DALE E. OLSEN, NORMAN ANSLEY, IAN E. FELDBERG, JOHN C. HARRIS, and JOHN A. CRISTION

RECENT DEVELOPMENTS IN POLYGRAPH TECHNOLOGY

Are polygraphs able to detect lies? If so, how well? How do they work? This article provides background information on polygraph applications, accuracy, test scoring, and test formats. The Applied Physics Laboratory is using statistical techniques and personal computers in an effort to improve the scoring of polygraph data. Techniques for discriminating truth from deception are described. The results of an application of the first algorithm developed at APL are provided and compared with other techniques currently in use. The Laboratory is also developing a personal computer system for converting polygraph tracings on paper charts into digitized data suitable for analysis by the developing scoring methods.

INTRODUCTION

On any given day, more than a thousand suspects in criminal investigations will voluntarily take polygraph examinations in the hope of being cleared. The analyses performed are based on the assumption that, when deception is attempted, small changes in human physiology occur as a result of either cognitive processing or emotional stress. Tests are administered by more than two thousand trained and experienced examiners in the United States, Canada, Japan, India, Israel, Saudi Arabia, Turkey, and many other nations. Somewhere between 40% and 60% of those who take the tests will be cleared on the basis of an examiner's decision of "No deception indicated." For those who are not cleared, the criminal investigative process will continue. Polygraphs affect the lives of many people, from those who are the victims of criminals to those who are suspects.

A new project at APL is concerned with improving the methods used to analyze polygraph data. Under contract with a government defense agency, APL has a research program to develop statistical methods to analyze digitized physiological signals received and processed by a polygraph instrument. In addition, to bridge the gap between traditional methods and the implementation of new technology, APL is developing an optical scanner system for converting standard polygraph pen tracings into a digital format that will permit us to apply our methods to analyze the data recorded on paper charts. Standard recording devices currently do not produce digitized physiological signals.

The use of polygraphs gives rise to many questions and concerns, the most basic of which is, Do they work? This article provides background information on polygraph technology, including applications, test formats, and polygraph accuracy. Analytic methods for discriminating truth from deception are described, and the results of applying the first APL-developed method are reported. The digitization of paper records presents an interesting challenge; this article describes a method of solution.

BACKGROUND

Polygraph Applications

The primary use of the polygraph test is during the investigative stage of the criminal justice process, but polygraph results are sometimes presented in court as evidence, and polygraph tests do play a small role in parole and probation supervision. In addition to the significant role in criminal justice, polygraph examinations are also used for national security, intelligence, and counterintelligence activities of the United States and foreign nations. Thousands of federal screening examinations are used annually to grant or deny clearance and access to sensitive operations and material.

Test Formats

A polygraph test format is an ordered combination of relevant questions about an issue, control questions that provide physiological responses for comparison, and irrelevant (or neutral) questions that also provide responses or the lack of responses for comparison, or act as a buffer. All questions asked during a polygraph test are reviewed and discussed with the examinee and reworded when necessary to assure understanding, accommodate partial admissions, and present a dichotomy answerable with a definite "yes" or "no." During the test, the questions are delivered in a monotone voice to avoid emphasis on one question or another.

Polygraph examiners have a choice of several standard test formats. The examiner's decision will be based on test objectives, experience, and training. Three classes of test formats are used: control question tests, concealed knowledge tests, and relevant–irrelevant tests. Each format consists of a prescribed series of questions that together make up a chart. Two to five charts make up a test. Control Question Tests. The majority of criminal investigation tests are conducted by using one of the possible formats of control question tests. These tests consist of a series of control, relevant, and irrelevant questions.
Each question series is repeated two to five times, and each series produces a separate chart. An example of a relevant question is, Did you embezzle any of the missing $12,000? For this test format, the corresponding control questions will be about stealing; the questions are threatening to the subject but are not about the theft at issue. An example is, Before you were employed at this bank, did you ever steal money or property from an employer? The control and relevant questions will be compared. Irrelevant questions will also be asked that will probably be answered truthfully, are not stressful, and act as buffers. Do you reside in Maryland? or Do they call you Jim? are examples of irrelevant questions.

Concealed Knowledge Tests. If the police have facts about a crime that have not become public or common knowledge (facts that would be known to the guilty subject but not to the innocent), they will use a concealed knowledge test.

In a murder case in Maryland, newspapers had revealed only that a woman was found murdered in a motel room. All suspects denied knowledge of the details of her death. The concealed knowledge test format was used in the polygraphs given. The focus was on the method of the murder. The first series comprised four questions: Was Sally stabbed? Was Sally strangled? Was Sally shot? Was Sally poisoned? After three repetitions, each in the same sequence but recorded on separate charts, the examinee was told that the victim was strangled. The second series tested the examinee for concealed knowledge of the means of strangulation. It included six questions: Was Sally strangled with a heavy rope? Was Sally strangled with a jewelry chain? Was Sally strangled with a man’s belt? Was Sally strangled with a venetian blind cord? Was Sally strangled with a woman’s stocking? Was Sally strangled with a lamp cord? This series was repeated three times on separate charts.

To the first two suspects, the questions had equal emotional value because they did not know before the test which answer was correct. The third examinee had good reason to conceal knowledge of the details, because to admit knowing details would implicate him in the crime. Consequently, his physiological responses were much greater to the question about strangling in the first series and to strangling with a venetian blind cord in the second. After the test, he confessed (personal communication, W. T. Travers, 1979).

In another version of the concealed knowledge test, the examiner does not know the critical item but believes the examinee does know. In one kidnapping case, the examinee was the prime suspect. The examiner used a map marked in grids and asked the examinee where the bodies were buried, specifying each grid location in series. When a section was identified on the basis of the subject’s reactions, a map of that section, also divided into grids, was used to narrow the focus. In that manner, the location of the bodies was revealed. This type of test is also used to locate stolen vehicles, money, and other goods, as well as persons in hiding.

Relevant–Irrelevant Tests. A relevant–irrelevant test differs from a control question test in several ways. It has few, if any, control questions on each chart, the sequence of questions usually varies from chart to chart, and the amplitude of reactions to relevant questions is not compared with the amplitude of reactions to the control questions. This type of test is widely used for multiple-issue testing, such as that used for commercial and counterintelligence screening.

Physiological Measures

Regardless of the test format used, three physiological measurements are normally recorded:

1. Volumetric measures taken from the upper arm: A standard blood pressure cuff (see Fig. 1) is placed on the arm over the brachial artery and inflated to about 60 mm Hg pressure for an indirect measure of blood pressure variables, together with the strength and rate of pulsation from the heart.
2. Respiratory measures taken from expansion and contraction of the thoracic and abdominal areas using rubber tubes placed around the subject (see Fig. 1): The resulting data are closely related to the amount of gaseous exchange.
3. Skin conductivity (or resistance) measures of cutaneous activity, largely influenced by eccrine (sweat) gland activity: Electrodes are attached to two fingers of the same hand (see Fig. 2), and a galvanometer records the measured skin conductance or resistance to an electrical current.

Accuracy of Polygraph Decisions

Real Cases. When some charts are scored, the examiner cannot make a clear decision and must score the chart as inconclusive. From analyzing charts where decisions were made, a defense agency completed a report on polygraph validity based on all the studies of real cases conducted since 1980. Examiner decisions were compared with other results such as confessions, evidence, and judicial disposition. Ten studies, which considered the outcome of 2,042 cases, were reviewed. It must be

Figure 1. Measuring a subject’s cardiovascular and respiratory responses.
pointed out, however, that studies of real polygraph tests are necessarily flawed by the fact that the guilt or innocence of the subject must be determined, and correct calls are more easily confirmed than incorrect calls. For example, if the test shows that the subject is guilty, the examiner will often obtain a confession. Thus, tests scored as guilty are more often confirmed if the subject is guilty. If the test shows that the subject is innocent, other people may be investigated. If another person is found to be guilty, the test becomes confirmed innocent. With this in mind, and assuming that every disagreement was a polygraph error, the results indicate an accuracy (or validity) of 98% for the 2,042 confirmed cases. For deceptive cases, the accuracy was also 98%, and for non-deceptive cases, 97%.

Mock-crime studies, such as the one described later in this article, generally have correct calls about 85% of the time. Because of the nature of mock-crime studies, it is believed that real-crime tests are scored as accurately or more accurately. The accuracy of polygraph decisions for real cases, then, is somewhere between the 85% demonstrated with mock-crime studies and the 98% demonstrated with confirmed charts.

Special Case: Psychopathic Liars. It is widely believed that psychopathic liars can beat a polygraph test because they are not bothered by lying. Psychophysicists who have studied psychopaths believe they are especially reactive, at least in electrodermal responding. 6,7 All of the studies focused on this issue indicate that the detection rates do not differ significantly for psychopaths and nonpsychopaths. 8-12

AUTOMATIC SCORING

In 1973, Kubis 13 presented the concept of quantifying polygraph patterns for computer analysis. Later, analysts 14 at the psychology laboratory at the University of Utah began to develop a computerized scoring algorithm, employing a few of the many variables available in physiological patterns. Their research suggested that the most useful measures were the amplitude and duration of the electrodermal response, the rise and fall of the cardiovascular pattern (related to blood pressure changes), and the length of the respiration tracing within a fixed time sequence. 15 These responses were incorporated into a special-purpose computer analytic system, marketed under the name CAPS (Computer Assisted Polygraph System). 14,16

A novel aspect of the CAPS system is the introduction of decisions based on a probability figure. For example, deception might be indicated with a probability of 0.89. The probabilities were developed by using both laboratory and field polygraph data, the latter being tests conducted by the U.S. Secret Service that were confirmed by confession. 16 Two other features of the CAPS system are its ability to rank-order reactions and its analytic system, which gives the greatest weight to electrodermal responses, less to respiratory responses, and the least to cardiovascular responses. Before this work, scoring systems gave equal weight to responses from each of the three physiological recordings. A deficiency of the CAPS system is that the data are taken from a field polygraph instrument that is often nonlinear, and the analog-to-digital conversion (ADC) is performed after some processing. New instruments will reduce distortions in the data by performing the ADC before any processing, displaying, or printing.

In 1989, Axciton Systems, Inc. of Houston, Texas, developed a new commercial computerized polygraph (see Fig. 3). This system features a computer that processes the physiological signals directly, scrolls the physiological data across a screen in real time during testing, provides for a later printout, records the test on a hard drive or a floppy disk, and provides a system for ranking subject responses. The system has been field tested with real cases in a Texas police department and is user friendly. The charts, printed after the test, look like standard polygraph charts and can be hand-scored by traditional methods. The availability of the Axciton system and the probability of other new computerized polygraphs becoming available make the APL research timely, because instruments on the market will be able to incorporate the results of our work.

RESEARCH AT APL

The development of an automatic scoring algorithm for use with new computerized data collection systems is the focus of our research. The algorithm will be able to use more sophisticated techniques than human examiners, should be more accurate (higher validity), and will ensure consistency from case to case. It is expected that the accuracy will improve as the automatic scoring techniques evolve.

The first algorithm developed uses data collected with the CAPS system and is applicable for the one control question format used to generate the data. Future algorithms will address different question formats and will use digitized data that have been recovered from paper charts. Most polygraph data exist only on charts and will continue to be collected as tracings on paper for much of

Figure 2. Measuring skin conductivity or resistance using a galvanometer.
the remainder of this century. As a second task, APL is de­
veloping a system to scan the paper charts and convert
these time series into digitized data to be used for
specialized algorithm development and evaluation. Since
information is lost when the pens transcribe the signals
on paper charts, the data from the scanner will be scored
differently.

Algorithm Development for Automatic Scoring

We are using an empirical approach for the develop­
ment of an algorithm. Data are collected from both de­
deceptive and nondeceptive subjects. The study of the
physiological measures requires using digitized data
from laboratory studies in which we know whether the
subject is telling the truth or being deceptive. Ultimately,
the scoring algorithm must be enhanced and validated by
using data from real polygraph tests in which the deci­
sion of truth or deception has been verified by indepen­
dent means.

The output of each recording channel (physiological
measurements) is represented by a time series of values.
Features (also referred to here as parameters) of the time
series, which characterize the responses to questions, are
studied to determine which can be used to distinguish de­
deceptive and nondeceptive subjects. An example will help
to explain the method. Figures 4 and 5 are samples of
charts from a mock-crime study. The figures can be used
to see how characteristics of skin conductivity are used
to detect deception. The subject may be telling the truth
or lying about having seen a psychologist, falsifying an
employment application, or stealing a watch. Notice that
the skin conductivity increases when the subject is asked
about the watch. In fact, the subject did steal the watch.
The rise is associated with deception and can be charac­
terized by a rapid increase in the amplitude of skin con­
ductivity. (The skin conductivity tracing is plotted 5 to 7
seconds behind the other tracings to reduce pen colli­
sions.) If the pattern of increases is repeated over many
cases, it suggests that the change in skin conductivity
amplitude, after a question is asked, may be a valuable
parameter in discriminating between truth and deception.

Many different features can be used to characterize the
time series of responses to the questions. Once a list of fea­
tures is chosen, it is necessary to select the ones that best
separate deceptive and nondeceptive subjects and to de­
develop a discrimination rule based on the parameters. To be­
gin the efforts, polygraph data are required.

Training Data from Mock Crimes. To acquire data for
developing an algorithm, a pool of volunteers is selected.
Half are randomly chosen and asked to commit a mock
crime. All of the volunteers then take a polygraph test,
and all deny committing the crime. The polygraph ex­
aminers have no knowledge of the guilt of the subjects.
They score each test as inconclusive, deceptive, or non­
deceptive. Data collected in this type of experimental
setting are often used to evaluate different polygraph tech­
niques. Although many mock-crime experiments have
been performed, few have produced digitized data suit­
able for use in developing an automatic scoring system.
Suitable data are available, however, from two experi­
ments. One of these data sets has been used to develop an
algorithm.

Data from mock-crime studies have the advantage of
a well-established knowledge of which subjects are at­
temptsing deception. The examiners, however, typically
provide more inconclusive and incorrect results for mock
crimes than they do for real, verified criminal cases. One
possible explanation is that the control questions regard­
ing an individual's character may be more of a threat to
the subject than the relevant question concerning a mock
crime. As a result, a guilty person may be scored as in­
conclusive or nondeceptive. For these mock crimes, the
threat to the person during a relevant question is substan­
tially diminished, and the reactions being measured are
more easily overcome by physiological reactions not re­
lated to the attempted deception (low signal-to-noise ra­
tio). Even so, polygraph tests for mock-crime studies
usually produce correct conclusions.

Figure 3. Demonstration of a poly­
graph examination using the Axciton
computerized polygraph system.
Removing Artifacts. Even when data are collected in a laboratory setting, artifacts are present. Artifacts, or data distortions, are often the result of a data collection problem. Figure 6 provides examples of two types of problems: centering artifacts and a clipped series. A centering artifact occurs when the examiner adjusts the polygraph instrument, and a clipped series occurs when the data exceed the dynamic range of the ADC. Problems associated with these and other artifacts are being addressed.

Characterizing the Response. When this project started, the only digitized data available were provided by the Department of Defense Polygraph Institute at Fort McClellan, Alabama. The data consisted of a set of parameters produced by CAPS. As a result, the initial work to develop a discrimination rule has been based only on the features selected by CAPS. This system characterizes each blood pressure response and each skin conductivity response by using twenty parameters, and it characterizes each of the two respiration responses by using only the tracing length for a 10-s period. The twenty parameters characterizing blood pressure and skin conductivity consist of various measures of the area under the response curve; times relating response onset to peak amplitude, or recovery; rise and recovery rates; and the tracing length for a 20-s period.

These parameters characterize the data sufficiently to detect deception as well as human examiners do. Other parameters should be investigated. The APL researchers plan to look at the time-series history just before the question to predict the physiological measurements that would be expected if the subject were not deceptive. This sort of prediction could be used to establish a better baseline for computing parameters such as the area under the curve. Individual characteristics will also be treated.
when calculating parameters. For example, some individuals react to questions immediately, whereas others require a few seconds. Reaction-time information is available from the data and should be considered when characterizing the responses. This type of information is used by human examiners but not by the CAPS system.

Other types of parameters are not easily evaluated by the human examiner. Frequency information is nearly impossible to evaluate from paper tracings but is easily obtained by using a computer. Detrending algorithms can be used before the parameters are calculated to remove nominal physiological changes with time. Since algorithms for discrimination studies (neural networks, discriminant analysis, and logit analysis) all provide reasonable discrimination rules, we expect that the biggest improvements in the scoring of the standard measurements will come from a careful development of characterizing parameters.

From the four basic channels of information, more than one hundred different characterizations of the physiological response to a question will eventually be evaluated to find the best subset for discriminating between truth and attempted deception. The vector of characteristics is called a feature vector and is computed for each question. We have not yet described how to select the most useful elements of the vector of characteristics and how to combine them to provide a probability of deception.

Methodologies for Discrimination. Three feature-vector-based methods for discriminating between deceptive and nondeceptive subjects have been considered. The first, the use of artificial neural networks, requires training a network by using feature vectors as input and zero-to-one target (output) vectors to separate innocent and deceptive subjects. Once the network has been trained, new feature vectors produce a number between zero and one. A value near zero indicates that the subject was nondeceptive, and a value near one indicates that the subject attempted deception. This approach produces a useful solution, but it does not provide a probability of deception or clear information about which feature-vector elements are statistically significant, and it does not offer the insights that other methods do. Nevertheless, this approach provides a rich modeling capability and is being investigated.

A second method, statistical discriminant analysis (used by the CAPS system\(^{16}\)), usually assumes the features can be modeled using a normal probability distribution. During training, statistical models for feature vectors from both deceptive and nondeceptive subjects are built. The method uses these models to compute both the likelihood that a subject is deceptive and the likelihood that the same subject is nondeceptive, and then it makes a decision on the basis of which is more likely. Another application of statistical discriminant analysis, involving kernel estimation, has been applied by Dustin (personal communication, 1990) to polygraph analysis by using techniques described by Priebe and Marchette.\(^{17}\) This application does not assume normality of feature-vector elements and has provided promising results.

We chose a third method, known as logit regression, for the first algorithm developed at APL. This method provides insights into how the algorithm works. For example, it provides information about how the different channels of data are weighted in making a decision. It allows the investigators to easily explore many ideas and examine factors such as age and sex. In a manner similar to that of linear regression, logit regression selects the best elements of the feature vector to incorporate into the algorithm. It does this while considering the elements already selected for the models, making sure that new elements do not contain essentially the same information. This method does not assume that the feature vectors have a normal distribution.

Logistic Regression. Before explaining logit regression, linear regression will be reviewed briefly. For selected values of \(x_1, x_2, \ldots, x_p\), a value \(y\) is measured. It is assumed that, except for noise, a linear relationship exists between the \(x_i\) values and \(y\); that is,

\[
y = a_0 + a_1x_1 + \ldots + a_px_p + \text{noise}.
\]

![Figure 6. Sample artifacts present on a polygraph chart.](image-url)
For a series of measured \(y \) values, corresponding to different values of \(x_i \)'s, the coefficients, \(a_i \)'s, are selected to minimize the squared difference between the observed \(y \) and that predicted by using the model; that is, the \(a_i \)'s are selected to minimize

\[
\sum \left[y - (a_0 + a_1 x_1 + \ldots + a_p x_p) \right]^2
\]

for all the measured values of \(y \).

The \(x_i \)'s correspond to the feature-vector elements in this model. The \(y \)'s would have a value of one for deceptive subjects and zero otherwise. This model allows the use of substitute or additional functions of the feature-vector elements so that models such as

\[
y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_1^2 + a_4 x_1 x_2
\]

(1)

can be developed by letting \(x_3 = x_1^2 \) and \(x_4 = x_1 x_2 \). The right side of Equation 1 provides an estimate of the mean for \(y \) at given values of \(x \).

If linear regression were used to provide probabilities of deception, the model would produce probabilities greater than one and less than zero. The range of the linear model on the right of Equation 1 and the range of the odds on the left are mismatched. No valid probability interpretation exists. The odds (the ratio of the probability of nondeceptive to the probability of deceptive) range between 0 and \(\infty \). Since a linear model has the same range as the log of the odds, it is reasonable to consider a model of the form

\[
\text{log(odds)} = a_0 + a_1 x_1 + \ldots + a_p x_p
\]

The expected value of the log of the odds is more naturally modeled as linear than is the expected probability. This model, called the logit model, is well documented.\(^{18,19}\) The assumptions for this model are simple: the data \(y \)'s) are statistically independent, and the log of the odds ranges between \(-\infty\) and \(+\infty \). Since a linear model has the same range as the log of the odds, it is reasonable to consider a model of the form

\[
\text{score}_i = \log(\text{odds})_i = a_{i0} + a_{i1} x_{i1} + a_{i2} x_{i2} + \ldots + a_{ip} x_{ip}
\]

and where the \(x_{ij} \)'s correspond to the \(i \)th feature or parameter for each of the eleven questions.

Since there are forty-two CAPS parameters, this step provides, for each chart, forty-two estimated probabilities of deception, some of which provide similar or correlated information. The log(odds) scores for each parameter are put into a second logit model to determine which of the parameters can best be used for discrimina-
tion and to find the best combination of the scores; that is,

\[
\log(\text{odds}) = b_0 + b_1(\text{score}_1) + b_2(\text{score}_2) + \ldots + b_{42}(\text{score}_{42}).
\]

A stepwise logit procedure is used to find which score_i's (or parameter combination) can make a statistically significant contribution to the discrimination. If several score_i's provide similar information, only one will have a nonzero B_i coefficient. A parameter may at first appear to have little discriminating capability but may provide useful insights when used with other parameters. The stepwise procedure chooses a subset of statistically important parameters.

Finally, the log(odds)'s from each chart for a subject are averaged and converted to a probability of deception. For purposes of comparison with the examiner, subjects with probabilities between 0.45 and 0.55 are scored as inclusive.

Automatic Scoring Results

When all the test data from the sixty available subjects are used to estimate the coefficients \((a_i's \text{ and } b_i's)\) in the logit models, and the resulting algorithms are used to score these same subjects, fifty-nine of sixty are scored correctly. Training the algorithm (estimating the \(a_i's \text{ and } b_i's)\) and testing using the same data are not valid procedures. The algorithm essentially memorizes the data. Instead, all subjects but one are used for training, and the remaining one is used for testing. Then, the algorithm is again trained by using fifty-nine subjects, but this time a different subject is held out for testing. The process of training and testing is repeated sixty times; each time the test uses a different subject. This process is known as cross-validation and is used to arrive at the results provided in Table 2.

Since population characteristics for the sampled Fort Mc Clellan subjects may be different from those for other populations, it can be argued that an algorithm trained on this population should perform better for this population than other algorithms or standard procedures used by examiners for a more general population. Since the training data set is very small, however, the results are not expected to be as favorable as other methods. (The training can be influenced by a single subject.) The CAPS training is based on a larger data set containing both real and mock crimes. Another reason not to expect exceptional performance from this training stems from the difficulties with mock-crime data sets discussed earlier. Guilty subjects may be more threatened by control questions than relevant questions. Some subjects will even fall asleep during the test. An additional reason not to expect results better than those of other methodologies is that the parameters are limited to those provided by CAPS.

Table 2 provides the results for the mock-crime study used to train the algorithm and compares the cross-validated results with those of the CAPS system and standard scoring methods. The first APL algorithm was as accurate as the human examiners and, surprisingly, could remain so even while scoring the more difficult charts. It therefore produced a significantly smaller inconclusive rate. If, when using the new algorithm, probabilities between 0.30 and 0.70 are scored as inconclusive, the results are identical with those for CAPS.

The first attempt at developing an algorithm was limited by the small size of the training data set and
preselected parameters. New algorithms will examine many other parameters computed from recently provided and expected data. Some of the data will be from paper charts digitized with an APL-developed digitizer.

Digitizing Data on Paper Charts

As part of the work at APL, a polygraph digitizer is being developed that takes a paper polygraph chart as input and generates a computer file as output that can be analyzed with the algorithms described previously. Canon scanners were purchased, and the microprocessor control chip was modified so that very long charts (sometimes 9 ft) could be read. Software was developed to scan charts, convert them into raster image files, and store them on disks. These files can be processed with the digitizer software to convert them into meaningful time-series data to be scored by the APL system under development.

Considerations. One problem with digitizing data from paper polygraph charts involves the pens used to trace the data. They are mounted on pivots, so that if large responses are registered, the pen tracings can actually move backward (see Figs. 4 and 5) in time. The effect could be removed if the actual center of the curve (vertical location on the paper) could be found. Therefore, a software module was written that prompts the user to identify the center of each curve to digitize.

Another problem occurs when two traces cross each other on a chart (see Figs. 4 and 5). Any algorithm used to follow data from left to right will be confused when a trace can go in two or more directions. This problem was solved by using a variety of different image processing techniques. First, the traces are thinned by using a classic line-thinning algorithm described by Deutsch. In this process, each pixel of the digitized chart is compared with its neighbors to decide whether or not it is outside of a boundary. If so, it is deleted. This process continues until the skeleton is only one pixel wide at all points. A line-following algorithm was written that traverses this skeleton and converts it into data curves for use with the analysis program.

Regression-like techniques are used to predict where a curve will appear in the future. The predicted direction lags the actual direction in which the curve moves and is less subject to variabilities resulting from the line thinning. When two traces cross, the thinned line branches off in two directions. The program needs only to choose which direction the curve is likely to take. Because the prediction is less subject to anomalies in a particular trace, the program makes a reasonable choice when selecting which of two lines to follow.

Digitization System. The digitization system requires some user intervention. In the future, this prototype will be developed into a system that will require less intervention and will digitize the large majority of polygraph charts, independently of their source. The user will be able to provide chart annotations, grid markings, adjustment and question markings, and a host of other polygraph-specific information.

The New Polygraph Analysis System

A significant effort and an important part of the APL project is the development of a system for entering, editing, displaying, and printing data. On paper charts, tracings cross each other and trend up or down. Pens often hit stops or are reset. The resulting discontinuities in the data make the charts difficult to score. Figure 7 provides an example of a chart with the normal line crossings and pen adjustments. With computer-generated charts, these difficulties can be eliminated. Long-term trends, which make pen adjustments necessary, are removed with a detrending algorithm. Data input definitions can be constructed to allow a range of values to accommodate any reasonable measurements. Figure 8 provides a view of the data shown in Figure 7 after the APL-developed system has detrended them and removed pen artifacts. These data were digitized by using another system but contained the expected chart artifacts. The pen used to plot skin conductivity is made longer than the others to reduce the number of pen collisions. This difference creates a 7-s delay in the tracing and an added complication for the examiner trying to score charts. This delay has been removed from the computer image in Figure 8.

FUTURE WORK

Most of our future efforts in scoring the standard physiological measurements are apparent and have been described. The Laboratory will soon have digitized data from law enforcement agencies for use in developing new algorithms. These data will help in the selection of new features and the treatment of different test formats. In the longer term, we hope to investigate other physiological measurements. Evoked potentials from electroencephalograms, muscle movements from electromyographs, QRS waves (a diagnostic feature) from electrocardiograms, eye shifts and saccadic eye movement, and pupillometry have all been shown to have diagnostic value for lie detection in a laboratory setting.

CONCLUSION

In normal conversation, we continually evaluate people’s convictions in what they tell us by voice intonations, eye movements, gestures, and general “body-English.” Attempted deception by children is often obvious from observing these mannerisms. A jury cannot help but evaluate witnesses and the accused by watching their behavior. In some sense, jurors perform their own ad hoc lie-detection tests.

A polygraph test monitors physiological mannerisms in a controlled environment. Tests are conducted by a knowledgeable examiner asking carefully worded questions. Whether or not polygraphs are measuring lies or emotional responses, they provide a signal whose characteristics can be used to detect attempted deception. Researchers at APL are using scientific methods to determine which characteristics are most important and how they should be combined to provide the best possible estimate of the probability of deception. Since more than one thousand people each day take polygraph tests, our efforts to improve these tests could affect many lives by keeping criminals off the street, monitoring probation, preventing the conviction of innocent people, and improving our national security.
Figure 7. Sample polygraph data on a chart as they appear to the examiner.

Figure 8. The same polygraph data shown in Figure 7 as they appear to the examiner on a video screen.

REFERENCES

ACKNOWLEDGMENTS: We gratefully acknowledge the research staff at the Department of Defense Polygraph Institute at Ft. McClellan, Alabama, for collecting the mock-crime data, for supplying the CAPS parameters, and for providing technical support.

THE AUTHORS

DALE E. OLSEN received his A.B. degree in mathematics from California State University, Chico, in 1965. After working as a research engineer for the Boeing Company for three years, he returned to school and earned an M.S. and Ph.D in statistics from Oregon State University. Dr. Olsen joined APL in 1973 and began developing and applying statistical methodology in the analysis of the reliability and accuracy of weapon systems. In 1988, he received Laboratory funding to support work in the analysis of electroencephalogram data. Government interest in this work resulted in funding for the polygraph scoring algorithm. Currently, Dr. Olsen is an Assistant Group Supervisor and a project manager at APL. He is also a member of the Principal Professional Staff.

NORMAN ANSLEY received an A.B. degree from San Jose State College in 1950 and received his basic polygraph training at the Keeler Polygraph Institute in 1951. He also attended graduate school at Stanford University and The University of Maryland. Mr. Ansley is employed by the Department of Defense. He edits the quarterly journal *Polygraph* and is the author and editor of several books and more than fifty journal articles on the polygraph and other forms of lie detection. He is the recipient of the American Polygraph Association's John E. Reid Award for his contributions to polygraph research and teaching and the Leonarde Keeler Award for long and distinguished service to the polygraph profession.

IAN E. FELDBERG received a B.S. degree in electrical engineering and computer science from The Johns Hopkins University in 1984 and an M.S. in computer science from Johns Hopkins in 1987, specializing in computer graphics and computer vision. Since joining APL in 1984, he has contributed to a variety of software projects. In 1989, Mr. Feldberg joined the Computer Engineering Group of the Technical Services Department. Since then, he has worked primarily on a desktop system for designing application-specific integrated circuits and a system for digitizing paper polygraph charts for digital analysis.

JOHN C. HARRIS received a B.A. in applied statistics from the George Washington University in 1980. Since then, he has been a resident consultant with the Strategic Systems Department of APL, principally providing software support for the Trident I and Trident II accuracy analysis programs. In that role, he has developed several high-performance subroutine libraries for linear algebraic, database, and user interface functions.

JOHN A. CRISTION received a B.S. degree in electrical engineering from Drexel University in 1986 and is pursuing an M.S. degree in electrical engineering from The Johns Hopkins University G.W.C. Whiting School of Engineering. He is a member of the Associate Professional Staff at APL and works in the Signal Processing Group of the Strategic Systems Department. Mr. Cristion is currently working on a system for automatic polygraph scoring, an Independent Research and Development (IRAD) effort to develop an automated seizure detection algorithm, and an IRAD effort to study the use of neural networks in nonlinear adaptive controllers.