
F. J. PINEDA ET AL.
A

Bang, Click, Thud, or Whack?

Fernando J. Pineda, Gert Cauwenberghs, R. Timothy Edwards, Kenneth T. Ryals,
and David G. Steigerwald

coustic transients—short, impulsive bursts of acoustic energy—are a rich
source of information in the natural world. Biological systems process them quickly and
economically. In this article, we describe a biologically inspired analog very-large-scale
integration (VLSI) architecture for real-time classification of acoustic transients.
Judicious normalization of time–frequency signals allows an elegant and robust
implementation of a correlation algorithm. The algorithm replaces analog–analog
multiplication with binary multiplexing of analog signals. This removes the need for
analog storage and analog multiplication. Simulations show that the resulting
algorithm has the same out-of-sample classification performance (about 93% correct)
as a template-matching algorithm based on conventional analog correlation. This
development paves the way for intelligent acoustic processing in low-power applica-
tions such as cellular telephones and debit cards.
(Keywords: Acoustic transients, Analog VLSI, Matched filters, Neural computation,
Speech recognition.)
INTRODUCTION
Take a nature walk along a wooded path. A cricket

chirps to your right. A woodpecker taps above you. A
dry twig snaps underfoot. The sounds that tell you
about the cricket, the woodpecker, and the twig are all
acoustic transients: short, impulsive bursts of acoustic
energy that last between 10 and 100 ms. Transients are
a rich source of information in the natural world, and
the ability to process them in real time provides a
competitive advantage to species. As a result we, like
other animals, have evolved the ability to quickly and
economically process acoustic transients.
244 JO
In the digital world of algorithms and computers,
analogous evolutionary forces have caused engineers to
develop powerful digital signal processing (DSP) algo-
rithms for classification of acoustic signals on fast DSP
engines. Using modern signal processing techniques to
recognize acoustic transients in real time is straightfor-
ward on modern processors. The challenge of extract-
ing information from signals has been met by powerful
mathematical techniques such as wavelet analysis1 and
hidden Markov models.2 The need for real-time perfor-
mance has been met by fast and powerful central
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

BANG, CLICK, THUD, OR WHACK?
processing units (CPUs) and special-purpose DSP
chips. The claim that the problem of acoustic pattern
recognition is essentially solved is quite defensible.

Nevertheless, if we take a closer look at the DSP
solutions, we find that the burden of real-time process-
ing is borne by increasingly powerful digital processors.
The price for success is measured in terms of power
dissipation and complexity. Power dissipation scales
linearly with the processor’s clock rate. Thus, all else
being equal, a 100-MHz processor dissipates 1000 times
more power than a 100-kHz processor. Each bump up
in clock rate requires increasingly heroic methods to
control power dissipation. Complexity can be measured
by the number of cycles required to perform a calcu-
lation and by the surface area of the chip. Increasingly
complex algorithms create pressure to increase the
complexity of the processor and thus the area of a chip.
The problem of greater chip area can be overcome by
scaling down the feature size of the fabrication process,
but scaling also has physical limits. Moreover, as the
feature size scales down, the fabrication process itself
becomes more difficult and exacting.

All this contrasts sharply with nature’s solution. The
characteristics and advantages of nature’s acoustic pro-
cessing algorithms are well documented.3 Natural sys-
tems process acoustic information in real time, with
precision and reliability, while dissipating minuscule
amounts of energy. Nature accomplishes this with slow
and unreliable devices, i.e., neurons. Biological hard-
ware has no clock, but typical time scales are measured
in fractions of milliseconds. In effect, biological hard-
ware runs at a 1- to 10-kHz clock rate.

If it were possible to engineer acoustic processors
with biological levels of performance and power re-
quirements, a large number of new applications would
become feasible. Intelligence based on acoustic pattern
recognition could be built into appliances, telephones,
and credit cards. Cellular phones could take spoken
commands. Smart credit cards could recognize not only
passwords, but also the speaker. Digital watches and
calculators that run for years on button cells could
understand a small vocabulary of spoken words. Self-
diagnosing machines could recognize acoustic tran-
sients caused by state changes and wear.

Motivated by the observation that biological sys-
tems perform very sophisticated tasks while making low
demands on power consumption and component pre-
cision, we are engaged in developing artificial devices
that perform as competently as biological systems while
requiring minimal resources. Our long-term goal is to
build pattern recognition engines whose performance
characteristics rival those of biological systems. To be
more specific, we seek to build acoustic processing
engines with the following characteristics:
• Real-time operation, so that typical transients are

recognized in about 100 ms or less.
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1
• High correct classification rates (near 95%) on hun-
dreds of transient classes while achieving low false
alarm rates.

• Implementation of such engines with the highly
mismatched metal-oxide-silicon (MOS) transistors
that are typical in modern analog very-large-scale
integration (VLSI) fabrication processes (feature size
<1.2 mm).

• Power dissipation on the order of a milliwatt or less.
This requires subthreshold current-mode circuits. Cur-
rents in such circuits are in the 0.1- to 10-nA range,
while voltage swings are in the 100-mV range. Clock
rates will be tens of kilohertz or less.

In this article we describe our recent work toward
building processors with these characteristics. In par-
ticular, we focus on the impact of algorithm develop-
ment on hardware requirements. We describe a prac-
tical architecture for performing real-time recognition
of acoustic transients by means of a correlation-based
algorithm. In other words, the algorithm performs
pattern recognition by correlating an incoming signal
with a stored template. Correlation-based algorithms
are generally believed to be so computationally inten-
sive that they cannot be used for real-time applications
except in conjunction with fast DSP chips.

The algorithm and architecture that we describe are
expected to perform a correlation calculation on a
special-purpose parallel analog VLSI chip, using a slow
clock (about 10 kHz) and (we estimate) with just a few
milliwatts of power dissipation. Moreover, neither
digital-to-analog conversion nor the storage of analog
values is required. The algorithm leads to a correlator
whose computing surface bears a strong resemblance to
conventional dynamic random access memory (RAM).

To appreciate the advantages of our approach, it is
useful to understand the constraints and advantages of
correlation calculations in analog VLSI. Traditionally,
correlation in analog VLSI poses two fundamental
implementation challenges: first, the problem of tem-
plate storage; second, the problem of accurate analog
multiplication. Both problems can be solved by build-
ing sufficiently complex circuits. For example, analog
values can be stored by sample-and-hold circuits or by
storing digital values and converting them into analog
values via digital-to-analog converters. These solutions
are generally inferior to digital correlation algorithms
because they lead to analog processors that are large
compared with their digital counterparts. Another,
more compact solution to the template storage problem
is to employ the recently developed floating gate de-
vices. Presently, such devices can store precise analog
values for years without significant degradation. More-
over, this approach can result in very compact devices.
Unfortunately, programming floating gate devices is
not particularly easy. It is relatively slow and requires
997) 245

F. J. PINEDA ET AL.
high voltage. Worse yet, the floating gate
degrades each time it is reprogrammed.
The fabrication of high-quality floating
gates also requires advanced fabrication
processes that may not be compatible with
circuits for other kinds of on-chip process-
ing. Finally, even if the analog storage
problem could be solved effectively, the
problem of building accurate analog–
analog multipliers remains. High-quality
analog multipliers are notoriously difficult
to build. Effective solutions require consid-
erable area on the chip.

Our “solution” to these problems is to
sidestep them completely and to develop
an algorithm and architecture that require
neither analog storage nor analog multipli-
cation. One instance of this approach is to binarize the
input and then to correlate it with a binary template.
Thus, the correlations can be performed by simple
“AND” gates. This approach is compact and fast, but
it generally tosses out too much information, so it is not
compatible with high classification rates. In contrast,
the algorithm we present in the following section is a
hybrid approach that replaces analog–analog multipli-
cation with analog–binary multiplication. In analog
hardware this operation corresponds to simple binary
multiplexing. We demonstrate that a high level of
classification performance on real-world data can be
achieved with no measurable loss of performance in
comparison with a traditional, computationally inten-
sive correlation algorithm. Moreover, the algorithm is
not significantly harder to implement than binary–
binary correlation. In the acoustic case, the approach
requires neither digital-to-analog nor analog-to-digital
converters.

THE BASELINE ALGORITHM
In this section we describe both the acoustic tran-

sient data and a conventional correlation algorithm
used to classify the data. Two of us (K. R. and D. S.)
collected the transients.4 These transients consist of
isolated bangs, claps, clicks, cracks, dinks, pings, pops,
slaps, smacks, snaps, thuds, and whacks that were re-
corded on digital audio tape in an office environment.
The ambient noise level was uncontrolled but was
typical of a single-occupant office. Approximately 221
transients in 10 classes were collected. Figure 1 shows
six exemplars from three classes. As can be seen, most
of the energy in one of our typical transients was dis-
sipated in the first 10 ms. The rest was dissipated over
the course of about 100 ms. The transients had dura-
tions of about 20 to 100 ms. There was considerable
in-class and between-class variability in duration. The

0

Figure 1.
classes a
246
5040302010

Time (ms)

Class 1 no. 1

Class 1 no. 2

Class 2 no. 1

Class 2 no. 2

Class 3 no. 1

Class 3 no. 2

Six acoustic transients from three classes. Note the similarity between
nd the dissimilarity within classes.
JOH
duration of a transient was determined automatically
by a segmentation algorithm, described later in this
article. The segmentation algorithm was also used to
align the templates in the correlation calculations.

Pineda et al.4 described the baseline classification
algorithm and its performance. Here we summarize
only its salient features. As in many biologically
motivated acoustic processing algorithms,3 the prepro-
cessing steps included time–frequency analysis, rectifi-
cation, and smoothing and compression via a
nonlinearity. Classification was performed by correla-
tion against a template that represented a particular
class followed by selection of the class with the greatest
correlation. Creating the templates also required a
“training” step. This training step is described under
“Correlation” later in this article. We turn now to a
more detailed description of each processing step.

Time–Frequency Analysis
Time–frequency analysis for the baseline algorithm

and for the simulations performed in this work was
performed by a low-power (5.5-mW) analog VLSI filter
bank intended to mimic the processing performed by
the mammalian cochlea.5 This real-time device created
a time–frequency representation that would ordinarily
require hours of computation on a high-speed worksta-
tion. More complete descriptions of the hardware can
be found in the references (Pineda et al.,4 Goldstein et
al.,5 and references therein). The time–frequency rep-
resentation produced by the filter bank was qualitative-
ly similar to that produced by a wavelet transformation.
The center frequencies and Q-factors of each channel
were uniformly spaced in log space. The low-frequency
channel was tuned to a center frequency of 100 Hz and
a Q-factor of 1.0, while the high-frequency channel was
tuned to a center frequency of 6000 Hz and a Q-factor
of 3.5. There were 31 output channels. The 31-channel
cochlear output was digitized and stored on disk at a raw
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

rate of 256,000 samples per second.
This raw rate was distributed over
32 channels, at rates appropriate
for each channel (six rates were
used, 1 kHz for the lowest-frequency
channels up to 32 kHz for the high-
est-frequency channels and the
unfiltered channel).

Segmentation
Both the template calculation

and the classification algorithm
depend on having a reliable seg-
menter. In our experiments, the
transients were isolated and the
noise level was low; therefore, a
simple segmenter was adequate.
Figure 2 shows a block diagram of
our segmenter.

The raw output of each channel
was high-pass filtered to subtract the mean and then
was rectified. The signal in each channel was then
passed through a threshold function. In principle, each
channel can have its own threshold, but in practice,
the same threshold was used for all channels. The
resulting bits were summed and again passed through
a threshold function. The result is a noisy segmentation
bit that was set to 1 if two or more channels exceeded
their thresholds. A clean segmentation bit was gener-
ated from the noisy segmentation bit by passing the
noisy segmentation bit through two parallel channels.
Each channel first low-pass filtered the noisy segmen-
tation bit and then passed it through a threshold func-
tion. The first channel used a 10-ms low-pass filter
to fill in dropouts; the second channel used a faster
(1-ms) low-pass filter to catch the onset of a transient.
The outputs of the two channels were passed through
an “OR” gate to produce a clean segmentation bit.
Essentially, the segmenter was a three-layer neural
network composed of linear threshold units. The net-
work has four adjustable thresholds that were deter-
mined in an ad hoc manner so as to maximize the
number of true transients that are properly segmented
while minimizing the number of transients missed or
cut in half. No effort was made to control the duration
of the segments generated by the segmenter. A software
simulation of the segmenter was used to segment the
raw cochlear output files into events that were then
written out as smaller disk files. Segmenting a 15-s
stretch of raw data took about 1 h of computation on
an RS/6000 workstation (rated at 10 MFLOPS). If this
segmenter were realized as an analog circuit, it would
operate in real time. The segmented files were used as
the starting point for all the experiments described in
the following paragraphs.

Channel 1

Channel 31

Threshold

Threshold

Threshold

Threshold

Figure 2. Schematic
filters).
JOHNS HOPKINS APL TECHNICAL DIGEST, V
BANG, CLICK, THUD, OR WHACK?

+

Noisy segmentation bit Clean segmentation bit

Threshold

Threshold

Threshold

Low pass
t = 10 ms

Low pass
t = 1 ms

OR

of the segmenter network (t indicates the time scale of the low-pass
OLUME 18, NUMBER 2 (1
Smoothing and Normalization
 The raw output of the filter bank was rectified and

smoothed with a single pole filter and subsequently
normalized. Smoothing was done with the same time
scale (1 ms) in all frequency channels. The instanta-
neous output of the normalizer was

ˆ ()
()

()
,X

X
X

t
t

t
=

+u (1)

where X(t) was the instantaneous vector of rectified
and smoothed channel data and u was a small positive
constant whose purpose was to prevent the normaliza-
tion stage from amplifying noise in the absence of a
transient signal. With this normalization we have

ˆ () if () ,X Xt t
1 1

0≈ << u (2)

and

ˆ () if () .X Xt t
1 1

1≈ >> u (3)

Thus, u effectively determined a soft input threshold
that transients must have exceeded if they were to be
normalized and passed on to higher-level processing.

A sequence of normalized vectors over a time win-
dow of length T was used as the feature vector for the
correlation and classification stages of the algorithm.
997) 247

F. J. PINEDA ET AL.
Figure 3 shows the normalized feature vectors corre-
sponding to the first four examples of a typical class.
These have been concatenated into a single plot.

Correlation
The feature vectors were correlated in the time–

frequency domain against a set of k time–frequency
templates. The kth feature vector template was precal-
culated by averaging over an ensemble of normalized
feature vectors from the kth class. Thus, if Ck represent-
ed the kth transient class and

k
represented an av-

erage over the elements in a class, e.g.,

ˆ () ˆ () ˆ () ,X X Xt E t t C
k

k= ∈{ } (4)

then the template was of the form

b t tk
k

() ˆ () .= X (5)

The instantaneous output of the correlation stage is a
k-dimensional vector c(t) whose kth component is

c t tk

T

k() ˆ () () .≡ − ⋅
=
∑ X bt t

t 1
(6)

The time–frequency window over which the correla-
tions were performed is of length T and is advanced by
one time-step between correlation calculations.
30

25

20

15

10

5

0
300250200150100500

Time (ms)

Example 1 Example 2 Example 3 Example 4

C
ha

nn
el

350

Figure 3. Normalized representation of the first four examples from a typical
transient class.
248 JO
Classification
The classification stage was a simple winner-take-all

algorithm that assigns a class to the feature vector by
picking the component of ck(t) that has the largest
value at the appropriate time,

class = c tk karg max () .valid{ } (7)

The segmenter was used to determine the time tvalid
when the output of the winner-take-all was to be used
for classification. This corresponds to properly aligning
the feature vector and the template.

Leave-one-out cross-validation was used to estimate
the out-of-sample classification performance of all the
algorithms described here. The rate of correct classifi-
cation for the baseline algorithm was 92.8%. Of
the 221 events detected and segmented, 16 were
misclassified.

A CORRELATION ALGORITHM
FOR ANALOG VLSI

We now take a closer look at the correlation step
in the baseline algorithm. Can we perform classifica-
tion without performing analog–analog multiplication
and without having to store analog templates? In the
following section we show that the answer to this
question is yes. To provide a better understanding of our
approach, we present it in two steps. In the first step,
we construct a similarity measure that uses a binarized
template and show that this template achieves a high
level of classification performance. In the second step,
we show how a slightly modified version of this sim-

ilarity measure leads to a particularly
elegant implementation in analog VLSI.
HNS HOPKINS AP
Examination of the normalized repre-
sentation in Fig. 3 reveals that the fea-
tures in the normalized representation
vary slowly over time (compared with
1 ms). Moreover, adjacent frequency
channels are very similar. Accordingly,
the information content of any single
time–frequency bin cannot be very high.
This observation motivates a highly
compressed representation for the stored
template. To be useful, such a represen-
tation must not degrade the classifica-
tion rate. Accordingly, we redefine the
vector c(t) to be the following similarity
measure:

c t tk

T

k() ˆ̇ () () ,≡ − ⋅
=
∑ X bt t

t 1
(8)
L TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

where the overdot represents differentiation with re-
spect to t. In this expression, the time derivative of the
normalized input vector is correlated against a binary
valued [21, 11] template vector b(t). This template
vector is precomputed from examples by averaging over
a set of typical transients and by setting each element
of the template equal to one when the corresponding
average is increasing in time and minus one if it is
decreasing. In other words, the kth template is given by

bk
k

() ˆ̇ () ,t t=

sgn X (9)

where

sgn x x x() /= (10)

is the vector-valued function that takes the sign of each
component of x. Despite the fact that we have appar-
ently removed a lot of information from the template,
experiments with our office transients reveal that clas-
sification performance is not measurably degraded. In
fact, in our experiments we found that exactly the same
errors were made as in the baseline algorithm.

To gain insight into this unexpectedly high level of
performance, we observe that differentiation throws
out only an additive constant in each channel. This
additive constant contains no information because the
vectors are normalized. Next, we consider the effect of
reducing the template vector to a single bit of infor-
mation. This effect can be understood by first consid-
ering the dot product of two random normalized vec-
tors, x and y. If x and y are statistically independent,
then the expected value of their dot product is zero,
while the dot product of either vector with itself is just
the Euclidean norm of the vector, e.g.,

x x x⋅ =
2

. (11)

Thus, if we normalize with respect to the Euclidean
norm, identical vectors will have dot products equal to
one, whereas vectors that are statistically independent
will have dot products close to zero. Now, consider the
dot product between a random vector x and a binary
vector whose components are just the signs of a random
vector y. As before, if x and y are statistically indepen-
dent, the dot product x sgn y⋅ () has an expected value
near zero. Moreover, the dot product of a random vector
x with sgn(x) will be equal to the 1-norm of x, i.e.,

x sgn x x⋅ =() .
1

(12)
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (
BANG, CLICK, THUD, OR WHACK?

Thus, if we normalize with respect to the 1-norm,
identical vectors will have dot products equal to one,
whereas vectors that are statistically independent will
have overlaps close to zero. This heuristic analysis leads
to the insight that using binary template vectors
amounts to performing classification based on a 1-norm
rather than a more traditional 2-norm. One expects
differences in classification rates, but these differences
will depend on subtleties of the distribution of input
vectors. Work to characterize these subtleties is under
way. Empirically, it is clear that for office transients
these effects are insignificant.

Next we turn to two changes to the algorithm that
allow us to implement it in analog VLSI in a partic-
ularly elegant fashion. We observe that we have
eliminated the need for 4-quadrant multiplication.
Instead, we need only to multiply a positive or negative
real-valued ˆ̇X with a plus or minus one. In other words,
we have reduced the computational requirements from
4-quadrant multiplication of two real-valued quantities
to 4-quadrant multiplication of one real quantity with
one binary-valued quantity. In what follows we show
that we can further reduce the computation to a
1-quadrant multiplication of a positive real-value with
zero or one.

First we observe that differentiation and addition
commute; thus, we can write Eq. 8 as

c t
d
dt

tk

T

k() ˆ () () .= − ⋅
=
∑ X bt t

t 1
(13)

By performing the differentiation after we perform the
correlation, we only have to perform 2-quadrant mul-
tiplications of the positive components of X̂ with plus
or minus one. The final simplification is achieved by
observing that normalization implies that when one
channel is increasing in amplitude, one or more other
channels must be decreasing in amplitude so as to
maintain the normalization. In effect, normalization
introduces a new approximate symmetry that we can
exploit to further simplify the computation. To see how
this comes about, consider a positive vector x normal-
ized with respect to the 1-norm, i.e.,

x tv
v

() .=∑ 1 (14)

Taking the time derivative of this expression yields

˙ () .x tv
v

=∑ 0 (15)
1997) 249

F. J. PINEDA ET AL.
We can rewrite this as the sum of positive and negative
contributions

˙ () ˙ () ,
˙˙

x t x t
xx

v v

vv

+ =
<>

∑∑
00

0 (16)

which immediately implies

sgn sgn(˙) ˙ (˙) ˙ .
˙˙

x x x x
xx

v v v v

vv

− =
<>

∑∑
00

0 (17)

In other words, the negative terms in ˆ̇ (ˆ̇)x sgn x⋅ exactly
equal the positive terms. This means we need only
accumulate the positive contributions and multiply by
a factor of 2 to recover the complete result. Empirically,
we find that the difference between the [0, 1] represen-
tation and the [21, 11] representation remains a factor
of 2 (to several digits of precision), even when the input
vectors and the template vectors do not correspond to
250 JO
the same class. Our classification experiments show that
the out-of-sample performance of the [0, 1] representa-
tion is identical to that of the [21, 11] representation.
Changing to the [0, 1] representation has no impact on
the storage requirements, since both representations
require the storage of a single bit per time–frequency
bin. The big payoff is that the multiplication hardware
is now very simple: 1-quadrant multiplication of a
positive number with [0, 1] scarcely deserves the name
multiplication, because in current-mode analog VLSI it
can be implemented by a simple transistor on–off
switch.

To summarize, we have developed a correlation
algorithm that empirically performs as well as a baseline
correlation algorithm but that requires only binary
multiplexing to perform the correlation. We find that
even with only 16 frequency channels and 64 time bins
(1024-bits/template), we are able to achieve exactly
the same level of performance as the original analog–
analog correlation algorithm (31 frequency channels
and 128 time bins).

Figure 4 illustrates the key architectural features of
the correlator/memory. The rectified and smoothed
frequency-analyzed signals are input from the left as
∆ ∆ ∆ ∆0

(2 ms) (2 ms) (2 ms) (2 ms)

∆ S

+

SSSS

(2 ms)
–

c 9 (t)

X1

X2

Xm

X1

X2

Xm

N
or

m
al

iz
er

0

Template

0

S

• • •

0

Template

0

S

0

Template

0

S

0

Template

0

S

Template

0

S

Template

0

S

Template

0

S

• • •

• •
•

• •
•

• •
•

• •
•

Template

0

S

Template

0

S

Template

0

S

• ••

• • •

Template

0

S

• ••

Template

0

S

^

^

^

Figure 4. Schematic architecture of the k th correlator/memory. D and S are the usual symbols for delay elements and additive elements,
respectively.
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

currents. The currents are normalized before being fed
into the correlator. A binary time–frequency template
is stored as a bit pattern in the correlator/memory. A
single bit ′′bnt is stored at each time t and frequency n
bin. If this bit is set, current is mirrored (switched) from
the horizontal (frequency) lines onto vertical (aggrega-
tion) lines. Current from the aggregation lines is inte-
grated and accumulated in a bucket brigade device.6

The number of time bins and the clock speed of the
bucket brigade determine the width of the correlation
window in time. In our simulations, shifts occur every
2 ms. The last two stages of the bucket brigade are
differenced to estimate a time derivative.

DISCUSSION, CONCLUSIONS, AND
FUTURE DIRECTIONS

The proposed architecture uses an algorithm that
correlates an analog value with a binary template. The
incoming signal is not significantly compressed. Only
the templates used for correlation are significantly
compressed. Accordingly, the entire processing path
from transduction until the accumulate-and-shift step
can be performed in a fully analog,
data-driven fashion. The only
clock that appears in the system is
used for the analog shift register.
This clock is very slow (about 10
kHz) as compared with conven-
tional microprocessor speeds. The
correlator/memory array can be
implemented as an array of cells
bearing a strong resemblance to
dynamic or static RAM cells.
Thus, storing templates is as easy as
loading conventional RAM,
which is much easier than storing
analog values in a floating gate
array.

The correlation algorithm de-
scribed in the previous section is
related to the zero-crossing repre-
sentation analyzed by Yang et al.3

To see the relationship, suppose
that the bit pattern stored in each
channel of the correlator/memory
were run-length encoded. The re-
sulting bit flips would correspond
exactly to the zero crossings of the
expected time derivative of the
normalized “energy envelope.”
Yang et al. 3 argue that a zero-
crossing representation enhances Figure 5. Prototype a
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (19
BANG, CLICK, THUD, OR WHACK?

robustness with respect to noise while maintaining the
information content of the signal. An important differ-
ence between the present approach and the conven-
tional zero-crossing approach, as exemplified by Yang et
al., is that we do not encode the incoming acoustic
signal with a zero-crossing representation. Instead, the
acoustic signal is maintained as an analog signal
throughout the processing path, and the templates are
encoded as a zero-crossing representation. Interestingly
enough, if both the analog signal and the template are
reduced to a binary representation, then the classifica-
tion performance drops dramatically. Clearly, maintain-
ing some analog information in the processing path is
important.

The frequency domain normalization used in the
preceding approach is essentially instantaneous com-
pared with the characteristic time scales of the signal.
Absolute intensity information is mostly thrown away,
but at each instant, the relative amplitude of the fre-
quency channels is preserved. Because of the normal-
ization, all information in the transient is equally im-
portant, regardless of its intensity. Thus, low-intensity
resonances that might be excited by the initial injection
coustic transient processing chip.
97) 251

F. J. PINEDA ET AL.
of energy are treated on the same footing as the loud
onset of the transient. These resonances can contain
significant information about the nature of the tran-
sient but would have less weight in an algorithm with
a different normalization scheme. Another conse-
quence of the normalization is that even a transient
whose spectrum is highly concentrated in just a few
frequency channels will spread its information over the
entire spectrum through the normalization denomina-
tor. The use of a normalized representation thus distrib-
utes the correlation calculation over very many fre-
quency channels and thereby mitigates the effect of
device mismatch.

We consider the proposed architecture (without the
trigger and without the winner-take-all classifier) as a
potential component in more sophisticated acoustic
processing systems. For example, the continuously
generated output of the correlators c(t) is itself a feature
vector that could be used in more sophisticated seg-
mentation or classification algorithms, such as the
time-delayed neural network approach of Unnikrish-
nan et al.7 It is evident that the architecture could be
useful in applications where the transients are not
clearly separated. Perhaps the most significant of such
applications is the recognition of continuous speech.
Human speech is composed largely of transients, and
speech recognizers based on transients can perform as
well as recognizers based on phonemes.8

Three of us (T. E., G. C., and F. P.) have undertaken
the design of a prototype acoustic transient processing
chip. The time–frequency analysis and correlation
parts of the algorithm all fit on a 2 × 2 mm chip in a
252 JO
1.2-mm double-poly analog VLSI process. The chip is
clocked at approximately 10 kHz and should dissipate
power on the order of 1 mW. Figure 5 shows the layout
of the test chip. A bank of bandpass filters with center
frequencies ranging from 100 to 6000 Hz sits on the
left-hand side of the chip. Two 16 × 64 pixel correlators
can be seen on the right-hand side of the chip. We are
currently testing the various subsystems in this chip and
hope to report progress soon.

REFERENCES
1Kronland-Martinet, R., Morlet, J., and Grossman, A., “Analysis of Sound

Patterns Through Wavelet Transforms,” Int. J. Pattern Recognit. Artif. Intell.,
Special Issue on Expert Systems and Pattern Analysis 1, 97–126 (1989).

2Rabiner, L. R., “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, reprinted in Readings in
Speech Recognition, A. Waibel and K.-F. Lee (eds.), Morgan Kaufmann, San
Mateo, CA (1990).

3Yang, X., Wang, K., and Shamma, S. A., “Auditory Representations of
Acoustic Signals,” IEEE Trans. Inf. Process. 38, 824–839 (1992).

4Pineda, F. J., Ryals, K., Steigerwald, D., and Furth, P., “Acoustic Transient
Processing Using the Hopkins Electronic Ear,” World Conf. Neural Networks
1995, Washington, DC, IEEE Press (1995).

5Goldstein, M. H., Liu, W., and Jenkins, R. E., “Speech Processing by Real
and Silicon Ears,” Johns Hopkins APL Tech. Dig. 12(2), 115–128 (1991).

6Coggins, R., Jabri, M., Flower, B., and Picard, S., “A Hybrid Analog and
Digital VLSI Neural Network for Intracardiac Morphology Classification,”
IEEE J. Solid State Circuits 30, 542–550 (1995).

7Unnikrishnan, K. P., Hopfield, J. J., and Tank, D. W., “Connected-Digit
Speaker-Dependent Speech Recognition Using a Neural Network with
Time-Delayed Connections,” IEEE Trans. Signal Process. 39, 698–713
(1991).

8Morgan, N., Bourlard, H., Greenberg, S., Hermansky, H., and Wu, S. L.,
“Stochastic Perceptual Models of Speech,” IEEE Proc. Int. Conf. Acoust.,
Speech Signal Process., Detroit, MI, pp. 397–400 (1996).

ACKNOWLEDGMENTS: The work reported here was supported by a Whiting
School of Engineering/Applied Physics Laboratory Collaborative Grant. Prelimi-
nary work was supported by APL Independent Research and Development funds.
THE AUTHORS

FERNANDO J. PINEDA received his B.S. degree in physics from the
Massachusetts Institute of Technology in 1976 and his M.S. and Ph.D. degrees
in physics from the University of Maryland, College Park, in 1981 and 1986,
respectively. He joined APL in 1986. Currently, he is a member of the Principal
Professional Staff in the Milton S. Eisenhower Research and Technology
Development Center. His research interests include neural computation, analog
VLSI, and machine learning. He formerly served on the editorial board
of the Johns Hopkins APL Technical Digest and is a member of the editorial
boards of Neural Computation and Applied Intelligence. His e-mail address is
Fernando.Pineda@jhuapl.edu.
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

BANG, CLICK, THUD, OR WHACK?
GERT CAUWENBERGHS received the Engineer’s degree in applied physics
from the Vrije Universiteit, Brussel, Belgium, in 1988, and the M.S. and
Ph.D. degrees in electrical engineering from the California Institute of
Technology in 1989 and 1994, respectively. In 1994, he joined The Johns
Hopkins University as an assistant professor in electrical and computer
engineering. His research covers VLSI circuits, systems and algorithms for
parallel signal processing, and adaptive neural computation. His e-mail address is
gert@jhunix.hcf.jhu.edu.
R. TIMOTHY EDWARDS received his B.S.E.E. degree from Duke University
in 1990, where he also majored in physics, and he received his M.S.E.E.
degree from Stanford University in 1992. Currently, he is a Ph.D. candidate at
The Johns Hopkins University, where he is a student of Gert Cauwenberghs.
His main area of research is analog VLSI circuit and systems design,
particularly relating to speech and sound recognition. His e-mail address is
tim@bach.ece.jhu.edu.
J

KENNETH T. RYALS received a B.S. degree in physics from Wake Forest
University and an M.S. degree in mechanical engineering from North Carolina
State University. Immediately thereafter, he joined APL’s Strategic Systems
Department and has been involved in the Sonar Evaluation Program ever since.
During this time, he has also participated in the analysis of theater ballistic
missile defense systems and mine warfare systems. He currently supervises the
Performance Assessment Section of the Undersea Systems Evaluation Group. His
e-mail address is Kenneth.Ryals@jhuapl.edu.
DAVID G. STEIGERWALD received his B.S. degree in physics from Georgia
Tech in 1977 and his M.S. in technical management (systems engineering)
from the G.W.C. Whiting School of Engineering in 1995. He has worked at
APL since 1977 in various positions related to submarine sonar. Over the last
few years, his work has covered a wider range, including several pen-based PC
logging applications for submarines and for doctors. His e-mail address is
David.Steigerwald@jhuapl.edu.
OHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997) 253

