
536	 JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)

L.  S.  NORCUTT

T

Ship	Self-Defense	System	Architecture

Larry S. Norcutt

he	 Ship	 Self-Defense	 System	 (SSDS)	 was	 devised	 to	 provide	 self-protection	 and	
combat	system	capability	to	non-Aegis	ships	of	the	U.S.	Navy.	This	automated	combat	
direction	system	uses	many	commercial	hardware	and	software	elements	to	achieve	the	
first	 Navy	 distributed	 processing	 combat	 system,	 integrating	 already	 developed	 weapon	
and	sensor	systems.	The	SSDS	architecture	was	an	innovation	and	somewhat	of	a	risk,	
but	well	justified	in	light	of	its	successful	development	and	the	continued	benefits	it	has	
shown.	The	SSDS	Mk	1	is	currently	operational	on	11	Navy	LSDs	and	its	bigger	variant,	
Mk	 2,	 is	 well	 under	 development	 for	 the	 Navy’s	 newest	 aircraft	 carrier	 and	 ship	 class.	
SSDS	architecture	concepts	have	succeeded	in	advancing	both	the	state	of	the	art	and	the	
tactical	capabilities	of	the	U.S.	Fleet.

INTRODUCTION
The	primary	mission	of	the	LSD	(landing	ship,	dock)	

class	 of	 Navy	 ships	 is	 to	 support	 amphibious	 assault–
conveying	and	–landing	Marine	troops	onto	potentially	
hostile	 shores.	 With	 the	 increasing	 capabilities	 of	 the	
anti-ship	 missile	 threat	 and	 the	 likelihood	 of	 Navy	
combat	 operations	 in	 the	 near-shore	 littoral	 regions	
came	the	requirement	to	significantly	improve	the	self-
defense	capabilities	of	this	ship	class.	In	effect,	the	ships	
needed	an	automated	Combat	Direction	System	(CDS),	
smaller	 in	scale	than	that	of	primary	combatants	 such	
as	destroyers,	cruisers,	and	carriers,	but	highly	capable	of	
the	detect,	control,	and	engage	functions	necessary	for	
self-defense.

Limited	by	budget	and	time	constraints,	Navy	efforts	
focused	on	the	automation,	optimization,	and	integra-
tion	of	existing	weapons	and	sensors	to	more	effectively	
defend	 the	 ship.	 The	 resultant	 automation	 and	 inte-
gration,	 performed	 by	 a	 networked	 set	 of	 commercial	

computers	 and	operator	displays,	was	named	 the	Ship	
Self-Defense	System	(SSDS)	Mk	1.	

The	 new	 SSDS	 design	 incorporated	 lessons	 learned	
from	over	20	years	of	experience	 in	Navy	 tactical	 soft-
ware	 and	 sensor	 integration	 development,	 and	 applied	
those	lessons	to	the	particular	characteristics	of	combat	
system	data	and	processing	needs	in	an	open-architecture	
distributed-processing	commercial-off-the-shelf	(COTS)	
environment.	This	 included	 interfaces,	processors,	data	
distribution,	computer	languages,	operating	systems,	dis-
plays,	 software	 design	 concepts,	 and	 sensor	 integration	
concepts.	The	software	architecture	was	based	on	many	
years	of	experience	dealing	with	Navy	combat	 systems,	
and	on	ship	self-defense	studies	performed	by	APL	in	the	
1980s	as	part	of	the	NATO	Anti-Air	Warfare	(AAW)	
Program.	

SSDS	 Mk	 1	 formed	 the	 basis	 of	 the	 SSDS	 Mk	 2		
system	currently	in	development.	This	larger	variant	adds	

JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)	 537

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

to	 the	 baseline	 self-defense	 capabilities	 to	 encompass	
more	 of	 the	 traditional	 shipboard	 combat	 system	 func-
tions	 such	 as	 air	 control	 and	 tactical	 data	 links.	 The		
Mk	 2	 has	 a	 bigger	 role	 as	 the	 tactical	 combat	 system	
for	the	Navy’s	newest	aircraft	carrier	USS	Ronald Reagan	
(CVN	 76)	 and	 the	 developing	 landing	 ship,	 platform–
class	USS	San Antonio	(LPD	17).	The	same	basic	archi-
tectural	concepts	apply	to	both	SSDS	variants.

EVOLUTION OF COMBAT DIRECTION
SYSTEM SOFTWARE

The	 first	 Navy	 computer	 programs	 were	 developed	
in	the	early	1960s	primarily	to	support	manual	operator	
functions	(e.g.,	track	plotting	and	track	symbol	display)	
and	 to	 send	 surveillance	 data	 to	 other	 ships	 (Fig.	 1).	
Computer	functions	provided	bookkeeping	and	numeric	
calculation	to	assist	the	operator.	Because	of	the	manual	
intervention	 needed	 for	 track	 maintenance,	 however,	
combat	system	computer	loading	in	the	early	days	was	
relatively	low.	Tracking	accuracy	was	also	highly	depen-
dent	on	the	interest,	dexterity,	and	energy	level	of	the	
combat	system	operators.	Additional	operator	support,	
such	 as	 the	 synthetic	 display	 of	 information,	 evolved	
into	computer-based	CDSs.

Early	CDS	computers	allowed	coordination	of	mul-
tiple	ship	operations	for	AAW	by	automating	ship-to-
ship	data	transfer	via	the	radio	transmitters	and	receiv-
ers	of	the	tactical	digital	data	link,	Link	11.	They	also	
provided	the	control	of	real-time	data	communications	
and	formatted	digital	information	for	exchange.	Owing	
to	 the	 reliance	 on	 manual	 data	 input,	 initial	 digital	
link	data	rates	were	relatively	low,	and	ship-to-ship	data	
accuracy	and	consistency	were	poor.	Correspondingly,	
demands	 for	 sophisticated	 CDS	 processing	 were	 rela-
tively	low.

CDS	 automation	 needs	 were	 greatly	 accelerated	
during	 the	 late	1960s	owing	 to	more	 stressing	 tactical	
environments	 and	 the	 introduction	of	 sensor	 automa-
tion	 using	 digital	 computers.	 Improved	 sensor	 perfor-
mance	 made	 it	 necessary	 to	 account	 for	 more	 tracks	
within	 the	 ship’s	 surveillance	 region.	 These	 large		
numbers	 of	 tracks	 within	 the	 CDS	 area	 of	 interest	
accentuated	 the	 need	 to	 acquire	 and	 maintain	 timely	
and	accurate	information	on	each	track.	Naturally,	more	
interfaces,	functions,	and	operator	displays	and	controls	
were	added	to	the	existing	computers	to	automatically	
process	the	information.

As	more	sensors	and	weapons	were	automated,	addi-
tional	 interfaces	 and	 processing	 software	 were	 added	
to	 the	 CDSs.	 Building	 on	 central	 computer	 concepts	
of	the	past,	where	simple	functions	were	automatically	
supported	and	easily	added	to	the	software,	the	growth	
of	 CDS	 computer	 processing	 software	 continued	 by	
expanding	the	central	computer	program	(Fig.	2).	Addi-
tional	memory	was	added	when	required,	and	speedier	
mainframe	processors	were	phased	in	to	handle	process-
ing	 loads.	 Further	 evolutions	partitioned	 functionality	
and	processing	loads	into	two	or	three	mainframe	pro-
cessors	 for	 improved	 performance	 and	 functional	 vis-
ibility.	 However,	 while	 these	 fixes	 relieved	 individual		
difficulties,	they	resulted	in	new	and	larger	problems	in	
software	development	and	maintenance.

CDS	functionality	grew,	but	the	basic	software	and	
computer	architecture	did	not.	After	years	of	functional	
growth,	 the	 large,	centrally	oriented	programs	became	
very	complex	and	functionally	interconnected,	as	illus-
trated	in	Fig.	3.	After	years	of	maintenance,	functional	
tweaking,	 and	 special	 fixes	 arranged	 among	 program-
mers	in	different	areas,	software	became	large	and	com-
plicated.	 Software	 maintenance	 itself	 evolved	 into	 a	
specialized	art.	In	such	environments	it	is	very	difficult	

Figure 1. Early computer use in Combat Information Centers
involved a central computer performing calculation functions
involved in manual tracking and providing operator displays.
The computer also formatted tracking data for communication to
other ships.

Figure 2. The CDS central computer architecture featured one or
more computers that controlled data communications and began
to provide automatic sensor processing and display. The hard-
ware architecture remained simple; peripherals were attached to
a core processor.

538	 JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)

L.  S.  NORCUTT

to	understand	the	whole	program	organization	and	pro-
vide	changes	or	improvements	in	performance	without	
incurring	 unpredicted	 degradations	 in	 other	 program	
functions.	The	large	programs	became	subject	to	error	
due	to	numerous	users	of	common	databases	and	the	dif-
ficulty	of	troubleshooting	the	complex	functional	inter-
action,	 data	 sharing,	 and	 program	 errors	 in	 unrelated	
functional	code.	Software	maintenance	and	configura-
tion	management	were	further	affected	by	the	program	
size	and	logical	complexities	that	exacerbated	the	train-
ing	 of	 new	 software	 support	 personnel	 and	 often	 pro-
duced	unexpected	consequences	of	code	alteration.

CDS	 software	 development	 and	 maintenance	 also	
became	severely	hampered	by	the	use	of	militarized,	non-
standard	equipment	(computers,	displays,	 I/O	devices)	
and	 software	 language.	 Not	 only	 were	 the	 military	
computers	 relatively	 expensive,	 but	 they	 had	 limited	
availability	 and	 were	 relatively	 inflexible.	 This	 subse-
quently	 limited	 personnel	 productivity	 and	 increased	
both	development	and	maintenance	costs.

Large	central	processor	programs	became	easily	satu-
rated	in	processing	time	demands.	Logical	processes	had	
to	be	more	sophisticated	to	form	proper	automatic	eval-
uations	and	responses	to	a	larger,	more	complicated	set	
of	 information	 than	ever	before.	The	growing	 tactical	
environment	 encompassed	 larger	 ranges	 and	 required	
larger	 track	 capacities.	 Processing	 loads,	 from	 both	
logical	 complexity	 and	 data	 volume	 aspects,	 quickly	
exceeded	 the	 capabilities	 of	 individual	 processors.	 In	
short,	the	software/computer	environment	of	shipboard	
CDSs	(including	 sensors,	weapons,	command	 support,	
and	communications)	became	a	very	complex	problem.	

Such	was	the	typical	CDS	environment	in	1991,	the	
beginning	of	SSDS	Mk	1.

SSDS EVOLUTION: THE SSDS
OPPORTUNITY

From	 a	 computer	 system	 and	 software	 architecture	
perspective,	the	SSDS	had	the	good	fortune	of	an	absent	

past.	Since	the	ship	for	which	it	was	developed	had	no	
prior	 computerized	 CDS	 and	 no	 major	 combatant	 air	
warfare	mission,	there	was	little	justification	for	install-
ing	existing	CDS	components	and	then	tailoring	them	
to	 the	 LSD	 self-defense	 role.	 It	 was	 easier	 to	 provide	
new	automation	for	this	well-defined	need.	The	SSDS	
computer,	software,	display,	and	data	distribution	archi-
tecture	could	use	new	concepts	of	software	engineering	
and	 computer	 science	 that	 were	 not	 available	 in	 the	
early	days	of	 the	CDS.	Furthermore,	 the	SSDS	design	
could	apply	lessons	learned	from	past	CDS	experiences.	

The	 opportunity	 to	 develop	 a	 new	 combat	 system	
was	offset	somewhat	by	a	lack	of	guiding	specifications	
for	 system	 functions,	 computer	 architecture,	 and	 soft-
ware	 architecture.	As	described	 in	 the	next	 article	by	
Thomas	et	al.,	the	system’s	tactical	functional	require-
ments	 were	 defined	 by	 flowing	 down	 top-level	 opera-
tional	requirements.	This	is	a	relatively	straightforward	
process.	The	requirements	for	the	supporting	computer	
system	and	software	architecture,	however,	were	not	so	
well	 defined.	 Typically,	 they	 had	 to	 be	 derived	 from	
the	tactical	functional	requirements	to	extract	data	pro-
cessing	performance	requirements	implicit	in	the	tacti-
cal	 needs	 and	 the	 nature	 of	 the	 data	 available	 to	 the	
combat	 system.	For	 the	SSDS,	data	processing	perfor-
mance	requirements	were	derived	from	detect/control/
engage	reaction	time	requirements,	from	the	volume	of	
tracks	 expected	 in	 the	 ship’s	 surveillance	 region,	 and	
from	the	observed	and	predicted	data	rates	of	the	ship’s	
sensors	(the	most	demanding	of	the	data	providers).	

Additional	guidance	came	from	higher-level	require-
ments	 of	 a	 programmatic	 and	 historic	 nature.	 SSDS	
software	and	computer	architecture	designers	recognized	
this	 ill-defined	 but	 critical	 feature	 of	 combat	 system	
development.	The	following	general	requirements	con-
tributed	to	the	SSDS	architecture.	They	are	almost	non-
quantifiable	 and	 largely	 historic—reflecting	 20	 years’	
observance	 of	 Navy	 tactical	 software—but	 significant	
nonetheless.

One	of	the	main	contributors	to	the	SSDS	architec-
ture	was	the	desire	to	simplify	the	functional	relation-
ships	among	the	software	so	as	to	logically	and	perhaps	
physically	 decouple	 the	 complex	 interactions	 seen	 in	
much	of	the	historic	tactical	software.	In	addition,	the	
Navy	 tactical	 processing	 architecture	 had	 to	 achieve	
cost	and	performance	benefits	derived	from	the	quickly	
improving	 processing	 and	 data	 transfer	 performance	
offered	by	COTS	products	as	well	as	improvements	in	
computer	 languages;	however,	 the	architecture	had	 to	
be	easily	adapted	to	the	brief	life	of	each	new	product.

Tactical	 software	 architectures	 must	 address	 the	
nature	of	computer	processing	and	the	system	interfaces	
of	the	combat	system.	Tactical	data	processing	is	time-
critical	 and	 must	 address	 large	 volumes	 of	 data	 from	
ownship	 sensors	 and	 offboard	 platforms.	 The	 features	
found	 in	 typical	 commercial	 operating	 systems	 such	

Figure 3. Many unique logical and data transfer “interfaces”
among functions within the central processor lead to complex
interactions that are difficult and expensive to expand, modify, or
maintain. The central processor is easily CPU- and I/O-bound,
particularly with the high-order language requirement and increas-
ing numbers of sensors and weapons. This organization is not
well matched to the characteristics of combat system data flow or
processing.

JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)	 539

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

as	 UNIX	 do	 not	 support	 the	 critical	 response	 times	
and	predictable	performance	needs	of	tactical	process-
ing.	 Tactical	 processing	 must	 occur	 in	 real	 time	 at	
high	volume	and	low	latency.	It	must	also	address	the	
“…ility”	 requirements	 that	 greatly	 affect	 system	 cost,	
development	ease,	and	general	long-term	quality;	e.g.,	

	 Maintainability:	Can	software	fixes	and	corrections	be	
made	easily?	

	 Extensibility:	 Does	 the	 software	 architecture	 easily	
support	 growth	 in	 functionality,	 processors,	 inter-
faces,	and	languages?

	 Understandability/visibility/comprehensibility:	Is	the	soft-
ware	system	conceptually	simple,	or	are	its	operations	
complex	and	obtuse?

	 Reliability:	Can	the	software	system	give	predictable	
performance?

	 Testability:	Can	the	software	be	easily	tested,	and	are	
there	convenient	measurement	points?	

The	 software	 must	 have	 a	 robust	 design	 to	 accom-
modate	the	unpredictable	nature	of	tactical	processing	
loads	and	potential	equipment	faults;	function	in	a	less-
than-complete	processing	environment;	not	be	suscepti-
ble	to	critical	single	points	of	failure;	and	be	loosely	cou-
pled	so	that	functions	can	be	removed	or	added	easily.	
Also,	 because	 of	 the	 frequent	 revision	 and	 improve-
ment	 of	 COTS	 products,	 the	 software	 and	 processing	
elements	must	be	easily	updated,	and	a	change	to	one	
must	not	generally	affect	the	other.

These	 requirements,	 together	 with	 lessons	 learned	
from	 past	 CDS	 efforts	 and	 APL’s	 sensor	 integration	
experience,	 resulted	 in	 an	 SSDS	 design	 that	 was	 new	
conceptually,	physically,	and	functionally.	

SSDS ARCHITECTURE DESCRIPTION

Architecture Concepts

Information-Oriented Design Concept
The	 SSDS	 software	 architecture	 incorporated	 the	

information-oriented	design	(IOD)	concept	that	evolved	
from	APL’s	NATO	AAW	studies.	This	software	design	
concept	 was	 specifically	 applicable	 to	 a	 distributed	
combat	 system	 environment,	 satisfied	 all	 the	 “ility”	
requirements,	and	provided	an	“open,”	loosely	coupled,	
logical	 processing	 environment.	Rather	 than	 focus	 on	
point-to-point	 functional	 and	 physical	 interfaces,	 the	
IOD	 concept	 recognized	 the	 continuous	 and	 concur-
rent	nature	of	combat	system	data	processing,	and	con-
centrated	on	the	information	that	was	being	produced	
and	the	responsibility	for	its	creation.	As	illustrated	in		
Fig.	 4,	 IOD	 combat	 system	 functions	 do	 not	 interact	
with	 each	 other,	 but	 rather	 with	 the	 flow	 of	 combat	
system	information.	

Functions	are	simply	assigned	unique	responsibilities	
to	produce	unique	system	information,	which	is	broad-
cast	as	messages	throughout	the	system.	Each	function	is	
offered	access	to	the	system	information	flow	from	which	
it	will	perform	 its	own	duties.	For	 robust	design,	 each	
function	 must	 deal	 with	 potentially	 incomplete	 infor-
mation	and	must	 recognize	 system	 information	events	
that	are	particularly	sensitive	or	pivotal	to	the	function’s	
purpose.	Collectively,	this	robust	information	focus	pro-
vides	functional	independence	and	a	loose	coupling	of	
the	software	processes.

In	 general,	 information	 is	 only	 generated	 upon	
change.	This	serves	two	purposes:	(1)	the	general	revi-
sion	 and	 minimal	 data	 loading	 of	 information	 poten-
tially	 used	 by	 other	 system	 functions	 (i.e.,	 database	
update),	and	(2)	 the	possible	 triggering	of	other	 func-
tion	 processes	 that	 are	 keyed	 to	 changes	 in	 particular	
information.

From	a	software	system	design/development	point	of	
view,	the	functional	independence	of	the	IOD	removes	
the	logical	complications	of	sequential	function	coordi-
nation	and	communication.	From	an	integration/testing	
point	 of	 view,	 if	 a	 function	 is	 not	 available,	 its	 only	
impact	 is	 the	 lack	 of	 its	 particular	 information	 in	 the	
system-wide	 database.	 Other	 functions	 must	 continue	
to	 operate	 to	 their	 best	 capacity	 on	 less	 information.	
Testing	 and	development	of	 individual	 functions	may	
be	 performed	 in	 isolation,	 stimulated	 only	 by	 a	 con-
trolled	message	flow	and	evaluated	solely	on	their	abil-
ity	to	generate	their	assigned	information.

Given	 this	 form	 of	 functional	 independence,	 it	 is	
easy	 to	develop	physical	 independence	 in	 the	 form	of	
distributed	processor	architectures.	This	allows	massive	
computing	power	to	be	 focused	on	particularly	 impor-
tant	 functions,	 providing	 growth	 and	 change	 that	 are	
completely	independent	of	other	system	processes.

Combat system information flow

Combat system functions and subfunctions

Not this:

But this:

Figure 4. The information-oriented software design concept
decouples complex, highly interrelated functions and instead fea-
tures independent functions with access to a common information
source.

540	 JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)

L.  S.  NORCUTT

The	 addition	 of	 a	 new	 system	 function	 in	 such	 an	
environment	 requires	only	 the	definition	of	 the	 infor-
mation	(if	 any)	 it	will	 add	 to	 the	 system	 information.	
Existing	functions	need	to	be	changed	only	if	the	addi-
tional	information	is	desired	to	improve	the	quality	of	
their	current	output.	By	definition,	the	new	function	has	
access	 to	 all	 system	 information	 and	will	 be	 informed	
upon	update	of	any	portion.	In	this	environment	there	is	
total	independence	of	functional	definition	and	imple-
mentation.	New	processes	may	be	added	to	the	system	
to	 analyze	 or	 extract	 system	 information	 on	 a	 com-
pletely	independent	basis.	Information	display	functions	
may	similarly	be	added	with	total	independence.

Information Attribute, Message, and
Distribution Concepts

Following	the	IOD	theme,	SSDS	concepts	describe	
the	 system	 in	 terms	 of	 information	 “entities”	 having	
numerous	 “attributes”	 and	 relations	 among	 attributes.	
Furthermore,	the	data	are	broadcast	upon	change	to	all	
interested	functions	within	the	SSDS	to	use	as	each	sees	
fit.	In	a	sense,	this	is	a	form	of	object	orientation	where	
the	objects	are	active	rather	than	passive.	

It	should	be	noted	that	the	combat	system	itself	may	
be	 considered	 an	 entity	 described	 by	 status	 attributes.	
Also,	surveillance	tracks	may	be	thought	of	as	entities,	
having	 attributes	 of	 position,	 velocity,	 identification,	
engagement	status,	etc.	Collectively,	the	attribute	data	
define	the	state	of	the	combat	system.	Its	functions	con-
tribute	to	that	state	and	react	to	changes	in	it,	as	illus-
trated	in	Fig.	5.

Additional	features	of	these	concepts	are	as	follows:

•	 The responsibility for data entities and attributes is
assigned to particular and unique functions within
the SSDS.	 This	 method	 of	 segmentation	 allows	 a	

clear	separation	of	the	contributions	from	each	SSDS	
element	and	function.	System	information	has	a	dis-
tinct	source,	directly	related	to	a	specific	portion	of	
software	and	traceable	to	specific	message	output	to	
the	data	distribution	architecture.

•	 System messages containing the entities and attri-
butes are defined and broadcast.	Messages	are	more	
oriented	to	attribute	assignment	than	to	total	entity	
description.	The	sum	of	system	messages	constitutes	
the	 total	 of	 the	 system	 information,	 which	 all	 the	
SSDS	 functions	 use	 as	 needed	 and	 contribute	 as	
assigned.

•	 Messages are filtered upon receipt.	Upon	initializa-
tion,	each	principal	function	within	the	SSDS	regis-
ters	its	message	needs	with	data	distribution	commu-
nications	packages	(“infrastructure”	software).	Using	
broadcast	 and	 multicast	 techniques,	 the	 communi-
cations	 packages	 transfer	 all	 function	 message	 out-
puts	to	all	other	required	destinations	and	filter	input	
messages	to	accept	only	those	desired.

•	 Each function uses system data and records the data
as needed locally. There is no central data manager.	
Each	function	outputs	its	contribution	to	the	system	
in	the	form	of	(nominally)	broadcast	messages.	Data	
are	 nominally	 sent	 only	 upon	 change.	 Aside	 from	
means	 to	 initialize	 functions	 that	 gain	 access	 to	 the	
distributed	 system	 after	 steady-state	 operations	 are	
achieved	and	for	system	reconfiguration	after	casualty,	
data	transfer	is	to	be	minimized	to	operational	need.	
Data	transfer	is	used	as	much	for	change	notification	
as	for	stimulation	of	other	functions.

•	 Functions do not use the system messages as a
coordination device.	This	incurs	functional	coupling,	
which	is	to	be	avoided	in	functional	design.

•	 Most data transfers are expected to be broadcast
“send and forget.”	This	minimizes	overhead	in	mes-

Figure 5. The SSDS functional examples shown are assigned entity and attribute
responsibilities; their visible and physical mechanism of message generation and receipt
allows simple, manageable function (process or processor) distribution. Processes
may be as elaborate as necessary, but also may be totally independent of all other
processes.

sage	 acknowledgment	 and	 log-
ical	 dependence.	 Special	 cases	
may	require	acknowledgment	for	
safety	or	critical	events,	but	these	
are	 expected	 to	 be	 relatively	
infrequent	within	the	total	data	
distribution	environment.

SSDS	functions	attached	to	the	
distributed	architecture	 impact	 the	
system	 only	 through	 their	 message	
contribution	to	entity	and	attribute	
definition.	 Processing	 techniques,	
languages,	and	data	structures	within	
a	 function	 are	 independent	 of	 the	
remainder	 of	 the	 SSDS.	 Response		
to	 message	 receipt	 is	 totally	 the	
responsibility	of	the	receiving	func-
tion.	Messages	may	be	used	to	update		
a	 function’s	 copy	 of	 track	 data		

Messages of
interest

Messages of
interest

Messages of
interest

Message stream: sensor tracks, system tracks, track positions, track ID,
track engage order, etc.

Track identification
message

Track engage
order message

Track module Identification module Tactical action
module

System track existence message
Track position, velocity message

Track emitter message

JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)	 541

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

(organized	optimally	locally	for	the	function’s	needs)	or	
may	be	used	as	triggers	for	functional	response.

The	flexibility	of	the	concept	allows	SSDS	processes	
to	 be	 totally	 distributed	 within	 the	 system	 as	 long	 as	
an	 underlying	 communication	 system	 is	 available.	 To	
accommodate	survivability	requirements,	duplicate	pro-
cesses	 are	 provided	 within	 separate	 enclosures	 to	 pro-
duce	 a	 passive	 monitor	 of	 data	 flow	 and	 to	 provide	
backup	in	the	event	of	casualty	to	active	processes.

Distributed Sensor Integration Concept
Another	principal	element	of	the	SSDS	conceptual	

design	is	the	partitioning	of	tactical	functions	that	col-
lectively	 form	 and	 maintain	 the	 system’s	 surveillance	
track	information.	The	concept	recognizes	the	continu-
ity	 and	 accuracy	 benefit	 of	 frequent	 and	 complemen-
tary	sensor	detections;	the	ability	of	individual	sensors	
to	 optimize	 their	 individual	 performance;	 the	 benefit	
of	 central	 track	 organization	 and	 flexible	 data	 access;	
the	 importance	of	a priori	 information;	and	 the	power	
of	processing	distribution.	 In	 the	SSDS	 IOD	concept,	
individual	sensors	take	what	information	they	need	and	
do	 their	 best	 to	 contribute	 their	 piece	 (Fig.	 6).	 The	
SSDS	provides	central	management,	feedback,	and	false	
system	track	control.	

Robust Common Time and Time-Tagged Data Concepts
The	 use	 of	 time	 is	 critical	 to	 the	 architecture	 and	

technical	processing	performance	of	a	distributed	system.	
Although	computers	are	very	fast,	the	reliance	on	per-
forming	 a	 process	 quickly	 so	 that	 the	 results	 have	 an	
epoch	of	“now”	is	very	risky,	subject	to	data	inaccura-
cies,	and	intolerant	of	the	randomness	of	processor	load-
ing	and	external	events.	To	maintain	accuracy	in	data	
calculations,	 the	 data	 must	 be	 time-tagged	 when	 it	 is	
measured	or	created.	This	“valid	time”	then	maintains	
the	epoch	integrity	of	the	measurement,	which	allows	
later	processing	with	no	loss	in	calculation	accuracy.	

Another	element	of	time	and	data	is	latency,	which	
may	 be	 thought	 of	 as	 the	 delay	 from	 data	 measure-
ment	to	the	subsequent	processing	of	 the	data.	 In	 its	
most	 general	 terms,	 latency	 is	 the	 time	 between	 any	
two	events	of	interest.	It	is	critical	in	particular	situa-
tions	such	as	threat	detection	as	well	as	in	response	and	
tracking	 loops.	 Latency	 within	 10%	 of	 measurement	
periods	 is	 generally	 necessary	 for	 reasonable	 tracking	
maintenance.

A	 robust	 common	 time	 is	 a	 particular	 requirement	
of	 the	 SSDS.	 In	 the	 interest	 of	 system	 independence	
and	the	avoidance	of	single	points	of	failure,	the	SSDS	
establishes	 a	 time	 base	 within	 its	 own	 collection	 of	
distributed	processors,	 initialized	 and	maintained	over	
the	network	connections.	 In	keeping	with	this	 system	
independence,	the	first	processing	node	to	be	powered		
distributes	its	internal	clock	for	all	successors	to	receive	

and	accept	as	the	time	base.	(Each	node	listens	briefly	
before	it	assumes	it	is	the	first.)	After	a	node	receives	the	
initial	clock	value,	subsequent	tuning	of	the	networked	
time	is	maintained	through	the	functions	of	NTP	(Net-
work	Time	Protocol)	implemented	in	the	infrastructure	
software.	In	this	manner,	there	is	no	requirement	on	the	
order	of	start-up	of	SSDS	components.	

Another	 important	 function	 and	 element	 of	 the	
SSDS	distributed	system	concept	is	its	feature	of	broad-
casting	system	track	information	in	a	minimum	period.	
Normally	the	frequency	of	sensor	updates	causes	system	
track	information	to	be	broadcast	within	the	minimum	
period	(about	5	s),	but	a	background	process	ensures	the	
minimum	for	all	tracks	within	the	system.	This	feature	
allows	each	function	within	the	SSDS	to	start	up	at	any	
time	and	absorb	the	track	picture	within	a	few	seconds.

Figure 6. Conceptually, the SSDS provides each sensor with
current system track information. If the sensor can associate a
sensor observation with the track, it provides the system with the
measurement data, forming an Associated Measurement Report
(AMR). A central SSDS function uses this measurement to cal-
culate an updated estimate of system track position and velocity
and broadcasts this updated attribute information throughout the
system. Special functions, such as custom filters, may selectively
use measured data in the AMRs for particular needs.

New local
tracks, AMRs

System
track state,
new system

tracks

New local
tracks, AMRs

System
track state,
new system

tracks

New local
tracks, AMRs

System
track state,
new system

tracks

New local
tracks, AMRs

System
track state,
new system

tracks

Custom
filter(s)

Composite
track

management

Central
track

update

AMRs

New local
tracks

New system
tracks

AMRs

System
track state

542	 JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)

L.  S.  NORCUTT

To	maintain	the	robust	nature	of	the	functional	and	
physical	architecture	and	to	accommodate	independent	
start-up	of	processors,	each	application	processor	is	pro-
vided	with	common	code	to	receive	system	track	data	
messages	over	the	network	and	populate	 its	own	local	
database.	This	code	can	be	tailored	to	retain	only	the	
information	of	interest	to	the	local	user.	An	important	
feature	of	 this	common	code	 is	 its	 logic	 to	“age”	each	
track	and	delete	it	 from	the	user’s	 local	database	if	no	
updates	have	been	received	within	a	reasonable	period	
of	time	(longer	than	the	nominal	system	update	period).	
This	 process,	 when	 coupled	 with	 the	 nominal	 system	
track	 broadcast	 feature,	 ensures	 that	 the	 user’s	 local	
information	 is	 consistent	 with	 the	 remainder	 of	 the	
combat	system.

The	SSDS	data	broadcast	feature	also	complements	
the	SSDS	concept	of	distributed,	independent	operator	
display	support.	This	concept	uses	CDK	(Common	Dis-
play	 Kernel)	 software	 within	 each	 console	 to	 render	
the	 majority	 of	 operator	 displays.	 By	 operating	 totally	
from	broadcast	 system	messages,	 multiple	 displays	 can	
be	added	 to	 the	combat	 system	with	virtually	no	net-
work	load.	Unique	displays	and	controls	are	appended	
to	 the	 CDK	 software	 as	 specific	 application	 code	 to	
support	particular	user	needs,	with	portions	 replicated		
in	different	consoles	as	equipment	casualty	backup.	A	

successive	variant	of	the	concept,	incorporated	in	SSDS	
Mk	2,	 retains	a	common	display	core	 in	each	display,	
efficiently	 supplied	 from	 the	 network	 broadcast.	 The	
low-demand,	tailored	operator	controls	and	displays	are	
implemented	in	CORBA	and	a	server	over	the	network.	
This	 hybrid	 display	 implementation	 provides	 console	
and	operator	mode	independence	while	matching	effi-
cient	processing	and	data	loads	with	flexibility	of	soft-
ware	design	and	implementation.

Physical Architecture
CDS	 history,	 derived	 and	 implicit	 requirements,	

NATO	 AAW	 studies,	 the	 rapidly	 emerging	 COTS	
computer	and	networking	environment,	and	IOD	soft-
ware	architecture	concepts	all	contributed	to	the	design	
of	the	SSDS	physical	architecture.	Being	the	ship’s	only	
combat	 system	 and	 having	 a	 critical	 self-defense	 role,	
the	SSDS	must	be	dependable,	robust,	and	able	to	sur-
vive	at	least	limited	battle	damage.	Its	processors	have	
to	handle	full	track	and	sensor	data	loading	and	must	be	
able	to	adapt.

The	 SSDS	 physical	 architecture,	 shown	 in	 Fig.	 7,	
consists	of	a	 local	area	network	(LAN)	connection	of	
clustered	VME-based	single-board	computers	and	inter-
face	cards	that	form	LAN	access	units	(LAUs)	for	the	
various	functional	elements	of	the	SSDS.	

Figure 7. The LSD 41/49 combat system consists of sensor systems, SSDS components, and weapon systems, all connected to the
fiber-optic LAN via similar LAUs.

AN/SPS-67
radar

AN/SPS-49A
radar

AN/SLQ-32
ESM IFF

Sensor
Supervisor

Console

TAO
Weapon

RAM
system (2)

Phalanx
Close-In Weapon

System (2)

ECM

(IFF
antennas)

JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)	 543

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

LAUs	 typically	 contain	 single-board	computers	 and	
interface	cards	to	provide	tactical	processing	and	to	com-
municate	 with	 specific	 shipboard	 systems	 such	 as	 sen-
sors,	weapons,	data	links,	and	operator	displays.	Because	
of	the	broadcast	nature	of	SSDS	system	data,	computer	
programs	that	do	not	service	a	particular	physical	exter-
nal	 interface	may	execute	 in	 any	processor,	 any	LAU.	
Those	 functions	 that	 handle	 interfaces	 and	 integrate	
with	particular	external	systems	are	placed	in	the	same	
LAU	and	VME	backplane	as	the	corresponding	physical	
interface	boards.	Figure	8	illustrates	a	generic	LAU	con-
figuration,	which	contains	 a	LAN	 interface,	numerous	
general-purpose	single-board	application	computers,	and	
an	 external	 interface.	 LAUs,	 connected	 via	 the	 LAN,	
may	 be	 placed	 anywhere	 on	 the	 ship.	 SSDS	 message	
infrastructure	 software	operates	within	the	LAN	inter-
face	and	within	each	general-purpose	application	com-
puter	 to	 provide	 message	 distribution,	 board	 start-up,	
and	common	time	synchronization.

SSDS	 single-board	 computers	 are	 general-purpose,	
COTS,	and	non-proprietary	to	capitalize	on	cost,	avail-
ability,	language	supportability,	growth,	and	simplicity	of	
software	programming	constructs.	Multiple	individual	pro-
cessors	allow	each	principal	tactical	function	to	have	its	
own	computer,	with	the	intent	to	operate	at	minimal	CPU	
loading.	This	 simplified	distributed	processing	 environ-
ment	is	a	particularly	effective	means	of	avoiding	resource	
contention	 problems	 among	 multiple	 programs	 sharing	
the	same	CPU,	adding	functionality,	and	allowing	more	
predictable	software	processing	performance.	It	also	more	
easily	 accommodates	 the	 processing	 of	 data	 bursts	 that	
are	typical	of	the	tactical	data	flow	environment.	

Figure 8. The LAU concept provides both physical independence
as well as functional and physical adaptation to particular interface
and integration needs. While operating within the overall SSDS
integration and broadcast information-oriented architecture, LAU
components can support processors, languages, functions, and
physical interfaces that are unique to a particular interface. This
prototype LAU consists of a commercial VME card cage popu-
lated with LAN interfaces, device interfaces, application single-
board computers, and tape drives.

Requirements	for	system	survivability,	ease	of	growth,	
and	flexibility	 led	 to	 the	networking	of	SSDS	compo-
nents.	Network	architectures,	supported	by	data	broad-
cast	capabilities,	also	formed	a	physical	complement	to	
the	IOD	concepts	of	concurrent	processing	and	univer-
sal	access/contribution	to	system	data.	Further	supported	
by	general	 software	 infrastructure	 that	 facilitated	mes-
sage	distribution,	the	SSDS	architecture	acquired	both	
the	physical	and	functional	open-access	nature	intended	
for	the	IOD.	The	physical	distribution	of	SSDS	compo-
nents,	combined	with	redundancies	of	the	chosen	net-
work,	also	provided	a	degree	of	system	survivability	in	
the	event	of	battle	damage.	

Common	network	middle-layer	protocols	of	the	IP	
(Internet	Protocol)	family	proved	more	than	adequate	
for	 efficient	 data	 transfer	 and	 were	 universally	 avail-
able	 for	 software	 development.	 The	 ease,	 efficiency,	
and	 independence	 of	 the	 UDP	 (User	 Datagram	 Pro-
tocol)	broadcast	and	multicast	protocols	were	used	to	
convey	the	bulk	of	SSDS	network	data,	such	as	sensor		
track	 updates.	 In	 a	 few	 critical	 cases,	 data	 transfer	
acknowledgment	 was	 implemented	 to	 help	 ensure	
data	receipt.	In	general,	minimal	network	loading	was	
desired	to	ensure	the	reliability	and	accessibility	of	net-
work	communications.	

Despite	 the	desire	 to	use	 a	minimal	 amount	of	 the	
network	data	bandwidth,	 it	 is	 interesting	 to	note	 that	
the	Ethernet	CSMA/CD	(carrier-sense,	multiple	access/
collision	detect)	physical	layer	protocol	was	not	thought	
at	the	time	to	be	predictable	enough	for	use	as	the	SSDS	
network	backbone.	The	combination	of	numerous,	fre-
quent	 contributors	 of	 data	 (e.g.,	 the	 numerous	 dis-
tributed	 processors	 and	 the	 characteristics	 of	 tactical	
data	within	the	combat	system)	and	the	random,	pro-
gressively	 longer	 back-off	 and	 retry	 characteristic	 of	
Ethernet	 could	 disastrously	 delay	 critical	 SSDS	 data		
transfers.	For	its	automatic	rerouting	features,	more	pre-
dictable	physical	layer	token	“ring”	protocol,	100-Mbit	
performance,	 and	 commercial	 software	 support,	 the	
FDDI	(Fiber-Distributed	Data	Interface)	was	chosen	as	
the	 physical	 network.	 The	 glass	 fiber	 for	 data	 transfer	
was	 selected	 for	 its	 performance,	 low	 weight	 (Fig.	 9),	
and	low	electromagnetic	susceptibility.	

The	SSDS	network	uses	a	dual	home	star	 topology	
incorporating	network	hubs	that	are	positioned	in	dif-
ferent	regions	of	the	ship.	Network	star	topology,	illus-
trated	 in	 Fig.	 10,	 uses	 a	 hub	 to	 connect	 to	 each		
network	 node.	 This	 provides	 ease	 of	 troubleshooting,	
simplified	 COTS	 growth,	 and	 ease	 of	 reconfiguration.	
In	the	case	of	FDDI,	the	hub	avoided	the	problems	of	
optical	bypass	relays	when	reconfiguring	around	breaks	
or	inactive	nodes	in	the	FDDI	token	ring	architecture.	
(Conversion	of	the	network	to	another	technology	such	
as	 ATM	 or	 high-bandwidth	 Ethernet	 would	 use	 the	
same	topology	but	different	hub	equipment	and	 inter-
face	 cards	 at	 the	 network	 nodes.)	 Dual	 hubs	 provide	

544	 JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)

L.  S.  NORCUTT

Figure 9. The 144 copper cables for CDS parallel channels on the left are compared with
a single fiber-optic cable containing 144 individual glass fibers. The change in physical
media, resulting in a potential cable plant weight reduction from 35.3 to 0.05 lb/ft, was
only part of the technology challenge. To exploit fiber optics, an evolution in equipment
interfaces was also required.

Hub

Hub

LAN
access

LAN
access

LAN
access

LAN
access

LAN
access

LAN
access

Figure 10. SSDS use of a double star topology provides significant network reliability
and battle damage survivability by automatically reconfiguring data flow in the event of
damage to any node interconnection or to the alternate hub.

battle	 damage	 resistance	 and	 automatic	 communications	 redundancy	 for	
system	reliability.

Common Infrastructure Concept
Common	 infrastructure	 software	 (middleware)	developed	by	APL	pro-

vided	 message	 distribution,	 time	 synchronization,	 and	 processor	 start-up	
coordination	 services,	 in	addition	 to	offering	common	API	(Applications	
Programmer	 Interface)	 functions	 that	 facilitated	 development	 of	 tactical	
code	 within	 the	 multiple	 processors.	 This	 software,	 like	 the	 concepts	 of	
sensor	 integration,	evolved	 in	performance	and	maturity	over	many	years	
of	use	in	the	NATO	AAW	experiments,	Cooperative	Engagement	Capabil-
ity	(CEC)	development,	and	SSDS	development.	Synergism	was	achieved	
by	combining	the	network	concepts	of	the	SSDS	with	the	VME	backplane	

message	distribution	features	of	the	
CEC	(Fig.	11).	

COTS Refresh Concept
Recognizing	 the	 rapidly	 chang-

ing	(and	the	generally	performance-
improving)	 nature	 of	 commercial	
products,	 SSDS	 design	 and	 imple-
mentation	 focus	 on	 the	 use	 of	 the	
most	 common	 commercial	 hard-
ware,	 software,	 and	 network	 stan-
dards;	the	avoidance	of	proprietary	
products;	 and	 the	 adaptability	 of	
its	interfaces.	Although	early	SSDS	
development	followed	the	standard	
DoD	 language	 of	 Ada,	 the	 subse-
quent	 COTS	 commonality	 of	 the	
C	 and	 C++	 languages	 and	 their	
familiarity	 to	 software	 developers	
have	 since	 led	 to	 their	 use	 in	 the	
SSDS.	 The	 CORBA	 language	 is	
also	employed	in	lightly	loaded	dis-
play	interface	software	owing	to	its	
flexibility	and	productivity.	

The	SSDS	LAN	design,	through	
its	 fiber	 star	 topology	 and	 its	 reli-
ance	 on	 the	 common	 IP	 middle-
layer	protocols,	allows	flexibility	in	
the	choice	of	the	underlying	physi-
cal	implementation.	Because	SSDS	
tactical	software	uses	the	Transmis-
sion	Control	Protocol	(TCP)/IP	and	
UDP	communication	software	com-
monly	 provided	 by	 network	 inter-
face	vendors,	minimal	changes	are	
required	 to	accommodate	different	
physical	network	implementations.	

Because	the	commercial	market	
normally	 provides	 upgraded	 com-	
mon	language	(such	as	C)	compil-
ers	 to	 complement	 upgraded	 pro-
cessor	boards,	the	impact	of	refresh		
on	 SSDS	 tactical	 code	 in	 such	
events	 is	 typically	minimal.	Since	
its	inception,	the	SSDS	has	expe-
rienced	 COTS	 refresh	 twice,	 pro-
ceeding	 from	 Motorola	 M68020		
processors	to	the	M68040,	and	now	
the	Power	PC.	

COTS	refresh	has	minimal	effect	
on	 SSDS	 software	 and	 no	 effect	
on	 the	 conceptual	 architecture.	
The	flexibility	 of	 the	network	 and	
LAU	structure	allows	adaptation	to	
handle	exceptions	to	processors	and	
languages	in	each	node	if	required.

JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)	 545

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

Functional Architecture
In	classic	Navy	combat	system	terms,	the	SSDS	per-

forms	the	functions	of	detect,	control,	and	engage.	In	true	
IOD	 context,	 these	 may	 be	 shown	 as	 any	 combination	
of	 functional	 bubbles	 in	 a	 “flat”	 representation	 (Fig.	 4)	
and	could	be	implemented	at	various	places	throughout	
the	network.	A	functional	flow	representation,	shown	in	

NATO AAW
System

government
program of work

experiments

LAN/
software
concept
demo.

SSDS
at-sea
demo.

SSDS
production;

engineering and
manufacturing
development

SSDS
development

and operational
tests

SSDS
Mk 2

Mod 0, 1, 2

Cooperative
Engagement
Processor,

backplane bus
development

CEC
demo.

90

VX
works

CEC
 demo.

94

Enhanced
power PC
bus control

CEC 2.0/2.1

1988 1990 1992 1994 1996 1998 2000

LAN software concepts

LAN/bus
commonality

LAN/bus
combination

SSDS Mk 1
production (12 ships)

Common
Genealogy
Architecture
Interface 3.0

Backplane messaging concepts

SSDS

CEC

Figure 11. Common infrastructure software synergistically evolved over multiple programs, benefiting performance and
development productivity.

Figure 12. SSDS software functional architecture (sensor focus example). SSDS functions that collectively provide the
detect, control, and engage combat system functionality are dispersed throughout the network, providing ease of extension,
adaptation, and growth.

the	IOD	context,	is	illustrated	in	Fig.	12.	This	orients	the	
functions	in	a	left-to-right	manner,	illustrating	the	detect-
to-engage	 sequence	 of	 operations	 that	 may	 occur.	 Tap-
ping	onto	the	stream	of	 system	information,	and	shown	
above	the	network	flow,	are	the	display	functions	of	the	
SSDS	Mk	1	Sensor	Supervisor,	Weapons	Supervisor,	and	

Tactical Action
Officer

Weapons
Supervisor

Sensor
Supervisor

System information and time message stream

Alignment

Identification

Sensor
integration
and control

Weapons
integration
and control

Weapons
direction

and control

Local
command
and control

Sensor
coordinaton
and control

Track/
management

update

Sensor,
identification
controls

Weapon,
local command
and control

Sensor
tracks

Pad
align-
ment

Com-
posite
tracks

Conflict
identification,
system
identification

Sensor
cues, track
confidence

Engage
orders

Weapon
schedule,
orders

Weapons
status,
engage
status

Sensors
Weapons

546	 JOHNS	HOPKINS	APL	TECHNICAL	DIGEST,	VOLUME	22,	NUMBER	4	(2001)

L.  S.  NORCUTT

Tactical	 Action	 Officer.	 The	 display	 functions	 absorb	
whatever	 information	 is	needed	 for	display	 and	provide	
operator	actions	back	to	the	network	to	be	interpreted	by	
the	interested	functions.

SSDS DEVELOPMENT HISTORY

Prototype Demonstration Phase
The	 SSDS	 began	 as	 a	 proof-of-concept	 demonstra-

tion	 for	 the	 Quick	 Response	 Combat	 Capability	 Pro-
gram	 in	 1991.	 Incorporating	 some	 APL	 software	 reuse	
from	the	Navy	Auto-ID	and	CEC	programs	and	experi-
mental	 network	 IOD	 demonstration	 software	 from	 the	
NATO	 AAW	 effort,	 the	 new	 SSDS	 distributed	 archi-
tecture	 was	 formed.	 Under	 Navy	 direction,	 APL	 pro-
vided	lead	system	architecture	design	and	developed	the	
sensor	 integration,	displays,	and	infrastructure	software.	
Complementing	the	team	were	the	Naval	Surface	War-
fare	Center	and	Hughes	Aircraft	(now	Raytheon),	who	
developed	weapons	scheduling	and	control	and	weapon	
interface	 software,	 respectively.	 This	 trio	 of	 software	
developers,	building	code	at	three	independent	sites,	pro-
vided	an	early	“ility”	test	of	the	SSDS	architecture	and	
integration	concepts	that	proved	quite	successful	through	
careful	management	of	system	message	definition.	

In	 June	 1993,	 following	 land-based	 testing	 and	
shipboard	 installation	 and	 integration	 aboard	 USS	
Whidbey Island	 (LSD	 41),	 SSDS—automatically	 inte-
grating	seven	shipboard	sensors	and	three	weapon	sys-
tems—performed	a	successful,	near-simultaneous,	 fully	
automatic	 and	 coordinated	 detect-to-fire	 live	 engage-
ment	of	two	target	“threats”	(a	towed	decoy	unit	and	a	
remotely	piloted	jet	drone)	using	the	Rolling	Airframe	
Missile	and	Phalanx	gun	system.	

Production Phase
After	the	successful	demonstration	efforts,	the	SSDS	

Mk	1	software	and	COTS	components	were	ruggedized	
for	 shipboard	 operational	 use	 by	 Hughes	 Aircraft.		

Production-quality	LAU	equipment	and	multiple	LAU	
enclosures	were	developed	to	house	the	COTS	proces-
sors,	and	additional	integration	software	was	developed	
by	 the	Laboratory	 to	 incorporate	 the	AN/SPS-67	 sur-
face	 search	 radar	 and	 the	 AN/UPX-36	 Identification,	
Friend	or	Foe	(IFF)	sensors.	The	first	production	SSDS	
Mk	 1	 was	 developed	 for	 USS	 Ashland	 (LSD	 48),	 on	
which	the	system	passed	formal	Navy	operational	test-
ing	 and	 evaluation	 in	 the	 summer	 of	 1997	 in	 its	 first	
attempt.	

The	 low	 cost	 and	 short	 schedule	 of	 SSDS	 Mk	 1	
development	earned	it	the	U.S.	government’s	Hammer	
Award	for	efficiency	of	government	procurement.		

Current Status
The	SSDS	Mk	1	is	now	installed	and	operational	on	

11	of	the	12	ships	in	the	LSD	41/49	class,	with	the	12th	
nearing	completion.	The	SSDS	Mk	1	successor,	SSDS	
Mk	2,	is	currently	being	developed	for	two	more	ships	
and	classes,	USS	Ronald Reagan	and	USS	San Antonio,	
where	the	system	will	provide	full	combat	system	func-
tionality.	In	the	Mk	2	configuration,	much	of	the	sur-
veillance	sensor	integration	is	provided	by	the	installed	
CEC,	 which	 incorporates	 the	 same	 shipboard	 sensor	
integration	concept	as	the	SSDS.

SUMMARY
The	SSDS	architecture	was	an	innovation	and	some-

what	 of	 a	 risk.	 But	 the	 risk	 was	 well	 justified	 for	 the	
success	of	 its	development	and	 the	continued	benefits	
the	architecture	has	shown.	SSDS	architecture	concepts	
have	succeeded	in	advancing	both	the	state	of	the	art	
and	the	tactical	capabilities	of	the	U.S.	Fleet.	

SSDS	Mk	1	development	and	capabilities	are	a	suc-
cess	story,	due	largely	to	the	contributions	of	many	tal-
ented	 system	 and	 software	 engineers,	 the	 experience	
base	 of	 those	 people,	 new	 software	 design	 paradigms,	
and	the	effective	use	of	COTS	software	and	computer	
components.	

THE AUTHOR

LARRY	S.	NORCUTT	is	a	member	of	 the	APL	Principal	Professional	Staff.	He	
received	a	B.S.E.E.	from	Michigan	State	University	in	1969	and	an	M.S.E.E.	from	
The	Johns	Hopkins	University	in	1972.	He	joined	APL	in	1969	and	has	an	exten-
sive	background	 in	 the	 integration	and	automation	of	Navy	 surveillance	 systems	
in	the	real-time	combat	system	environment.	He	was	a	principal	design	and	soft-
ware	 engineer	 on	 the	 development	 of	 the	 AN/SYS-1	 and	 AN/SYS-2	 integrated	
automatic	detection	and	tracking	systems,	led	the	development	and	integration	of	
surveillance	software	for	the	Navy’s	ACDS	Block	0,	and	was	APL	combat	system	
architect	lead	for	the	NATO	AAW	Program.	Recent	efforts	have	included	concepts	
for	integration	of	passive	sensors	and	improving	Navy	Surface	Fleet	interoperability	
and	combat	system	training.	Mr.	Norcutt	was	the	lead	engineer	for	the	SSDS	Mk	1	
system	architecture	design.	His	e-mail	address	is	larry.norcutt@jhuapl.edu.

	Ship Self-Defense System Architecture
	Larry S. Norcutt
	INTRODUCTION
	EVOLUTION OF COMBAT DIRECTION SYSTEM SOFTWARE
	SSDS EVOLUTION: THE SSDS OPPORTUNITY
	SSDS ARCHITECTURE DESCRIPTION
	Architecture Concepts
	Information-Oriented Design Concept
	Information Attribute, Message, and Distribution Concepts
	Distributed Sensor Integration Concept
	Robust Common Time and Time-Tagged Data Concepts

	Physical Architecture
	Common Infrastructure Concept
	COTS Refresh Concept

	Functional Architecture

	SSDS DEVELOPMENT HISTORY
	Prototype Demonstration Phase
	Production Phase
	Current Status

	SUMMARY
	THE AUTHOR
	FIGURES
	Figure 1. Early computer use in Combat Information Centers.
	Figure 2. The CDS central computer architecture.
	Figure 3. Many unique logical and data transfer “interfaces” among functions.
	Figure 4. The information-oriented software design concept.
	Figure 5. The SSDS functional examples shown are assigned entity and attribute responsibilities.
	Figure 6. Conceptually, the SSDS provides each sensor with current system track information.
	Figure 7. The LSD 41/49 combat system.
	Figure 8. The LAU concept provides both physical independenceas well as functional and physical adaptation to particular interfac eand integration needs.
	Figure 9. The 144 copper cables for CDS parallel channels on the left are compared with a single fiber-optic cable.
	Figure 10. SSDS use of a double star topology.
	Figure 11. Common infrastructure software.
	Figure 12. SSDS software functional architecture.

