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he Midcourse Space Experiment (MSX) spacecraft employs infrared, ultraviolet,
and visible light sensors to collect images and spectrographic signatures on a variety of
targets, especially missiles, other satellites, and auroral phenomena. These instruments
are fixed in the satellite body and face in a common direction. Their fields of view vary,
with some of them being quite small (1 3 3°). Thus, as MSX travels in its orbit, the
entire satellite must be precisely rotated to keep the target in view. In fact, a pointing
accuracy requirement of 0.1° was imposed on the satellite’s design. To help meet this
requirement, APL designed and built an elaborate testbed for the key elements of the
MSX attitude and tracking subsystems. The testbed provides the means to assess the
performance of these subsystems through simulations of missile encounters and other
data collection events.

T

INTRODUCTION
A robot and a satellite such as the Midcourse Space

Experiment (MSX) have much in common. The cur-
rently accepted definition of a robot is a programmable
machine that, through the application of computer
technology, exhibits a high degree of flexibility or
adaptability.1 That is, a robot, in the course of perform-
ing its programmed function, can autonomously adapt
its behavior (programmed motion) in response to cer-
tain changes in its environment. Without the ability to
adapt, the machine is merely a mechanical device.
Thus, for a machine to be a robot it must be able to
“perceive” (via sensor hardware), “think” (via comput-
ers), and move (via actuators) without continuous
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human intervention. The MSX satellite, likewise, has
the ability to sense its surroundings, determine a course
of action, and then autonomously perform the action
in the context of an assigned task.

The task assigned to MSX is the collection of sensor
data on various targets. To maximize the scientific value
of the data, MSX must track the target and maintain
it within 0.1° of the instruments’ common boresight.
Today, such a pointing accuracy is routinely achieved
by many astronomy satellites, but such satellites have
an advantage over MSX: their “targets” (typically stars)
are inertially fixed. Some of the MSX scenarios, in
contrast, require the satellite to cartwheel to keep the
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target missile in the field of view. For the MSX to satisfy
the 0.1° pointing accuracy requirement while perform-
ing such aerobatics is a considerable challenge for
spacecraft designers. The attitude and tracking sub-
systems of the MSX spacecraft are designed to meet this
requirement. This article discusses how to test and
validate these subsystems before their deployment into
space.

Designing a full-scale test environment in which
MSX could practice tracking intercontinental ballistic
missiles would require a large amount of space, a zero-
gravity environment, and an enormous budget. Obvi-
ously, what is needed instead is a testbed that can “fool”
the spacecraft’s attitude and tracking elements into
“thinking” that they are in orbit performing a real
target-tracking scenario. This requirement was the
charter for the testbed. The testbed simulator was used
in all phases of testing, from unit level to end-to-end
spacecraft level, to ensure that the system would meet
its tracking specifications.

The concept of building a testbed to validate satel-
lite-borne computers and software is not new. In fact,
APL built testbed simulators for several earlier satellites
involved in tracking moving targets.2 The MSX testbed
simulator, however, is much more complex. It requires
more sensor models, more environmental models, more
computing power, and much greater fidelity than the
earlier testbeds.

The role of the testbed simulator in the MSX project
must be understood in the context of the satellite’s
design. Therefore, a brief overview of the attitude and
tracking subsystems of MSX is presented first in this
article followed by a discussion of the requirements for
the testbed simulator. The architecture and implemen-
tation of the simulator are also explained, followed by
a discussion of results and future uses of the testbed.

OVERVIEW OF MSX ATTITUDE AND
TRACKING SUBSYSTEMS

The Attitude Subsystem
The MSX attitude subsystem consists of a suite of

attitude sensors, four reaction wheels, three magnetic
torquing rods, and the attitude processor (AP)—a 16-
bit computer programmed in the Ada language to per-
form autonomous, onboard attitude determination and
control. The attitude sensor suite consists of a digital
Sun sensor, two Earth horizon sensors, a three-axis
magnetometer, two ring laser gyroscopes, and a star
camera. The AP performs attitude control via the re-
action wheels by independently commanding the
torque to be applied by each of four wheel motors. The
wheels may be spun in either direction at speeds up to
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4500 rpm. By trading angular momentum between the
satellite body and the wheels, the spacecraft can be
turned in any direction. The magnetic torquing rods are
used to dump excess angular momentum from the
wheels. By energizing one or more of these mutually
orthogonal rods at the appropriate point in the orbit,
the AP sets up an interaction of the magnetic fields
created by the rods with that of the Earth. The result
is a torque on the satellite that can be used to hold the
satellite stationary while the reaction wheels are slowly
decelerated.

The AP is the “brain” of the attitude subsystem. Its
software uses the measurements provided by the atti-
tude sensors to determine the current orientation, i.e.,
attitude, of the satellite axes relative to a standard
inertial frame of reference. The AP software then cal-
culates the necessary control signals to the reaction
wheels to adjust the satellite to the desired attitude.
This attitude is calculated in one of several ways, de-
pending on the mode commands from the satellite
operators on the ground. There are two primary attitude
modes. The first is the park mode, where the telescopes
are pointed away from the Sun and Earth, while keep-
ing the unblanketed side of the satellite rolled away
from the Sun. The other is the track mode, where the
satellite is pointed at the attitude requested by the
tracking processor (TP).

The AP has some secondary functions as well. The
MSX satellite is equipped with two solar panels that
rotate about a common axis, and an X-band downlink
antenna mounted on a gimballed arm. The AP flight
software is responsible for keeping the solar panels ro-
tated toward the Sun and the antenna pointed at the
ground station during passes over APL’s MSX Tracking
Station.

The Tracking Subsystem
The MSX tracking subsystem consists mainly of the

S-band beacon receiver, portions of the Ultraviolet and
Visible Imagers and Spectrographic Imagers (UVISI)
instrument, and the TP—another 16-bit computer pro-
grammed in Ada to perform autonomous, onboard tar-
get tracking. During a data collection event, the AP
and TP engage in an electronic dialog using dedicated
electrical interfaces to perform the desired spacecraft
pointing. The AP provides the TP with the current
estimates of MSX’s orbit (position, velocity, and accel-
eration) and attitude parameters (orientation, angular
velocity, and angular acceleration). The TP, in turn,
provides the AP with the currently desired attitude
parameters. These data are exchanged twice per second.

Some of the targets to be tracked and imaged are
equipped with radio beacons to maintain compliance
with the ABM treaty (1972), which prohibits unaided
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acquisition and tracking of missiles from space. The
MSX spacecraft’s beacon receiver acquires such targets
at long range (up to 8000 km) and provides tracking
signals (azimuth and elevation angles and angle rates)
to the TP.3

Some targets will be tracked with the aid of UVISI.
Among the components of UVISI is an image proces-
sor, which can analyze the output of any of the four
UVISI imagers and then provide the TP with the
coordinates in the imager’s frame of up to 23 detected
objects (mostly stars).4 The TP uses motion analysis
and a priori knowledge of the target to distinguish the
desired target from other objects.

The TP flight software provides the planners of a
data collection event with a choice of eight pointing
types. Commands are transmitted by ground operators
to the TP giving it such information as the start and
stop times of the data collection event, the pointing
type, characterization parameters, selected roll option,
and selected scan pattern. For example, if the target is
a two-stage missile, the set of characterization param-
eters would include two sets of coefficients for the
curves that approximate the predicted flight path.
These command parameters represent the “program-
ming” of the “robot” for a given task.

Other supported pointing types include reference
objects (small calibration spheres ejected from MSX
itself), satellites, stars, auroral bright spots, Earth-bound
objects, Earth-limb pointing, and azimuth/elevation
pointing in the local horizontal/local vertical reference
frame.5

The TP flight software combines the available sensor
measurements (from the beacon receiver or UVISI)
with knowledge of the current MSX attitude (supplied
by the AP) and the a priori target estimates (from the
uplinked commands) to produce, via a Kalman filter,
refined estimates of the target trajectory. The TP soft-
ware then calculates the new desired pointing state
(attitude, angular velocity, and angular acceleration)
and sends it to the AP. If the target missile’s path
deviates from the a priori estimate because of a late
launch or non-nominal booster performance, the TP
software adapts to the situation. Likewise, if a sensor
blackout occurs, the TP flight software extrapolates the
target state information to provide a continuous se-
quence of desired attitude states to the AP.

A key consideration in the MSX attitude and track-
ing subsystems is data latency. The MSX sensor plat-
form is moving at more than 7 km/s and rotating at
more than 1.5°/s, and the target is moving at compa-
rable speeds. Therefore, all sensor measurements must
be time-tagged, and measurements and estimates must
be propagated to a common time before they are incor-
porated into the various tracking and steering
algorithms.
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REQUIREMENTS FOR THE TESTBED
SIMULATOR

The primary requirement for the testbed simulator
is to provide a tool to support the development and
checkout of the flight software residing in the TP and
AP. An analysis of the needs of the AP and TP flight
software development teams yielded the following sys-
tem requirements:

1. Include hardware equivalent to the computer hard-
ware in the actual TP and AP so that any differences
are transparent to the flight software. Thus, the
testbed simulator includes engineering models of
the TP and AP. A testbed such as this is known as a
hardware-in-the-loop simulator.

2. Connect directly to the flight computers (or their
facsimiles) via the normal flight interfaces. The
testbed simulator should present the same electrical
interfaces to the AP and TP as in the flight config-
uration. This requirement is called first-
circuit emulation.

3. Provide a configuration for testing the AP and the
TP separately as well as simultaneously, and several
special configurations for testing larger strings of
subsystems.

4. Model all other spacecraft subsystems relevant to
both the AP and the TP. These models are listed in
the first two sections of the boxed insert.

5. Model the space environment as it is perceived by
the spacecraft subsystems and the AP and TP. These
models are listed in the last section of the boxed
insert. They are considered the testbed simulator’s
“truth” models and “close the loop” between the AP/
TP and the sensor models. For example, when the
AP outputs a nonzero voltage on one of the reaction
wheel torque interfaces, the spacecraft attitude dy-
namics model calculates the resulting change in
orientation and angular velocity. The attitude model
then provides these inputs to the sensor models. The
sensor models generate new outputs to the AP,
showing that the gyros registered the attitude mo-
tion, the Sun moved in the Sun sensor’s field of view,
the Earth moved in the horizon scanners’ fields of
view, etc.

6. Operate in real time. This requirement follows from
the requirement to interface with the real flight
software while it is running in the flight computers.
Although fast-forward and rewind features would
have been desirable, the flight software did not
support these modes, so neither could the testbed
simulator.

7. Simulate various target types that were determined
by an analysis of mission science objectives (Table 1).
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8. Provide the capability to record in disk log files all
inputs and outputs of the systems under test (AP,
TP, or both). These files are necessary to support
efficient debugging of the flight software. In addi-
tion, the outputs of the truth models must be logged.
Furthermore, the testbed simulator tool set must
include tools to examine and plot data from the
simulation log files.

9. Provide the ability to view the current log data while
the simulation is in progress, since it is wasteful to
run a 45-min simulation to completion if the test
failed in the first 10 min.This capability is also
needed for efficient debugging of flight software.

10. Provide the capability to drive stimulators for the
spacecraft’s battery-charging electronics, the Sun
sensor, the horizon scanners, the magnetometer, the
beacon receiver, and the UVISI imagers.

Figures 1 and 2 show typical test configurations for
the AP, TP, and testbed simulator. Figure 1 shows
the AP and TP being tested in a laboratory bench set-
ting. The testbed provides models of all the missing
spacecraft subsystems with interfaces to the AP and
TP. Figure 2 shows the AP and TP being tested after
installation on the spacecraft. The testbed simulator
models the reaction wheels, attitude sensors, target, and
the spacecraft environment; the testbed also drives
stimulators for the beacon receiver and the UVISI
instrument.

TESTBED SIMULATOR
ARCHITECTURE AND
IMPLEMENTATION

The ideal architecture for a complex real-time ap-
plication such as the testbed simulator would consist of
many fast microcomputers sharing a common pool of
memory. Each of the testbed simulator’s models would
have its own dedicated microcomputer. By running in

Table 1. Target types provided by the testbed simulator.

Target type Modeling method
Missile (from launch to impact) Table of Earth-fixed vectors
Missile that deploys a secondary object Two tables of Earth-fixed vectors
Calibration sphere ejected from MSX Spacecraft frame ejection velocity

vector and an orbit integrator
Another satellite Initial position and velocity vectors

and an orbit integrator
Earth-fixed object with optional Latitude–longitude–altitude and

random walk standard Earth model
An object fixed in spacecraft- Orbit integrator and constant

centered local vertical frame azimuth and elevation angles
Inertially fixed object Constant position vector
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f microprocessors would enable the
 the simultaneous interaction of the
bsystems. Unfortunately, such an ar-
quire more than 25 microcomputers

and support functions (data logging,
etc.). Interfacing this many micro-
sly would be technically challenging
e (especially in 1989, when the test-
bed simulator architecture was se-
lected).

An alternate design would use a
single, large computer and a multi-
tasking operating system to simu-
late the simultaneous operation of
many subsystems by time-slicing
and interrupt techniques. Each of
the models would be implemented
as a separate task. If the computer
were fast enough to handle the
worst-case collision of tasks (when
a large number of tasks all need to
be serviced by the computer at the
same time) and still maintain the
illusion of simultaneity, then this
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Figure 1 .  Testbed simulator concept.  The tracking processor (TP) and attitude processor (AP) are the spacecraft subsystems being tested.
The testbed provides models of all the other spacecraft subsystems having interfaces to the TP and AP.  Note the presence of the truth models:
the Sun, Moon, magnetic field, orbit, attitude, and target models.
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Figure 2 .  Testbed simulator configuration for closed-loop spacecraft tests.  The real spacecraft
subsystems replace the testbed’s models for the beacon receiver, UVISI, and command and
data handling (telemetry) subsystems.
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equipment. However, with this ap-
proach, the computer resources
could be found deficient after the
simulator is implemented.

The architecture we chose for
the testbed simulator is a hybrid of
the two extremes in the preceding
discussion. That is, we procured a
few microcomputers and a com-
mercial multitasking operating sys-
tem and linked them to a minicom-
puter using COTS shared-memory
technology.

The testbed simulator architec-
ture is illustrated in Fig. 3. The
minicomputer used was a Digital
Equipment Corporation Micro-
VAX 3800, running the VAX/
VMS operating system. This com-
puter is capable of about one mil-
lion floating point operations per
second (1 mflops).
orporation MVME 133A single-

was selected as the microcompu-
cludes a 20-MHz Motorola 68020
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Figure 3 .  Testbed simulator architecture.  The models run on the four Motorola processors.  The
support functions of startup, scenario control, data logging, and display run on the MicroVAX
minicomputer.  The cable adapter boxes provide the interconnections to the attitude processor,
tracking processor, and any stimulators being driven by the testbed simulator.

microprocessor, 68881 math coprocessor, 1 MB of ran-
dom access memory (RAM), timers, serial ports, and
industry standard VMEbus6 interface circuitry. The
68020/68881 combination was benchmarked at about
0.07 mflops—not fast by today’s standards, but not slow
for early 1989. The board’s 32-bit architecture made it
especially attractive. We estimated that four such
boards per testbed simulator would be sufficient for our
processing load. The single-board computers used up
only 4 of the 21 slots in the VMEbus chassis that we
selected, so there was room for expansion, if necessary.

Because of the first-circuit emulation requirement
imposed on the testbed simulator, and the unique
nature of many of the spacecraft electrical interfaces,
we had to design and fabricate a number of custom
digital interfaces between the testbed simulator and the
AP and TP. Using an industry standard such as the
VMEbus aided this task since tools and parts for rapid
hardware prototyping in this environment were mature
and widely available. This choice also enabled us to use
COTS boards for the 16 analog-to-digital and digital-
to-analog interface circuits required. Thirty-nine cus-
tom electrical interfaces representing 13 unique types
were designed and fabricated. Most of these custom
interfaces were “smart” interfaces in that they employed
embedded programmable logic state machines or 8-bit
microcontrollers to perform input/output services.
These features enabled the models running in the
Motorola processors to be applied solely to the appli-
cation message level of the interface protocols. All of
the lower levels of the protocols were implemented in
hardware and firmware on the interface boards.
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Without these smart interfaces,
the simulator’s four Motorola
processors would never have
been able to handle the pro-
cessing load.

A Q-bus-to-VMEbus adapt-
er from the BIT3 Corporation
provided the required shared
memory between the Motorola
boards and the VAX minicom-
puter. (The Q-bus is the main
data path in a MicroVAX com-
puter.) This product includes a
board containing 1 MB of
RAM accessible simultaneous-
ly from both the VAX and the
Motorola computers. This
dual-port memory board, to-
gether with some custom de-
signed buffer management
software, enabled all of the
computers to work together al-
most seamlessly.

The software architecture of
r cannot be separated from the
e. The two were conceived as a
tural choice for programming lan-
nsor, the Department of Defense,
 application. Ada had already been
 the satellite’s onboard software.
r vendors offered dual-host devel-
the VAX/Motorola MVME-133A
 this combination seemed to be the
ong Ada cross-developers, which
ur selection of the MVME-133A

selected the Ready Systems Com-
elopment System as our Ada com-
set, we write Ada programs on the
 run on either the VAX or the
uters.

ign called for each model to be
 running on one of the microcom-

us chassis. The support functions
startup/control, data logging, real-
eneration, and data plotting were
 minicomputer. Intertask commu-
 by buffer queues and semaphore-

 the shared memory board. VAX/
multitasking operating system for
d the Ready Systems ARTX (Ada

) served that role on the Motorola

rly on that the testbed simulator
ariety of test configurations (AP

Therefore, we established the de-
ble to switch test configurations
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Figure 4 .  Testbed simulator laboratory.  The two identical copies of the testbed are arranged
back-to-back in this view.  From foreground to background, the visible elements of the testbed
are the two cable adapter boxes, the VMEbus chassis, display terminals, and MicroVAX
computer cabinets.

without having to plug and unplug interface cables.
This goal led to the concept of the cable adapter boxes
shown in Figs. 3 and 4. The boxes are equipped with
a few ganged switches to enable the user to select test
configurations simply and reliably.

Display Capability
Initially, we planned to provide real-time displays

containing numeric data only, that is, no graphics.
However, after seeing a demonstration of a three-
dimensional perspective animation of the MSX space-
craft running on a personal computer, we added a
personal computer to the testbed simulator’s equipment
suite. Then, after some tailoring, we made a graphical
display, called SeeMSX, a standard part of the testbed
simulator’s display capability. A sample frame from a
typical scenario is shown in Fig. 5. Having this “chase
plane” view of the satellite during simulations has been
invaluable. The chase plane view is what would be seen
from the starboard window of a plane flying alongside
the spacecraft (traveling to the left), parallel to the
ground.

The SeeMSX display contains a wealth of informa-
tion in a compact, color-coded format. The center
portion of the display (Fig. 5) contains a line drawing
of the spacecraft body showing several key features of
the satellite design: the beacon receiver antenna deck
(the red rectangle on one end of the spacecraft), the
two solar panels (the large blue rectangles; the panels
appear gray if the side coated with solar cells faces away
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 17, NUMBER 2 (
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, and the X-band antenna (the red T
he satellite).
etry portion of the display (upper left

the viewer of the position of MSX in
to the shadowed portion of the orbit.
 like the second hand on a watch,
 tell when eclipse is imminent or half

wheel portion of the display (lower
es speed and commanded torque for

reaction wheels. The estimated power
rquing the wheels is also shown as a
r along the right edge of the wheel

t portion of the display (upper right
st useful part of the display for assess-
 performance of the tracking system.
 that of an observer located inside the
g out along the boresight of one of the

opes. The display software places a
h an inverted T on it) on the target.
represents a hypothetical field of view
 the target is more than 0.1° but less
 radius is changed automatically to 1°,
iew is shown as a yellow circle instead
arget moves more than 1° away from
e radius switches automatically to 10°
itches to red. The green-yellow-red/
lor scheme is used also on some of the
f the display, notably the solar panel
nna error angles.

In addition to pointing the tele-
scopes at the target, the flight soft-
ware is commanded to maintain a
particular roll angle orientation
around the line of sight to the tar-
get. The roll angle error can be ap-
proximated in the SeeMSX display
by examining the white spot and
noting the tilt of the base of the
inverted T. The roll angle error is
displayed more accurately in the
bar graph just to the left of the
boresight display. This bar graph is
automatically scaled and color-
coded in the same manner as the
boresight circle.

The SeeMSX display has been
so successful as a visualization aid
that the software that created it was
enhanced to accept real-time
spacecraft telemetry and then in-
stalled in APL’s MSX Mission Con-
trol Center. Thus, every time MSX
passes over the APL ground
station, operators in the Mission
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Figure 5 .  Sample SeeMSX display showing MSX tracking a target almost perfectly.  The spacecraft is pictured in the local vertical frame,  and the
Earth is directly below the spacecraft, which is traveling to the left (in the “ram” direction).  The green circle shows the current azimuth (AZ) and
elevation (EL) error angles relative to the target (the white circle).
Control Center will be able to assess the overall health
of the spacecraft attitude and tracking systems with a
quick glance at the SeeMSX display.

Some Testbed Models
Decisions had to be made regarding the level of

fidelity of the truth models. Standard satellite orbit
models, for example, range from low-fidelity, computa-
tionally simple models, to high-fidelity, computation-
ally intensive models. The guiding principle in select-
ing the proper level of fidelity was that the models had
to be just good enough to assess the performance of the
flight software. For the orbit model, we chose to use the
J2 gravity model (Earth oblateness) with no distur-
bance forces such as aerodynamic drag or solar radiation
pressure. Over a few hours at an altitude of 900 km, drag
has a negligible effect on MSX. The gravitational force
was integrated via a fourth-order Runge–Kutta numer-
ical integrator with a 0.5-s step size.

The spacecraft attitude truth model presented addi-
tional choices. We chose to model the reaction wheel
torques, magnetic torque, gravity gradient torque, and
the torque due to the venting of cryogenic gas from the
SPIRIT III telescope. Again, we chose to ignore aero-
dynamic and solar pressure torques. The spacecraft at-
titude dynamics are calculated by inserting the modeled
168 JOH
torques into Euler’s equation, as applied to a system with
four reaction wheels,7 solving for the vehicle accelera-
tion, and then integrating over time. Because some of
the attitude sensors (star camera and gyros) provide
precision attitude measurements to the AP at high rates
(9 Hz for the star camera, 20 Hz for the gyros), we chose
to use a 50-ms step size in the attitude model, together
with a second-order Runge–Kutta integrator.

The star camera model is among the most complex
of the testbed simulator models. The MSX star camera
includes an embedded processor that manages five in-
dependent star-tracking windows that can be com-
manded by the AP to acquire and then autonomously
track any five stars available in the camera’s field of
view. The camera sends a serial digital message nine
times per second to the AP. This message contains the
current coordinates and magnitude (brightness) of the
stars being tracked by the five windows. The AP em-
ploys an onboard star catalog of about 9,200 stars and
pattern-matching software to determine attitude from
the star camera’s messages with an accuracy of a few
arcseconds. The onboard catalog was constructed from
standard star catalogs by culling out faint stars in re-
gions of high star density (i.e., in the galactic plane)
and stars with near neighbors.

The testbed simulator model includes the software
logic necessary to emulate the camera’s functionality.
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To realistically model the behavior of the camera, the
simulator employs a star catalog of about 12,600 stars.
This catalog is complete down to stars of magnitude 6.4.
Therefore, this catalog, unlike the artificially thinned
catalog embedded by the AP, is representative of the
natural distribution of stars in the sky. The model then
adds Gaussian noise to the star measurements in a way
that increases with spacecraft slue rate. The model also
employs a variable brightness threshold that causes the
camera to drop track on fainter stars as the camera
boresight approaches bright objects such as the Sun,
Moon, or Earth. To run at 9 Hz, the star camera model
required an entire Motorola processor board dedicated
to it.

Connections to Other Stimulators
The testbed simulator was conceived primarily as a

test tool for the AP and TP. However, with its truth
models, the testbed has the necessary information to
also drive stimulators for a variety of related subsystems.
For example, throughout a simulation, the testbed sim-
ulator “knows” where the spacecraft, Sun, and Earth
are. It “knows” the current spacecraft attitude and the
rotation angles of the solar panels. With this informa-
tion, the testbed simulator can calculate the amount of
energy available from the solar panels. Thus, the test-
bed simulator was designed to make this calculation
and write a message once per second to a stimulator
attached to the spacecraft’s battery-charging electron-
ics. Similar techniques were employed to make the
testbed simulator drive stimulators for the Sun sensor,
horizon scanners, magnetometer, beacon receiver, and
UVISI. These features allowed the testbed simulator to
put major strings of spacecraft subsystems through re-
alistic mission scenarios.

The testbed simulator’s ability to drive stimulators
for the beacon receiver and UVISI is noteworthy. In the
case of the beacon receiver, the testbed simulator uses
its orbit, target, and attitude models to calculate the
target’s azimuth and elevation angles relative to the
center of the beacon receiver’s field of view. These data
are sent to a computer-controlled stimulator that puts
the corresponding phase shifts into the radio-frequency
signals being inserted into the beacon receiver’s anten-
na leads. The beacon receiver’s electronics then “see”
the target exactly where the testbed simulator says it
is. The beacon receiver’s embedded computers then
calculate the target azimuth and elevation angles, and
send this information to the TP, which in turn tries to
drive the azimuth and elevation angles to zero by gen-
erating a new desired attitude for the AP. In response,
the AP torques the reaction wheels to rotate the ve-
hicle accordingly. Since the reaction wheels are being
emulated by the testbed simulator, we have a closed-
loop, nearly end-to-end simulation of the MSX track-
ing system.
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For the UVISI imagers, the details are more compli-
cated, but the effect is the same. In a typical missile-
tracking scenario, the imagers are expected to see a
complex scene containing star streaks, the Earth limb,
and the rocket plume. If we assume that the MSX orbit,
the target trajectory, and the tracking and attitude
performance are perfectly nominal, then we can assume
that the target would be in the exact center of the
image. Using such logic, all of the digital images for a
particular scenario can be simulated in advance and
saved in a library.

But in any given simulation, the tracking and atti-
tude performance are not perfect, resulting in the target
being somewhat off-center relative to the UVISI im-
ager field of view. Since our goal is to assess tracking
and attitude performance, we cannot assume that the
target is in the center of each image. We solved this
problem by generating the images slightly larger than
the actual imager field of view. Then, during a simu-
lation, the testbed simulator sends the current attitude
to a computer-controlled stimulator for UVISI. The
stimulator compares the current attitude with the
nominal attitude used to generate the image for the
current time. If the difference is nil, then the stimulator
slices out the center portion of the oversized image and
injects it into the UVISI flight electronics, just as if it
came from the focal plane unit. However, if the attitude
difference indicates that the target is slightly off to the
right, then the stimulator slices out a portion of the
image slightly to the left of center. Thus, this design
permits nearly end-to-end simulation of MSX tracking
scenarios involving the UVISI imagers.

RESULTS
The testbed simulator began to be used by the AP

and TP flight software development teams at about the
midpoint of their implementation phase. Prior to that,
the flight software developers tested their software
using the custom test equipment suite used by the flight
hardware development team. As the flight (and test-
bed) software matured, the testbed simulator’s ability to
drive realistic mission scenarios increasingly made it
the method of choice for testing. Hundreds of simula-
tions were run during the latter half of the flight soft-
ware implementation period. These runs typically
employed the testbed’s AP-only and TP-only modes.

Flight Software Testing
Most of the flight software defects found with the

testbed simulator were, as expected, due to programmer
or analyst error. Nevertheless, a handful of errors were
traced to defects in the Ada compiler being used by the
flight software team. That is, the program contained a
correct sequence of statements in the Ada language, but
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the compiler did not translate the statements into a
correct sequence of machine language statements. Such
problems remind us that although the use of COTS
products greatly reduces risk, risk cannot be eliminated
entirely.

As the AP and TP flight software neared comple-
tion, the engineering models of the AP and TP flight
computers were mated to one another on a laboratory
bench and then tested as a unit with the testbed sim-
ulator. Next, the prototype beacon receiver electronics
were added, along with their own testbed equipment.
As described in the preceding section, the testbed sim-
ulator was linked to the beacon receiver’s testbed equip-
ment (i.e., stimulator) to allow testing of closed-loop
missile tracking. Then the prototype UVISI image
processor was added, along with its own testbed equip-
ment, and more closed-loop missile tracking scenarios
were conducted.

After the flight hardware for the AP and TP was
integrated with the spacecraft, one of the two copies of
the testbed simulator was relocated to the integration
facility, and simulations with flight hardware in the
loop began. These tests included the following:

1. Spacecraft/booster separation and initial attitude ac-
quisition, including detumbling from non-nominal
separation, deploying the solar panels, and orienting
the panels to the Sun

2. Initial X-band antenna deployment and the first few
station passes

3. Reaction wheel momentum dumping using the grav-
ity gradient torque and using the magnetic torque rods

4. AP response to attitude sensor failures
5. Tracking of missiles, ejected reference objects, and

other satellites
6. Earth-limb and celestial background scans
7. Thermal/vacuum performance

Missile Tracking Scenarios

For the MSX tracking subsystems, the closed-loop
missile tracking scenarios were the most interesting and
challenging spacecraft tests. One such test, MSX Ded-
icated Target (MDT) V, involved tracking a missile
from horizon to horizon with both the beacon receiver
and one of the UVISI imagers. The geometry of the
encounter required the spacecraft’s pitch rates to reach
1.3°/s at the point of closest approach between the
missile and MSX. The high angular velocity stresses the
AP’s attitude determination algorithm, its attitude con-
trol algorithm, and the TP’s trajectory determination
algorithm. Several variations of this scenario were run:

1. Beacon receiver tracking only
2. UVISI imager tracking only
3. Simultaneous beacon receiver and UVISI imager

tracking
4. Late missile launch
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5. Intentional beacon receiver loss of track and reacqui-
sition in the middle of the run

One of the more interesting issues that surfaced
during tests of the MDT V scenario was a problem with
stars falling into the target tracking gate. Recall that
the UVISI image processor sends a message to the TP
each 0.5 s containing a list of up to 23 objects detected
in its field of view. The target is presumably in the list
somewhere; the rest of the objects are probably stars.
The TP uses its current estimate of the target position
and velocity, together with the current estimate of
attitude and angular velocity from the AP, to identify
the target among the list of objects. Objects in the list
that appear inertially fixed (but moving in the imager
frame) are probably stars; an object that appears to be
moving inertially (but fixed in the imager frame) is
probably the target. The TP draws a box, called a gate,
around the portion of the imager frame where the target
is expected to be. The MDT V tests with the UVISI
imagers revealed that in some image compaction modes
of the imager, the TP’s target gate was too large, leading
to a high probability that a star would fall in the target
gate. The TP was observed to track the star for a few
seconds before returning to the real target. The analysis
of this anomaly led to the alteration of the interface
between UVISI and the TP. The UVISI image proces-
sor flight software was modified to include the compac-
tion factor in its message to the TP. The TP flight
software was modified to dynamically change the size
of the target gate based on the current UVISI image
compaction factor. The result was improved target
tracking performance with the UVISI imagers.

The high rotation rates demanded by the MDT V
scenario helped the team find other problems in the
flight software, too. For example, we found that the
attitude determination algorithms, which performed
superbly at modest rates, broke down badly at high
rates. One of the testbed simulator’s analysis tools gen-
erated a report and graphs showing the difference be-
tween the AP’s attitude estimate, as reported in the
telemetry stream, and the testbed’s attitude truth mod-
el. This tool highlighted the rate dependence in the
AP’s attitude error. By experimenting on the testbed
with various simulated attitude sensor failures, we were
able to show that the errors were in the AP’s processing
of gyro data. After the flight algorithms were modified
to correctly compensate for the latency in the gyro data,
the testbed’s analysis tool showed that the performance
of the AP’s attitude determination software was accept-
able even at rates higher than those in the MDT V
scenario.

Figure 6 presents testbed simulator data from one of
the MDT V scenarios. In this variant, the TP’s closed-
loop tracking algorithm employed data from both the
beacon receiver and the narrow-field visible light
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Figure 6 .  Pointing errors from a closed-loop missile tracking
simulation performed during spacecraft integration testing. The
horizontal axis shows elapsed time in seconds since the start of
the simulation. The closest approach of spacecraft and missile
occurred at 2250 s. The pointing specification is ±0.1°.

imager in UVISI. (Blending data from diverse sensors
to track an object is sometimes called sensor fusion.)
The graphs are constructed from log files of the test-
bed’s truth models, specifically, the MSX orbit, atti-
tude, and target models. The graphs show, as a function
of time, the target line-of-sight error. The target is
supposed to be maintained exactly on the spacecraft x
axis during this event. Line-of-sight errors show up as
small offsets along the spacecraft y and z axes. The
larger transient on the left edge of the graphs is the
result of attitude settling from a previous large-angle
maneuver. The tracking errors are noticeably larger
around 2250 s. This time corresponds to the closest
approach of the missile to MSX. The graphs show that
the tracking system satisfied the MSX pointing spec-
ification of 0.1° with better than 70% of the error
budget to spare. The oscillations apparent in the graphs
are artifacts of the beacon receiver stimulator; the
resolution of the phase angle that can be specified in
the stimulator is about 0.04°. This coarse resolution
causes discontinuous jumps in the target location. The
TP’s Kalman filter, which has not been tuned to elim-
inate this artifact, follows the sensor data. (The UVISI
stimulator’s resolution is about 0.005°.)

Other Test Benefits
In addition to finding a few problems in the flight

software, the spacecraft-level tests had some collateral
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benefits. For example, some of the tests gave us
the opportunity to try out actual flight command
sequences. Numerous cases of inappropriate or omitted
commands and incorrect timing between commands
were found. In a few instances, the command planner
selected the proper command, but the command trans-
lation software generated the wrong sequence of bits.
One such error caused the least significant bits of cer-
tain floating point numbers to be incorrectly encoded
in command sequences. These subtle errors could have
been easily overlooked if not for the realism provided
by the testbed simulator.

The training of mission operators was another col-
lateral benefit of all this testing. The thermal vacuum
test, in particular, provided an excellent training oppor-
tunity. During this test, the entire spacecraft was en-
closed in a chamber capable of creating the environ-
mental conditions that the satellite will experience in
space, namely, vacuum and temperature extremes. The
test was conducted under realistic, on-orbit conditions,
for example, around-the-clock operation, simulated
station passes, battery charging and discharging, and
temperature cycling. Throughout this test, the testbed
simulator controlled the stimulators for the horizon
scanners, magnetometer, Sun sensor, and battery charg-
ing electronics, and provided simulated star camera,
gyro, wheel speed, solar panel position, and X-band
antenna position data to the AP. These tests gave
operations personnel the chance to see realistic telem-
etry on their display terminals. They also learned how
to recognize and respond to anomalies.

FUTURE USES

Postlaunch Software Development
The MSX operations plan requires the testbed sim-

ulator laboratory (the testbed and the engineering
models of the AP and TP) to be maintained for the
duration of the mission. Should a tracking anomaly
occur on orbit, it will be possible to reconstruct the
event in the laboratory and then experiment until the
cause of the anomaly is isolated. If a “work-around” is
proposed to avoid the anomaly, test and verification of
the work-around procedure will be performed in the
laboratory before it is attempted on the spacecraft.

This capability is not restricted to tracking anoma-
lies, but applies to various other spacecraft anomalies.
In many missions, a hardware failure causes the space-
craft operators to come up with creative solutions to
accomplish a goal without the failed component. The
testbed simulator laboratory provides a setting for safely
experimenting with candidate solutions.

Should a flight software change be proposed, either
in response to an anomaly or a change in requirements,
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the software developers will use the testbed simulator
to test and validate the changed software, and then run
an extensive set of regression tests to ensure that the
change has not inadvertently introduced an error else-
where in the software. This is the same regression test
suite that we already used to validate the final pre-
launch flight software programs.

Event Rehearsals
In addition to its use in support of flight software

maintenance, the testbed simulator has an evolving
role in support of operations planners. The analysts
tasked with the translation of experimenters’ requests
into a scheduled data collection event on the spacecraft
have a variety of tools that they routinely use during
the planning process. The development of software to
convert their planned sequences of spacecraft com-
mands into the format required for testbed simulator
scenarios makes it possible to rehearse the planned
event on the testbed. Although such rehearsals are not
practical for every event due to the real-time nature of
the testbed simulator (What value is a 24-hour weather
forecast if it takes 24 hours to generate it?), it is useful
to have this capability for use with certain high-value
or particularly complicated events. Operations planners
made extensive use of this rehearsal capability during
prelaunch event planning.

CONCLUSION
The investment made in developing the testbed sim-

ulator has helped to ensure that the MSX will meet its
172 JOH
tracking specifications. This investment will continue
to pay dividends throughout the mission life as the
testbed simulator supports anomaly investigation, flight
software maintenance, and event planning.
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