditions

Real-time health/diagnosis

Remotely guided

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

1955 1965 1975 1985 
Year 

1995 

UCAR 

UCAV-AF  UCAV-N 

Global Hawk 
Predator 

Pioneer 

2005 2015 2025 

Figure 6.  Autonomy levels of UAVs defined by the Office of the Secretary of Defense 
(UCAR = unmanned combat aerial rotocraft, UCAV = unmanned combat air vehicle).

themes across them, highlighting 
some particular research challenges. 
Autonomous systems are playing an 
increasingly important role in both 
civilian and military applications. 
The continuing advance of process-
ing, sensing, mobility, and naviga-
tion technologies, coupled with the 
fixed (perhaps increasing) cost and 
limited availability of human con-
trollers, ensures that requirements 
for autonomous system control will 
only increase in the future. Yet 
today, the technology is relatively 
immature in real-world applica-
tion. We have described a number 
of promising directions and noted 
that APL S&T development efforts 

are directed toward several of them. I t is the systems 
engineering aspect of autonomy, however, that makes it 
a particularly compelling area for APL focus now. The 
ability to develop innovative operational concepts based 
on a deep understanding of the available technology, the 
definition of development requirements from those con-
cepts, and the ability to perform rigorous test and evalu-
ation of the resulting systems are all areas that leverage 
historical APL strengths, and all are critical challenges 
in maturing this transformational technology.
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