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Summary

industry Challenges

In addition to software development, the greatest challenge in the cost estimating and economic analysis 
disciplines has long been developing a viable method for estimating conceptual-stage technology and sys-
tem development. The industry, government, and institutional sectors have lacked effective methods and 
historical data with which to produce reliable cost and schedule estimates in this early-life-cycle phase. 
This uncertainty in estimating and forecasting can often lead to vastly inaccurate budgets and expected 
economic performance. As a result, cost overruns have long been a significant issue and concern across 
both government and industry, especially in highly technical environments traversed by the Department 
of Defense, the intelligence community, and civil agencies such as NASA. A range of realities drive these 
estimating difficulties, and major acquisition policy reforms and methodology changes over the years have 
improved general outcomes. At the same time, other factors, such as rapid development and acquisition 
strategies and techniques, have increased estimating challenges. Accurate technology and system develop-
ment estimating has therefore remained elusive, except for in focused and mature technology areas where 
extensive technical, performance, and cost data are available.

First, the nature of new or immature technologies inherently suggests a lack of truly analogous systems 
from which to generate a basis of estimate. Traditional micro-parametric estimating models are also driven 
by fundamental engineering, design, or performance criteria that are generally unavailable in early design 
and development stages. Furthermore, these models typically focus on narrow technologies, functional 
areas, or environments and are often based on limited historical project data. These challenges are further 
exacerbated by the shortage of data due to the protected nature of development efforts, which often contain 
proprietary intellectual property, sensitive cost data, or classified information.

methodology and results

The research and results in this analysis overcome these formidable estimating difficulties through a com-
prehensive solution producing viable parametric cost models leveraging readily available metrics that reflect 
a full complement of primary technical, cost, and risk drivers and that can be applied across technology 
areas. This significantly magnifies and refines an initial 2017 investigation1 that developed first-generation 
parametric cost and schedule models based on technology readiness level (TRL) and system hierarchy 
level (SHL) macro-parameters. The second-generation cost models developed in this extended analysis 
augment the base TRL improvement level (TIL) and SHL independent predictors with critical comple-
mentary macro-parameters, including research and development degree of difficulty (RD3) and technol-
ogy area (TA). This vastly expands and improves the available research, development, test, and evaluation 
(RDT&E) project landscape from a very rough twenty-five-data-point, two-parameter grid to a detailed 
four-dimensional high-resolution continuum of up to nine thousand possible SHL/TIL/RD3/TA project 
configurations across the four independent macro-parameters.

1 Alexander, “Parametric Cost and Schedule Modeling for Early Technology Development.”
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The two greatest underlying drivers of cost, schedule, and risk for essentially any technology or system 
development are measures of project scale and complexity. Including these key measures that are directly 
associated with system function, intricacy, level of integration, development difficulty, and level of integra-
tion greatly enhances the estimating methodology by reflecting a more diverse and complete set of under-
lying cost and risk drivers. Model fidelity is further advanced by probability-based Bayesian uncertainty 
distributions, custom fit to independent macro-parameter levels. In addition to these enhancements, lead-
ing methods to aggregate these composite macro-parameter measures for multi-technology programs and 
system development efforts are also presented.

Further extending estimating capabilities, a standard development framework was constructed with which 
total development estimates can be broken down into major constituent activities and milestones for invest-
ment analysis and budget planning. This framework is based on common technology and systems devel-
opment life-cycle stages, acquisition milestones, and standard research and development budget activities. 
A typical development cost profile is introduced relating cost expenditure levels with key acquisition mile-
stones and TRL benchmarks. This profile is woven into the estimating framework, providing a function to 
break down or extrapolate costs across the primary development processes. Finally, it is also leveraged to 
refine the monolithic TIL parametric costs with discrete TRL start to TRL end adjustment factors.

These improvements fundamentally expand and transform the capabilities of baseline development cost 
models, capturing a substantially broader perspective of essential cost attributes. Forecasting power and pre-
cision is improved extensively by up to three hundred and sixty times from a coarse two-dimensional plane 
to a four-dimensional high-definition topography with uncertainty distributions available for each project 
configuration. An example probability density function (PDF) plot with a cumulative probability density 
(CPD) percentile curve for just one of these project data points is provided in Figure S-1. Collectively, these 
advancements provide a comprehensive, integrated estimating solution set for conceptual-phase technol-
ogy and systems development.
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future Considerations

Federal agencies, research institutions, and industry technology leaders are beginning to more broadly 
endorse developing, measuring, and capturing standardized forms of macro-parameters to feed or inte-
grate model-based systems engineering (MBSE) capabilities and enhance project planning, estimating, 
and performance measurement. Several research papers referenced in this report also focus on the need to 
use readiness and integration measures starting early in the development process. System readiness level, 
integration readiness level, manufacturing readiness level, and programmatic readiness level are each asso-
ciated with various aspects of development maturity and system readiness. These measures all have poten-
tial to complement TRL-based macro-parametric forms of technology and system estimating. Complexity, 
as a primary cost driver, is affiliated with a variety of the underlying dimensions of TIL, SHL, RD3, and TA 
macro-parameters.

Although these parametric measures hold substantial promise to improve and advance development-phase 
estimating, budgeting, and economic analysis capabilities, more project-level cost and schedule information 
will be needed for them to reach their full potential in resource planning and investment decision-making. 
Government policy-makers, acquisition officials, and program executives have the opportunity to imple-
ment data reporting standards and collection mechanisms to feed comprehensive MBSE processes and 
tools like these parametric models across the system life cycle. Through institutions and resources such as 
the Office of the Secretary of Defense (OSD) Cost Assessment and Program Evaluation (CAPE) and their 
Cost Assessment Data Enterprise (CADE) repositories and the Defense Contract Management Agency 
(DCMA) earned value management (EVM) contractor reporting standards, normalized and sanitized pro-
gram life-cycle cost, schedule, and performance metrics can be captured to build MBSE databases large 
and diverse enough to support the full range of integrated life-cycle modeling capabilities.
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Background
Viable cost and schedule estimating methods in the 
conceptual stages of systems development primar-
ily involve analogous systems, macro-parametrics, 
and, to a lesser extent, micro-parametrics, as illus-
trated in Figure  1. Because of the general lack of 
analogous technologies; traditional technical, 
design, and performance micro-parameters; and 
related cost data, the research described in this 
report focused on estimating methodologies using 
macro-level predictor variables that are more read-
ily available in this immature development phase. 
A previous investigation into estimating early tech-
nology development produced a series of prelimi-
nary cost and schedule models.1 The two key input 
variables in the original analysis are the technology 
readiness level (TRL) improvement level (TIL)2 

1 Alexander, “Parametric Cost and Schedule Modeling for 
Early Technology Development.”
2 TIL  =  TRL improvement from project start to comple-
tion, or project TRL end state less the TRL state at start 
(TRLEnd – TRStart).

from project start to completion and system hier-
archy level (SHL) (refer to definitions in Appen-
dix  A). That research evaluated several hundred 
cost and schedule models traversing a full spec-
trum of forms, including a range of linear, non-
linear, simple and multiple regressions, and custom 
curve fits of the TIL and SHL independent predic-
tors. An example of one of the higher-performing 
first-generation cost models is presented in Appen-
dix B. This multiple-regression model is of the form 
Total Cost = f [ci + TIL + SHL]2, where ci represents 
the regression constant intercept term. Model 
mean cost output results for the five SHL × five TIL 
matrix are displayed in Table 1.3

Attributes of the two initial independent variables 
relate directly to technology scale and maturity 
but have limited affiliation to other common cost 
drivers, such as technology and system complexity, 

3 Project costs are from the NASA Technology Cost and 
Schedule Estimating (TCASE) tool, which defines total cost as 
total dollars required to complete a technology development 
project. This cost is provided by year and represents the total 
cost of labor, materials, travel, testing, equipment, and any 
needed facilities infrastructure investments made as part of the 
research project. Mean project costs shown in Table 1 are in 
fiscal year (FY) 2019 dollars (FY19$) converted from the initial 
analysis performed in FY15$.
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Figure 1. Estimating Methods over the System Life Cycle
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level of integration, development difficulty, and 
technology form or function. Therefore, one of 
the principal recommendations from the baseline 
analysis was to develop relationships for other pro-
spective factors that could round out the full field 
of key cost drivers to capture the missing portions 
of the development estimating domain.

As shown in Table 1, there are significant cost esca-
lations at both SHL 5 and TIL 5. Significant uncer-
tainty growth is also reflected at these levels in the 
probability distribution results produced in the 
prior analysis. Driving this behavior for SHL are 
factors such as the aggregation of major compo-
nents and subsystems and the exponential progres-
sion in the number of internal and external nodal 
interfaces and communication paths.4 This includes 
internal hardware and software system modifica-
tions and interfaces as well as external legacy plat-
forms or command, control, and communications 
system interfaces, each with potential nonlinear 
compound impacts on system complexity, engi-
neering, design, integration, test, and demonstra-
tion. Possibly the greatest factor driving this cost 
growth, however, is the extremely broad range in 
the scope of SHL level 5 (i.e., the system level) that 
encompasses very large system-of-systems pro-
grams. This phenomenon suggests that segregat-
ing an SHL 6 for systems-of-systems development 

4 Both of these relationships can grow at a rate approaching a 
theoretical limit of (n2 – n)/2, where n represents the number of 
nodes. This second-order function parallels the second-order 
regression model demonstrative of one of the fundamental 
drivers of cost.

projects may be appropriate and worthy of inves-
tigation. TIL  5 similarly implies large, long-term, 
complex technology and systems development 
where costs can accelerate sharply at peak levels.

Introduction
This research examines parameters and techniques 
to vastly extend the capabilities and overall utility 
of previously developed technology and systems 
development estimating methodologies.5 In-depth 
analysis resulted in significant improvements to the 
forecasting capacity, strength, precision, and reli-
ability of preliminary TIL- and SHL-based models. 
More powerful custom solutions were produced 
via an array of advancements, including:

(1) Augmentation of first-generation cost mod-
els with supplemental macro-parameters tai-
lored to reflect a more comprehensive set 
of common cost drivers. Original mod-
els are expanded from a limited twenty-five-
point, two-dimensional project space to a 
four-dimensional macro-parametric compos-
ite topography of up to nine thousand avail-
able data points.

(2) Development of enhanced uncertainty models 
reflecting substantially larger and more diverse 
project data sets.

5 Alexander, “Parametric Cost and Schedule Modeling for 
Early Technology Development.”

Table 1. SHL/TIL Multiple-Regression Model Cost Output

TIL
Mean Project Cost (Calendar Year 2019 Dollars)

SHL 1 SHL 2 SHL 3 SHL 4 SHL 5

1 1,465,102 1,669,178 2,667,033 4,880,072 201,910,868

2 2,690,085 2,964,254 4,255,307 6,963,384 214,308,183

3 4,736,434 5,098,058 6,754,939 10,080,685 230,294,450

4 15,391,037 16,037,575 18,886,263 24,224,271 286,362,944

5 173,836,568 175,993,723 185,161,369 201,168,389 685,592,966
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(3) Construction of a standard technology and 
systems development framework integrated 
with key development activities, processes, 
acquisition milestones, and TRL achievement.

(4) Building of historical development cost bench- 
marks tied to the standard framework 
milestones and TRLs that

(a) provide a method to segment total develop-
ment estimates into a full range of common 
research and development (R&D) stages, 
milestones, and activities; and

(b) refine uniform project TIL cost metrics with 
unique incremental TRL start (TRLStart) 
and end (TRLEnd) cost adjustment factors.

A variety of complementary independent macro- 
level predictors were assessed, and two complemen-
tary variables were selected to broaden and magnify 
the scope of limited baseline technology develop-
ment models. The chosen variables, R&D degree 
of difficulty (RD3) and technology area (TA), were 
examined, and estimating methods were explored 
to incorporate them into the analysis. Two primary 
techniques were identified, one involving formula-
tion of mean cost factors (MCFs) and an alternative 
employing geometric means. These methods united 
the additional parameters with the first-generation 
SHL/TIL models, markedly improving forecasting 
performance and uncertainty analysis.

A standard technology development framework with 
associated cost benchmarks was then constructed. 
Common high-level research, development, test, 
and evaluation (RDT&E) milestones from the 
Department of Defense (DoD) acquisition manage-
ment process and standard RDT&E budget activity 
(BA) category definitions were examined to develop 
a general development work breakdown structure 
(WBS). Cost estimating relationships aligned with 
the proposed development framework milestones 
and TRL achievement were then introduced based 
on an investigation of industry studies and histor-
ical R&D budget expenditure research. Research 

findings and historical budget metrics were collec-
tively employed to produce a “typical” R&D cost 
benchmark landscape mapped to critical acquisition 
milestones and TRLs. This profile is applied to cal-
culate and allocate costs for major elements of devel-
opment, generate cost factors to refine uniform TILs 
into specific TRL start and end states, and also serve 
as an alternative cost estimate validation method.

Expanded Parametric Data 
Investigation
To pursue the research objective, additional proj-
ect data from the NASA Technology Cost and 
Schedule Estimating (TCASE) database6 were 
examined; these data were used for the initial 
research described in the 2017 report.7 TCASE, 
a unique resource developed in early 2013 by the 
now-defunct NASA Headquarters Cost Analysis 
Division and SpaceWorks Enterprises, Inc., con-
sists of a database of nearly three thousand devel-
opment projects with integral user interface and 
query utility. The TCASE data were assessed for 
additional macro-parameters that would comple-
ment the preliminary TRL- and SHL-based inde-
pendent variables and strengthen and enhance the 
base model’s power and performance. Principal 
candidates identified from this exploration were 
the TCASE data fields for TA, RD3, key perfor-
mance parameters (KPPs), and advanced degree of 
difficulty (AD2). These parameters showed poten-
tial to augment predictors in the first-generation 
model since they relate more directly to comple-
mentary cost drivers such as system complexity, 
performance, functionality, reliability, level of inte-
gration, and development difficulty.

These four parameters were each screened for via-
bility as supplemental measures. AD2 resulted in 

6 Wallace and Schaffer, Technology Cost and Schedule Estima-
tion (TCASE) Milestone 4.
7 Alexander, “Parametric Cost and Schedule Modeling for 
Early Technology Development.”
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an insufficient population of projects to effectively 
apply. In addition, since the KPPs in TCASE are 
not standardized system attributes but rather man-
ual entries of factors and qualities often specific to 
a particular project or technology, they were elimi-
nated from contention.

Definitions for the remaining TA and RD3 project 
characteristics are found in Tables 2 and 3. NASA 
breaks down R&D projects into fifteen standard 
TA categories.8 Since NASA investigates and devel-
ops an extensive range of technologies going well 
beyond space and flight systems, it includes a diver-
sity of relevant platforms, applications, and systems 
spanning the scientific, military, intelligence, and 
commercial sectors. RD3 is the five-level qualitative 

8 Note that aeronautics, added to the original list as TA num-
ber (+) 1, has been labeled as TA15 for purposes of this analysis.

scale of the degree of difficulty anticipated for a 
development project to achieve R&D objectives 
and the probability of success over the lifetime of 
the project.

Assessing TCASE projects for TA and RD3 val-
ues revealed a broader, more diverse collection of 
project cost data than the data set included in the 
first-generation study. The original composite TIL 
and SHL parameter models contained two hun-
dred and twenty-one project records. TA categories 
were found in well over seventeen hundred proj-
ect records, and RD3 measures were discovered 
in over four hundred. Because both parameters 
had substantial sample sizes as candidate predic-
tor variables, associated project data containing 
each macro-parameter were extracted for analy-
sis. However, an insufficient number of projects 
containing all four independent-variable mea-
sures (i.e., TIL, SHL, RD3, and TA) was available to 
develop statistically significant multiple-regression 
models. Therefore, alternative techniques were 
explored to incorporate the additional parameters 
in the analysis; these techniques are presented in 
the next section.

Table 3. Research and Development Degree of 
Difficulty (RD3)

Level Definition

5 the degree of difficulty anticipated in achieving 
r&d objectives for this technology is so high that a 
fundamental breakthrough is required (psuccess = 0.2).

4 A very high degree of difficulty is anticipated in 
achieving r&d objectives for this technology 
(psuccess = 0.5).

3 A high degree of difficulty is anticipated in achieving 
r&d objectives for this technology (psuccess = 0.8).

2 A moderate degree of difficulty should be anticipated 
in achieving r&d objectives for this technology 
(psuccess = 0.9).

1 A very low degree of difficulty is anticipated in 
achieving r&d objectives for this technology 
(psuccess = 0.99).

Source: Mankins, Research & Development Degree of Difficulty 
(R&D3), 1.

Table 2. NASA Technology Areas (TAs)

No. Description

tA01 launch propulsion systems

tA02 in-space propulsion technologies

tA03 space power and energy storage

tA04 robotics, telerobotics, Autonomous systems

tA05 Communication and navigation

tA06 human health, life support, habitation systems

tA07 human exploration destination systems

tA08 science instruments, observatories, sensor systems

tA09 entry, descent, and landing systems

tA10 nanotechnology

tA11 modeling, simulation, information tech

tA12 materials, structures, mechanical systems, 
manufacturing 

tA13 ground and launch systems processing

tA14 thermal management systems

(+) 1 Aeronautics

Source: Cole et al., Technology Estimating, 48.

The list of space TAs and their supporting roadmaps were developed 
by NASA and reviewed and validated by the National Research 
Council.

Aeronautics, added to the original list as TA number (+) 1, has been 
labeled as TA15 for purposes of this analysis.
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RD3 and TA Data Analysis and Cost 
Modeling
TIL, SHL, and RD3 independent variables each 
use progressive ordinal category-level definitions 
based on qualitative assessments. Therefore, they 
are not designed to follow any particular linear 
or non linear continuous mathematical algorithm. 
However, this does not mean that the ordinal or 
categorical costs cannot observe natural mathemat-
ical functions. Instead, it means there is no need to 
fit overall continuous functions, since the ordinal 
inputs are discrete integer values and interim frac-
tional TRLs, SHLs, or RD3 values are both mean-
ingless and unnecessary.9 Similarly, TAs are not 
continuous variables but distinct independent cat-
egorical values that relate to cost through second-
ary effects such as system complexity and level of 
integration required.

RiskLognorm (35352239.0, 90532673.2)
RiskLogLogistic (0,12981440,1.2281)
RiskBurr12 (0,17230979,1.1433,1.2471)
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The y axis represents a relative scale of probability similar to 
the frequency densities for a histogram. The x axis represents 
units in US dollars in FY and level shown (this is typical for 
all curve fit and PDF charts).

Figure 2. Example Project Cost Curve 
Fit PDFs for RD3 = 2 (FY19$M)

9 For further discussion of ordinal, categorical, and other data 
types, refer to Appendix E.

First, the RD3 and TA data were statistically ana-
lyzed to assess the viability of each parameter as a 
complementary independent variable. This evalua-
tion included strong regression coefficient of deter-
mination (R2 adjusted) cost response in the 0.7 to 
0.8 range for RD3 and TA predictors (described 
in Appendix  C). Multicollinearity, residual auto-
correlation, and independence measures such as 
the Durbin Watson (DW) statistic, variance infla-
tion factor (VIF), and low correlation coefficients 
between predictor variables also produced favor-
able results, as demonstrated in Appendix D. After 
this analysis, tailored cost curve fits for each RD3 
ordinal level and selected TA categories were mod-
eled. Example curve fit probability density function 
(PDF) plots for RD3 = 2 are provided in Figure 2. 
The highest-performing, or “best fit,” of these func-
tions for RD3 = 2 resulting in a lognormal function 
is shown in Figure  3 with cumulative probability 
distribution (CPD) and markers for a typical plan-
ning range (fiftieth to eightieth percentile). The 
best-fit PDF for each RD3 level and TA category 
was selected based on statistical selection criteria 
and guidelines using Palisade’s @RISK software 
tool, as described in Appendix F.
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Figure 3. Project Cost Data Best-
Fit PDF for RD3 = 2 (FY19$M)
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The resulting RD3 cost curve PDFs are generally 
highly right-skewed distributions with large stan-
dard deviations and relatively wide dispersion 
around the central measures. This form of uncer-
tainty distribution is expected and appropriate for 
project resource, cost, and schedule data, especially 
for highly uncertain environments that accompany 
early-stage technology and systems development. 
This result is consistent with the US Government 
Accountability Office (GAO)-suggested uncer-
tainty behavior in conceptual-stage development 
shown in Figure 4,10 as well as with the right-skewed 
uncertainty distributions considered practical for 
cost estimating by the Joint Agency Cost Schedule 
Risk and Uncertainty Handbook (JACSRUH).11 
In this manner, Figure  3 effectively represents a 
probability-based vertical cross section of the GAO 
plot for RD3 = 2. Numerous reasons drive this phe-
nomenon, especially in conceptual stages, includ-
ing cost growth due to the large range of unknowns, 
significant potential for requirements creep, tech-
nology and design changes, operational threat and 
environment changes, or organizational or staffing 
changeover. Supply chain disruptions; budget or 
resource priority realignments; legal, regulatory, or 
political environment changes; and poor manage-
ment execution can also increase uncertainty and 
cost. Also underlying this uncertainty effect is the 
nature of cost—the bounded low end and the prin-
cipally unbounded upper end.

With this statistical information, methods  of 
aggregating the impact of the TA and RD3 
macro-parameters with the base-model SHL/TIL 
parametric cost models were explored. Two pri-
mary approaches were identified and assessed to 
incorporate the available RD3 and TA project data: 
(1)  a relative mean cost index (MCI) application 
method and (2) a technique merging the cost curve 

10 US Government Accountability Office, GAO Cost Estimat-
ing and Assessment Guide.
11 Naval Center for Cost Analysis, Joint Agency Cost Schedule 
Risk and Uncertainty Handbook.

fit functions of the various independent predictors 
using a geometric mean. Both methods have the 
advantage of tailoring individual functions fit to 
each ordinal level or category, eliminating the con-
straint of an arbitrary forcing function across sub-
jective ordinal parameter levels.

Concept 
re�nement gate

Cost estimate
baseline

Technology 
development gate

Start of program and 
start of system 

integration gate

 estimate is high                                                                                                                 Uncertainty is low

 Uncertainty about cost

Estimate becomes more certain as program progresses

Estimate tends to grow over time as risks are realized

Source: GAO

Figure 4. GAO System Acquisition Uncertainty

mCi method

This estimating technique both extends and refines 
the results from the preliminary base regres-
sion cost model by establishing cost relationships 
between the SHL/TIL model cost data and each of 
the corresponding RD3 and TA project data points. 
To accomplish this, the SHL/TIL project cost data 
and RD3 and TA project data sets were first evalu-
ated to establish that they are based on essentially 
equivalent mean project costs. In support of this 
premise, the three subject samples come from a 
common project population, each with sufficiently 
large and diverse sample sizes (SHL/TIL  =  221, 
RD3  =  425, TA  =  1,730) with some project com-
monality and similar sample means.12 Establishing 
a common sample equivalence, however, formally 
supports the practical application of a means-based 
cost relationship to model the relative impact of 

12 SHL/TIL vs. RD3 trimmed sample means fall within 0.25% 
of one another, and SHL/TIL vs. TA trimmed samples within 
1.4% (Appendix G).
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the additional RD3 and TA macro-parameters. 
Therefore, equivalence was tested using the widely 
accepted two one-sided t-tests (TOST) and Welch’s 
t-test (refer to the analysis in Appendix  G). This 
analysis demonstrated practical sample equiva-
lence between the overall SHL/TIL project data 
cost mean and the corresponding TA and RD3 proj-
ect data cost means.

MCI central point estimate values. MCI values 
relating the mean project costs for the RD3 levels 
and TA categories to the SHL/TIL sample project 
mean were developed and assessed to determine 
the relative impact of both parameters on project 
development costs. To calculate the MCIs, RD3 and 
TA project MCFs for each project were formulated. 
These cost adjustment factors are calculated as the 
ratio of the individual project cost to the SHL/TIL 
data set mean cost. The project data MCFs were 
then aggregated into summary statistical MCI 
measures (mean, median, standard deviation) for 
each RD3 ordinal level and TA nominal category, as 
shown in Tables 4 and 5. These MCIs can be applied 

directly (i.e., multiplied) to the first-generation 
SHL/TIL parametric cost model outputs to refine 
results for RD3 level and TA impacts.
As with the RD3 cost functions, the RD3 MCI sta-
tistics demonstrate a progressive incremental rela-
tionship with RD3 across all five levels. TA category 
MCIs similar to the TA cost curve fits in Appen-
dix C produced reasonable MCI values for ten of 
the fifteen TAs, with the remaining five TA catego-
ries yielding questionable results, exhibiting very 
low or high MCI values (TAs 5, 8, 9, 10, and 15). 
As noted in Appendix  C, these results are driven 

Table 5. TA Project Data MCI Statistics

TA
TA MCI

Mean Median Standard Deviation

01 launch propulsion systems 1.0940 0.0333 4.6480

02 in-space propulsion technologies 0.8300 0.0416 2.5320

03 space power and energy storage 0.7940 0.0296 5.0520

04 robotics, telerobotics, Autonomous systems 0.9603 0.4905 1.5894

05 Communication and navigation 0.3125 0.0360 0.8966

06 human health, life support, habitation systems 1.9740 0.5900 3.2410

07 human exploration destination systems 1.8098 0.9807 2.3102

08 science instruments, observatories, sensor systems 0.3310 0.0344 1.4660

09 entry, descent, and landing systems 13.2360 0.9640 24.8020

10 nanotechnology 0.1025 0.0149 0.2023

11 modeling, simulation, information tech 1.4730 0.0552 6.5440

12 materials, structures, mechanical systems, manufacturing 0.4390 0.0298 1.2510

13 ground and launch systems processing 1.8550 0.5010 4.6850

14 thermal management systems 0.7125 0.0981 1.3793

15 Aeronautics 0.2186 0.0146 0.6291

Table 4. RD3 Project Data MCI Statistics

RD3 Level
RD3 MCI

Mean Median Standard 
Deviation

1 0.4083 0.2352 0.4412

2 0.7759 0.3171 1.2473

3 1.0690 0.4770 2.6810

4 1.3620 0.6360 2.0470

5 1.9081 0.7929 1.7566



 THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY8

by the nature of the broad uniform TA categories 
spanning the full range of project scale, complexity, 
and maturity in combination with limited sample 
sizes and in some instances TA inter-categorical 
project size concentrations. Since small sample 
sizes and a lack of project data diversity can result 
in biased statistical measures, these TA categories 
were therefore discarded and not applied for esti-
mating purposes.

MCI uncertainty. In the same manner as for the 
RD3 and TA cost curve fit PDFs, MCI curve fits 
were also produced for both parameters, and the 
best-performing overall function fits were selected. 
The resulting RD3 level PDF @RISK functions are 
provided in Table 6. These PDFs are consistent with 
the lognormal, gamma, Weibull, and betaPERT 
PDFs commonly recommended by the JACSRUH13 
for estimating uncertainty. Continuing with the 
RD3 level 2 example, cost curve fits from Figures 2 
and 3, example MCI curve fit PDFs, and best-fit 
selection (i.e., lognorm) are provided in Figures 5 
and 6. Appendix  H also contains all TA and RD3 
and MCI PDF @RISK functions, including the cor-
responding plots for the other RD3 levels (1, 3, 4, 
and 5). Similar to the RD3 cost PDFs, the RD3 MCI 
PDFs produced highly right-skewed distributions 
with relatively large standard deviations. As noted 
previously, these types of uncertainty distributions 
are expected and common for cost data, especially 
with the high level of unknowns and cost growth 
risk in early development stages.

Similar to the TA project cost data, several TA cate-
gory MCIs also produced very large cost ranges and 
significant standard deviations, with most exhibit-
ing very large coefficients of variation (CVs). As 
previously noted, this result is primarily due to 
the fact that each TA category spans a full range 
of project scale, complexity, and maturity and does 
not reflect graduated measurement with respect to 
cost. Therefore, the TA MCI PDFs contribute little 

13 Naval Center for Cost Analysis, Joint Agency Cost Schedule 
Risk and Uncertainty Handbook.

value to uncertainty estimating in the analysis; they 
are shown in Table  H-2 for demonstration pur-
poses only and are not applied or recommended for 
modeling purposes. This does not create estimat-
ing limitations, however, since their central values 
still fall within reasonable ranges of overall popula-
tion means, and project cost uncertainties are more 
effectively captured by RD3 MCI PDFs. Attempting 
to model project cost uncertainty by compounding 
multiple perspectives (i.e., RD3 and TA segmenta-
tions) of the same costs is also invalid since that 
artificially amplifies or “double counts” the impact 
of those uncertainties. Therefore, to avoid distort-
ing cost risk, RD3 MCI PDFs alone are suitable and 

Table 6. RD3 MCI Curve Fit PDFs

RD3 PDF 
Type @RISK PDF Formula

1 gamma =riskgamma(0.59877,0.68192,riskname 
(“rd3 lvl 1 mCi”))

2 lognorm =risklognorm(0.84662,2.1681,riskname 
(“rd3 lvl 2 mCi”))

3 pearson6 =riskpearson6(1.1572,1.7721,0.71302, 
riskname(“rd3 lvl 3 mCi”))

4 gamma =riskgamma(0.71451,1.9062,riskname 
(“rd3 lvl 4 mCi”))

5 gamma =riskgamma(1.3688,1.394,riskname 
(“rd3 lvl 5 mCi”))
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Figure 5. Example MCI PDF Curve Fits for RD3 Level = 2
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effective for modeling total cost uncertainty. This 
approach provides central cost adjustment factors 
for applicable TA MCI categories but avoids redun-
dant uncertainties caused by overlaying expansive 
TA MCI PDFs on top of the tailored RD3 PDFs.

The resulting TA and RD3 MCI stats in concert 
with the RD3 uncertainty functions can therefore 
be applied directly to the range of first-generation 
SHL/TIL regression model variants developed in 
the initial research14 to fine-tune them for the influ-
ence of the additional RD3 and TA attributes.

geometric mean Curve fit method

The geometric mean curve fit method involves cre-
ating composite functions of the independent vari-
ables by merging the uncertainty distributions of 
the selected predictor variables for each parametric 
combination. The average impact of individual cus-
tom cost curve fits for each independent parameter 
level is estimated by taking the geometric mean of 
their expected values (i.e., the root of their prod-
uct) sampled from the individual PDFs in a Monte 
Carlo simulation. In a similar manner as the MCI 
technique, the best-performing SHL/TIL curve fits 

14 Alexander, “Parametric Cost and Schedule Modeling for 
Early Technology Development.”

from the baseline research were applied. For this 
method, RD3 and TA category project cost curve 
fits were applied instead of their respective static 
MCIs. Therefore, outputs represent the blended 
average of the three or four selected constituent 
macro-parameter groupings. This approach is fully 
delineated in Appendix I. However, results do not 
effectively capture the aggregate or compound 
impact of the independent parameters, and rela-
tively low project costs were predicted with rather 
large residuals versus project actuals. Therefore, 
this method was determined to be a nonviable 
option for estimating purposes and abandoned.

Cost Model Results
The MCI method enhances modeling capabilities, 
unifying the available RD3 and TA project MCF 
data with legacy SHL/TIL parametric regression 
and curve fit models. Estimating power and pre-
cision improve, and the overall development proj-
ect cost geometry grows extensively. Three- or 
four-parameter cost estimates can be generated 
as either multifaceted point estimates or compos-
ite functions with uncertainty. With a foundation 
of the highest-performing first-generation SHL/
TIL regression model (from Appendix B), the RD3 
and TA MCI values from Tables 4 and 5 and uncer-
tainty functions from Table  6 can be applied in 
product combinations to produce families of three- 
or four-parameter project estimates.

First, augmenting the base SHL/TIL models with 
just the RD3 independent parameter MCI means 
from Table  4 results in 125 model configurations 
(25 SHL/TIL × 5 RD3). The resulting project mean 
point estimates for these three-parameter mod-
els are displayed in Table  J-1. An overall contour 
three-dimensional surface plot for the array of this 
SHL/TIL/RD3 cost data is shown in Figure  7. As 
previously noted, each data point is a separate esti-
mate for a unique parametric model combination. 
The two-digit numbers on the x axis represent the 
25  distinct SHL/TIL-level (i.e., xy) combinations 
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Figure 6. Selected Best-Fit MCI PDF for RD3 Level = 2
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and not a continuous variable. For example, the 
value 42 represents a project with SHL  =  4 and 
TIL = 2 and falls in the range for 41–45. Therefore, 
this plot does not represent a continuous function, 
but rather serves as an illustration of the relative 
impact of the variables’ ranges on cost scale. Sim-
ilarly specific three-dimensional SHL/TIL  ×  RD3 
mean cost plots can be generated by TA. A detailed 
SHL/TIL/RD3 PDF model for each project config-
uration can be also be produced by substituting the 
RD3 MCI cost PDFs from Table  6 with the MCI 
mean values from Table 4 and running the resulting 
compound function through a Monte Carlo simu-
lation. A resulting PDF estimate example for this 
type of three-parameter model is presented in Fig-
ure 8, representing the project attributes SHL = 4, 
TIL = 3, and RD3 = 5 (i.e., model 4/3/5).

Similarly, 250 three-parameter SHL/TIL/TA model 
variants are produced by a product of the 25 SHL/
TIL regression model output with the 10  TA cat-
egory MCI cost data. The resulting mean costs 

for these three-parameter configurations are pro-
vided in Table  J-2. Finally, the four independent 
macro-parameter products applied concurrently 
produce additional tailored composite functions 
reflecting the combined influence of all four vari-
ables. This expands the development cost topog-
raphy to a full complement of 1,250 unique cost 
model variants (25  SHL/TIL  ×  5  RD3  ×  10  TA). 
These project estimates can be produced with the 
parametric cost data in Appendix  B and Tables  4 
and 5 but are too numerous to display in this 
report. Again, substituting the RD3 MCI cost PDFs 
from Table 6 for the RD3 MCI mean point estimate 
values from Table  4 within the compound func-
tions and running the results through a Monte 
Carlo simulation produces a detailed multifactor 
model PDF for each SHL/TIL/RD3/TA combina-
tion. An example resulting output PDF plot for one 
of these four-parameter model variants for project 
dimensions SHL = 1, TIL = 4, RD3 = 5, and TA = 4 
(model 1/4/5/4) is shown in Figure 9.

To summarize this analysis, establishing cost 
data relationships for the RD3 and TA parameters 
advances and refines the estimating ability of the 
baseline parametric models and increases the seg-
mentation of the technology development project 
space. Tailoring the analysis to a broader array of 
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The two-digit (SHL/TIL) ranges on the x  axis represent the 
twenty-five distinct SHL/TIL-level (i.e., xy) combinations and 
not a continuous variable. For example, the value 23 represents 
a project with SHL  =  2 and TIL  =  3 and falls in the middle 
of the 21–25 range. Therefore, this plot does not represent 
a continuous function, but rather serves as a perspective 
illustration of the relative impact of the variables across their 
ranges versus cost scale.

Figure 7. SHL/TIL × RD3 Mean Development 
Cost Model Topography Plot
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fundamental predictors with greater representation 
of primary technical, cost, and risk factors mark-
edly improves the model’s forecasting capacity and 
fidelity. RD3 MCI PDFs also enrich the understand-
ing of cost uncertainty as they embody much larger 
project data sets. Two methodologies that further 
extend these forecasting capabilities are developed 
in the following three sections. The first involves 
a technique to allocate total development costs to 
primary development activities and milestones via 
a standard framework tied to historical cost bench-
marks. The second applies these development 
benchmarks to derive and refine the monolithic 

TIL estimates by actual TRL start and end alloca-
tion cost factors.

Standard Development Framework
The use of a product-oriented WBS is advantageous 
for systems acquisitions, but development processes 
can differ significantly from production processes 
with respect to the system architecture. There-
fore, it is beneficial to use a development-phase 
WBS with common process breakdown span-
ning the major technology and systems devel-
opment stages. An integrated framework for the 
total R&D phase using a standard set of “typical” 
development activities and milestones aligned with 
key macro-parameters can facilitate new technol-
ogy and systems development investment scop-
ing, estimating, and budgeting. Depending on the 
application and type of economic analysis, some 
macro-parameters that may be well suited for this 
purpose include TRL, system readiness level (SRL), 
integration readiness level (IRL), and manufactur-
ing readiness level (MRL). Refer to Appendix A for 
industry definitions for SRL, IRL, and MRL.

Common development and demonstration activi-
ties related to the standard DoD acquisition pro-
cess provide an extensible basis for this type of 
breakdown. Several authorities have linked stan-
dard R&D processes to acquisition phases and 

Figure 10. Relationship of Decision Points, Milestones, and Technical Reviews to MRLs and TRLs
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milestones as well as general rec-
ommended TRLs, SRLs, and 
MRLs. Figures  10–1215 illustrate 
this type of mapping. Figure  10 
demonstrates the relationship of 
the acquisition milestone process 
to suggested TRLs and MRLs.16 
Figure  11 provides a similar yet 
slightly different perspective that 
includes incremental technol-
ogy and system demonstrations. 
Figure  12 more descriptively 
characterizes the demonstration 
environments and state of technol-
ogy versus suggested TRL progres-
sion. Table 7 defines the acronyms 
for the associated acquisition mile-
stone and development process 
terms presented.

These constructs, along with the 
descriptions of processes and sug-
gested technical achievements for 
the standard DoD RDT&E BAs,17 
vary slightly but are in general agree-
ment for technology maturity at key 
acquisition milestones. Based on this 
general consensus, the high-level 
standard development framework 
proposed in Table 8 can be applied 
across a range of platforms, system 
architectures, and applications. This 
concept fuses WBS elements based 
on progressive development and 
demonstration processes or technical reviews with 
acquisition milestones and suggested TRLs and 

15 Copeland et al., “Effects of System Prototype Demonstra-
tions on Weapon Systems.”
16 US Office of the Secretary of Defense Manufacturing Tech-
nology Program and the Joint Service/Industry MRL Working 
Group, Manufacturing Readiness Level (MRL) Deskbook (2016).
17 US Office of the Under Secretary of Defense (Comptroller)/
CFO, Financial Management Regulation.

MRLs reached at the milestone or completion of a 
major activity.

Appendix  L provides a more detailed four-level 
WBS for this framework containing a data dictio-
nary and suggested element descriptions associated 
with corresponding RDT&E BAs.18 This detailed 
WBS is not intended to be prescriptive but instead 

18 US Office of the Under Secretary of Defense (Comptroller)/
CFO, Financial Management Regulation.

Figure 11. Level of Prototype Demonstrations, 
Venue, and Technology Maturity

Figure 12. TRL Mapping to Prototype Demonstration Attributes
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serves as general guidance in identifying the full 
range of activities in development, yet allowing for 
specific product orientation or system architectures 
to be threaded in where appropriate. This structure 
provides a comprehensive basis to help ensure that 
relevant design, development, integration, test, and 
demonstration requirements are effectively iden-
tified and captured for estimate development and 
budget planning.

Cost Benchmarks by Development 
Milestone and TRL
Ways to align cost with the development frame-
work by bridging the progression of investment 
with development phases and acquisition mile-
stones were investigated. This examination iden-
tified two conference papers that relate historical 
program costs with major acquisition milestones. 

Table 8. Proposed Development Framework—Standard R&D WBS Activities vs. Acquisition Phases/Milestones 
and Suggested TRLs and MRLs

Development WBS Application Phase DoD Acquisition 
Milestone TRL MRL

1.1 technology development various

 1.1.1 Basic research enabling s&t Capability n/A 1 1

 1.1.2 technology research enabling s&t Capability CBA/iCd 2 2

 1.1.3 Analytical poC validation enabling s&t Capability mdd 3 3

 1.1.4 vle msA A 4 4

 1.1.5 vre tmrr vre/srr 5 5

 1.1.6 prototype dre tmrr B (pdr) 6 6

1.2 systems development various

 1.2.1 systems prototype doe emd Cdr 6+ 7

 1.2.2 full-scale sdd p&d C (lrip) 7 8

 1.2.3 opeval p&d ioC (frp) 8 9

 1.2.4 operational systems development o&s foC 9 10

Table 7. Acquisition Milestone and Development Process Acronyms

Acronym Definition Acronym Definition

CBA Capability-Based Assessment opeval operational evaluation

Cdr Critical design review ot&e operational test and evaluation

doe demonstrated in an operational environment p&d production and deployment

dre demonstrated in a relevant environment pdr preliminary design review

emd engineering and manufacturing development poC proof of Concept

foC full operational Capability s&t science and technology

frp full-rate production sdd systems development and demonstration

iCd initial Capabilities document srr system requirements review

ioC initial operating Capability t&e test and evaluation

lrip low-rate initial production tmmr technology maturation and risk reduction

mdd materiel development decision vle validation in a laboratory environment

msA materiel solution Analysis vre validation in a relevant environment

o&s operations and support
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This arrangement provides historical cost profiles 
spanning the full development life cycle to produce 
progressive benchmarks at key milestones. In both 
analyses, corresponding functions were further fit 
to the resulting cost benchmarks. Expenditures can 
thereby be mapped to the corresponding general 
TRL and MRL macro-parameter achievement.

Cost Benchmark study 1

The first study, “Methodology to Assess Cost and 
Schedule Impact Using System and Technology 
Readiness Level (SRL/TRL),”19 was presented at 
the 2019 International Cost Estimating and Anal-
ysis Association (ICEAA) SoCal Workshop. This 
analysis applied historical selected acquisition 
report data from over one hundred forty major 

19 Sirirojvisuth, “Methodology to Assess Cost and Schedule.”

defense acquisition programs (MDAPs) to gen-
erate relative cost and schedule factors traversing 
the acquisition milestones. Cumulative nonrecur-
ring development (NRDEV) spending cost bench-
marks from this research were normalized (i.e., 0 
to 1) over the full development life cycle and plot-
ted across the timeline up through TRL 9. A cumu-
lative NRDEV cost curve was fit to the equation 
NRDEV = 1/(1 + e^(–5.83 * (R&D Time – 0.34))). 
Figure 13 plots this exponential function and val-
ues for major acquisition and maps key develop-
ment milestones to the progressive TRLs and MRLs 
in the acquisition milestone process from the Office 
of the Secretary of Defense (OSD) Manufacturing 
Readiness Level (MRL) Deskbook.20

20 US Office of the Secretary of Defense Manufacturing Tech-
nology Program and the Joint Service/Industry MRL Working 
Group, Manufacturing Readiness Level (MRL) Deskbook (2016).
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Figure 13. Development Spending Benchmarks vs. Development Milestones and TRL—Study 1
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In the original analysis, TRL 8 and TRL 9 cost mile-
stones were mapped slightly differently than sug-
gested by the Defense Acquisition Research Journal 
(ARJ) prototype demonstration milestones, OSD 
Deskbook milestones,21 and general RDT&E BA 
descriptions. To maintain consistency with the 
consensus of reference documentation and the 
resulting development framework, TRLs  8 and 9 
are mapped to low-rate initial production (LRIP) 
and initial operating capability (IOC), respectively. 
As described in RDT&E BA 6.7 with development 
upgrades exceeding full-rate production and also 
demonstrated by the MRL/TRL/milestone rela-
tionship exhibit in Figure 10 from the OSD Desk-
book, MRLs exceeding the extent of TRL  9 at 
full-rate production or IOC can continue through 

21 Copeland et al., “Effects of System Prototype Demonstra-
tions on Weapon Systems.”

full operational capability (FOC). This implies that 
some development activities can occur past TRL 9 
and mapping of TRL to milestones through FOC 
is needed. Some literature22 addresses this shortfall, 
expressing the need for adding another TRL level 
to accommodate and capture post-IOC activities 
into extended operations.

Cost Benchmark study 2

A second analysis, this one presented during a 
2017  ICEAA conference,23 similarly produced 
plots of percent development cost versus TRL (Fig-
ure 14). These results were based on a curve fit to 
data from approximately thirty programs primarily 

22 Straub, “In Search of Technology Readiness Level (TRL) 10.”
23 Linick, “Technology Development Level (TRL) vs. Percent 
Development Cost.”
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from an earlier paper by E.  Conrow.24 Conrow’s 
research examined analytical hierarchy procedure–
based TRL values using source data from a prior 
study.25 The source data included cost information 
for programs in NASA’s Resource Data Storage and 
Retrieval System (REDSTAR) database. The curve 
fit from this analysis similarly demonstrates a rela-
tionship between TRL and total development cost, 
normalized to a range of 0 to 1. A second-order 
function, y = 0.0171x2 – 0.0433x + 0.0353, where 
x represents the current state of TRL, was fit to the 
data, producing a very strong coefficient of deter-
mination (R2) exceeding 99%. Percent develop-
ment cost points on the Figure  14 graph are the 
actual project empirical values and not calculation 
approximations from the curve fit function.

Table  9 compares development cost benchmark 
results from both studies versus development-phase 
acquisition milestones and associated TRLs and 
MRLs after application of a consistent methodol-
ogy through IOC. Examination of the outcomes 
demonstrates that the two methods produced very 

24 Conrow, “Estimating Technology Readiness Level Coeffi-
cients.”
25 Lee and Thomas, “Cost Growth Models for NASA’s Pro-
grams.”

similar outcomes for TRLs 7–9 but rather divergent 
results for TRLs 1–6.26

rdt&e historical BA data

To provide a third perspective on the progression 
of TRL-based development costs, another method, 
this one using historical RDT&E BA cost data, was 
employed. Key advantages of leveraging this data 
set are the huge data sample size and the applica-
tion of BA categories characterizing the continuous 
sequential steps in the advancement of the devel-
opment process that are already aligned within 
the proposed development framework, associated 
acquisition milestones, and TRL levels. There-
fore, RDT&E expenditures were applied by BA. 
Twenty-three years of actual RDT&E R-1 bud-
get exhibits by BA from FY1996 through FY2018 
were analyzed to create historical BA cost profiles.27 
With so many consecutive years of data being used, 
the statistical summaries effectively represent the 

26 Sirirojvisuth’s cumulative total development costs equal 
approximately 98% because some post-IOC development work 
was not included in the totals.
27 US Office of the Under Secretary of Defense (Comptroller)/
CFO, DoD Budget Request.

Table 9. Study 1 vs. 2 Cost Benchmarks by Development Milestone and TRL/MRL

Milestone 
at End

Macro-parameter Sirirojvisuth Study Linick Study

MRL TRL Total 
Development (%)

Cumulative Total 
Development (%)

Total 
Development (%)

Cumulative Total 
Development (%)

n/A 1 1 negligible negligible 1.0 1.0

CBA/iCd 2 2 negligible negligible 2.0 3.0

mdd 3 3 0.17 0.17 3.0 6.0

A 4 4 0.57 0.74 4.0 10.0

vre/srr 5 5 2.36 3.10 14.7 24.7

B (pdr) 6 6 20.4 23.5 15.8 40.5

Cdr 7 6++ 17.2 40.7 7.6 48.1

C (lrip) 8 7 17.7 58.5 7.9 56.0

ioC (frp) 8+ 8 20.0 78.4 26.5 82.5

foC 9 9 19.6 97.9 17.5 100.0

Negligible comparative costs occur in some early stages, while in other interim stages data were not available (N/A).
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development cycle of hundreds of DoD-wide pro-
grams of varying size and complexity. Statistics for 
percentage of total expenditures across BA catego-
ries  6.1 through 6.7 were created, characterizing 
the weighted average development costs spanning 
all development programs and stages.28 In Table 10, 
summary statistics for these historical RDT&E R-1 
BA expenditures corresponding to the completion 
of each major BA category funding phase over the 
historical time frame are linked with the acqui-
sition milestones and suggested TRLs from the 
framework. Annual expenditures are fairly consis-
tent over the twenty-three-year window, with CVs 
by BA falling primarily in the 8% to 13% range.

Although only six BA categories are available to 
map to the nine TRLs and corresponding develop-
ment milestones, they align well with six milestones 
based on the description of activities and technical 
achievements at the completion of each BA.

Cost Benchmark Comparison

Table  11 charts the cost relationships, comparing 
the six shared or common RDT&E BA milestones 
and TRL-level cumulative percent development 

28 Expenditures include overseas contingency operations 
RDT&E funding. BA 6.6, RDT&E Management Support, was 
spread across the other six BA categories in proportion to 
annual expenditure amounts, so it did not alter or impact the 
effective percent development calculations.

cost benchmarks versus the corresponding results 
from the two benchmark studies. TRL cumulative 
percent development cost benchmark data for the 
common milestones and TRLs demonstrate that the 
Linick research and analysis is fairly well aligned 
with the DoD-wide RDT&E results. In Sirirojvisuth’s 
research, lower relative total development expendi-
tures in early stages may be a reflection of the source 
data all being from large MDAP acquisition cate-
gory I programs versus a more diverse range of pro-
grams for the R-1 exhibit BA data and the NASA 
project data from the Linick study. This lower rela-
tive early expenditure characteristic of MDAP pro-
gram data may be the result of initial technology 
development efforts for very large, complex systems 
being a smaller portion of total development due to 
economies of scale similar to the spread of fixed or 
overhead cost pools over a larger base. More con-
servative existential technology selection to reduce 
overall developmental risk potential may also be an 
artifact of large investment programs.

Other factors underlying Sirirojvisuth’s MDAP pro-
gram development expenditure profile may include 
larger, more significant portions of MDAP program 
early-stage technology research (basic, fundamen-
tal, incubation) being captured or funded under 
separate organizational budgets or shouldered by a 
broader range of institutions. This could be the result 
of larger programs having the ability to leverage 

Table 10. Annual DoD % RDT&E Expenditure by BA (FY1996 to FY2018)

RDT&E BA Milestone 
at End

Notional 
TRL at End

Annual Development 

Average (%)
Cumulative 

Development- 
Phase Cost (%)

6.1 Basic research n/A 1 2.8 2.8

6.2 Applied research mdd 3 7.6 10.4

6.3 Advanced technology development (Atd) vre/srr 5 9.2 19.6

6.4 Advanced Content development and prototypes (ACd&p) B (pdr) 6 20.7 40.2

6.5 system development and demonstration (sdd) C 7 23.1 63.3

6.7 operational systems development ioC (frp) 9 36.7 100.0

total development 100.0
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more highly specialized skill sets and facilities or test 
ranges and assets needed. This strategy could poten-
tially reduce or spread overall budget risk exposure 
for large program efforts by allocating portions of 
critical early-phase technology development to be 
more widely burdened by other organizations in the 
testing or science and technology communities. In 
this manner, the total associated development costs 
may not effectively be captured in MDAP selected 
acquisition reporting for programs that involve sub-
stantial efforts by bodies such as government labs, 
university research institutions, industry research 
groups, and key contractors or vendors with vested 
interests. An example is independent R&D invest-
ments made by large defense contractors. These fac-
tors and others could potentially contribute to the 
TRL 1–6 cost deviation in the MDAP program data 
used in the Sirirojvisuth study. Above TRL 6, how-
ever, the cumulative costs catch up and converge 
with the Linick findings as technology development 
transitions into broader overall systems develop-
ment. As a result of these findings, the Linick results 
were applied for the parametric model TRL refine-
ments introduced below.

Fine-Tuning TIL Estimates for 
Discrete TRL Start to End States
Another fundamental benefit to generating rela-
tive cost profiles across TRL levels is that they can 

be used to significantly enhance the fidelity and 
precision of the uniform TIL-based models. The 
incremental empirical cost benchmarks provide a 
means by which to calculate the relative size of all 
TRL start-to-end transitions. Homogeneous TIL 
costs from first-generation models29 can thereby 
be fine-tuned to their discrete constituent project 
TRLStart to TRLEnd state costs via the relative cost 
adjustment weighting factors produced in Table 12. 
The second column in the upper section of this table 
shows the cumulative development cost (percent) 
at the TRLEnd achieved for that row and is taken 
from the last column of Table  9 (Linick/Conrow 
analysis). These data were selected for application 
because they track well with results of the expan-
sive DoD RDT&E BA program data, representing a 
diverse range of projects in terms of scale, complex-
ity, difficulty, and uncertainty. The columns to the 
right show the incremental cost increase (percent) 
for the eight unitary TRL improvement transitions 
for TIL = 1 (e.g., 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 
6 to 7, 7 to 8, and 8 to 9). Percentages numbered 2 
through 8 in the subsequent columns of the top sec-
tion also represent the development cost increase 
to achieve the TRLEnd (first column) starting from 
TRLStart determined by: TRLStart = TRLEnd – TIL. TIL 
increases up through the maximum possible value 

29 Alexander, “Parametric Cost and Schedule Modeling for 
Early Technology Development.”

Table 11. RDT&E BA Category Completion vs. Study 1 and 2 Milestone/TRL Cost Benchmarks

RDT&E BA Milestone 
at End

Notional 
TRL at End

Cumulative Development-Phase Cost (%)

RDT&E R-1 Exhibit 
BA Budgets

Sirirojvisuth 
Study

Linick 
Study

6.1 Basic research n/A 1 2.8 1.0 negligible

6.2 Applied research mdd 3 10.4 6.0 0.2

6.3 Atd vre/srr 5 19.6 24.7 3.1

6.4 ACd&p B (pdr) 6 40.2 40.5 11.1

6.5 sdd C 7 63.5 56.0 58.5

6.7 operational systems development ioC (frp) 9 100.0 100.0 97.9

Negligible comparative costs occur in some early stages, while in other interim stages data were not available (N/A).
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of 8 in the last column, for which only one possible 
transition exists (TRL 1 to 9).

The cost factors in green in the lower section of the 
table are simply the relative costs versus the TIL 
category average. They are calculated by taking the 
category percentage from the matching category 
cell in the upper table (i.e., the value for the com-
bination TRLEnd row and the TIL column from the 
upper table) divided by the overall average percent-
age for that TIL category found in the row named 
TIL Average % =. These relative weighting factors 
range from 0.16 to 2.14 and can be applied to tai-
lor the uniform TIL costs from the first-generation 
TIL-based parametric models to arrive at discrete 
TRLStart to TRLEnd transition costs for all thirty-six 

possible transitions.30 These cost adjustments fur-
ther expand and refine the total development cost 
space to nine thousand possible data points (36 TRL 
start-end combinations × 5 SHLs × 5 RD3s × 10 TA 
categories).

TIL progressions above level 5 (i.e., in the 6 to 
8  range) as part of one continuous project were 
found to be extremely rare in the large project pop-
ulation of the NASA TCASE database (approaching 
three thousand total project records). Therefore, 
there were inadequate data to model TILs above 
level 5 in the original TIL/SHL parametric models. 

30 The  nth triangular number, or “termial function,” of pos-
sible combinations for an interval range of 8 (i.e., 1 to 9) = 
(n2 + n)/2 = (64 + 8)/2 = 36.

Table 12. Cost Adjustment Weighting Factors—Discrete TRL Transition Start to End to TIL Average

TRL End Cumulative 
Development Cost (%)

Total Development Cost between TRL Start and End (%)

TIL 1 TIL 2 TIL 3 TIL 4 TIL 5 TIL 6 TIL 7 TIL 8

1 1.0

2 3.0 2.0

3 6.0 3.0 5.0

4 10.0 4.0 7.0 9.0

5 24.7 14.7 18.7 21.7 23.7

6 40.5 15.8 30.5 34.5 37.5 39.5

7 56.0 15.5 31.3 46.0 50.0 53.0 55.0

8 82.5 26.5 42.0 57.8 72.5 76.5 79.5 81.5

9 100.0 17.5 44.0 59.5 75.3 90.0 94.0 97.0 99.0

til Average % = 12.4 25.5 38.1 51.8 64.8 76.2 89.3 99.0

TRL End
Relative Cost Weighting to TIL Average

TIL 1 TIL 2 TIL 3 TIL 4 TIL 5 TIL 6 TIL 7 TIL 8

1

2 0.16

3 0.24 0.20

4 0.32 0.27 0.24

5 1.19 0.73 0.57 0.46

6 1.28 1.20 0.91 0.72 0.61

7 1.25 1.23 1.21 0.97 0.82 0.72

8 2.14 1.65 1.52 1.40 1.18 1.04 0.91

9 1.41 1.73 1.56 1.45 1.39 1.23 1.09 1.00

til = 1 2 3 4 5 6 7 8
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Even though it is unlikely that TILs  6 through 8 
will occur or need to be calculated, this output also 
makes it possible to estimate these very large tran-
sitions by extrapolating beyond TIL  5 using the 
average TIL values as relative weighting factors. 
The two example estimates in Appendix  K apply 
the discrete TRL adjustment factors to the three- 
and four-parameter combination (TIL/SHL, RD3, 
and TA) examples described in the section on cost 
model results.

Composite Project or System 
Macro-Parametric Measures
Development projects may range from an individ-
ual technology development up to a system with 
multiple technology development efforts at vary-
ing states of maturity, scale, and development diffi-
culty (i.e., TRL, SHL and RD3). The scope of possible 
development projects can also extend to portions 
or potentially even all of the development life cycle 
demonstrated in Figures  10–12 and the develop-
ment WBS in Table 8 and Appendix L. Projects that 
involve the advancement or progression of multi-
ple technologies must include relevant integration, 
testing, and demonstration of those technologies up 
through the applicable TRL and development mile-
stones at completion. Depending on the overall proj-
ect SHL and phases of development involved in the 
TRL transition(s), this may include internal integra-
tion and test at the assembly, subsystem, and system 
levels. If project development progresses into broader 
systems development, it may also involve integra-
tion into external platforms, applications, networks, 
and command and control systems or processes up 
through operational testing and demonstration.

When applying a macro-parametric estimating 
approach to multi-technology developments that 
are part of one project or program, to the extent 
possible, each individual development should 
be estimated separately and then be rolled up or 
aggregated with progressive levels of integration, 

testing, and demonstration. However, if sepa-
rate efforts are estimated together as one effort, 
an overarching SHL should be used to reflect the 
highest aggregate or predominant level of develop-
ment. When aggregating the composite TRL and 
RD3, independent macro-parameters must reflect 
the weighted average values across the overall proj-
ect or system. Approaches have been proposed to 
calculate compound system or program TRL mea-
sures. For instance, Lee and Thomas31 estimated a 
cost-weighted TRL, applying a component to total 
program percent cost allocation. Sophisticated 
multifactor TRL calculators and utilities have also 
been devised based on the weighted arithmetic or 
geometric mean of a range of attributes spanning 
TRLs. These include the Air Force Research Labora-
tory Transition Readiness Level Calculator32 (refer 
to the paper by Nolte, Dziegiel, and Kennedy33 and 
NASA’s TRL Worksheet34). Alternative techniques 
applying scalars such as technical design (e.g., size, 
weight, and power requirements), performance, 
or complexity-related metrics could also individu-
ally or collectively be applied as relative weighting 
coefficients for calculating overall system or project 
TRL or RD3 development parameters.

Sauser et al.35 introduced a resourceful method to 
measure SRL as a function of TRL and IRL that 
deliberates both the technologies and integra-
tion elements along a numerical maturation 
scale to assess the maturity of the entire system. 
For this analysis, SRL is computed as a mathe-
matical function using TRL and IRL matrices 
weighted on each technology within the system 

31 Lee and Thomas, “Cost Growth Models for NASA’s 
Programs.”
32 Air Force Research Lab, Transition Readiness Level 
Calculator.
33 Nolte, Dziegiel, and Kennedy, Technology Readiness Calcu-
lator.
34 NASA Earth Science Technology Office, “ESTO TRL Work-
sheet Calculator.”
35 Sauser et al., Development of Systems Engineering Maturity 
Models and Management Tools.
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according to all of its integrations at a “system” level: 
[SRL]n × 1 = [Norm]n × n × [IRL]n × n × [TRL]n × 1, where, 
in the TRL and IRL matrices, the original (1,9) lev-
els are normalized [Norm] to (0,1).36 Like TRL, 
IRL is defined as a series of levels that relate to key 
maturity events for integration activities. Similar to 
TRL and MRL mapping, presented in the sections 
on the standard development framework and cost 
benchmarks, SRL is normalized across the DoD 
acquisition life cycle in this analysis, as shown in 
Figure 15. The Naval Sea Systems Command, with 
support from Northrop Grumman Corporation, 
has validated this SRL model to monitor develop-
ment and integration progress in the Littoral Com-
bat Ship Mission Modules Program.37

Results and Conclusions
Estimating conceptual-stage technology and sys-
tems development has long been the most uncer-
tain, volatile, and challenging form of estimating for 
industrial, governmental, and institutional planning 
and investment decision analysis. This is primar-
ily due to (1)  the general lack of analogous sys-
tems; (2) unavailable micro-level technical, design, 
or performance-related parameters at this stage of 
development; and (3) the shortage or complete lack 
of applicable historical cost and technical data. This 

36 NASA, “Technology Readiness Levels (TRLs).”
37 Sauser et al., Development of Systems Engineering Maturity 
Models and Management Tools.

investigation leveraged several methods to build a 
comprehensive estimating solution applying diverse 
empirical project data with risk-based Bayesian 
techniques to fill this estimating methodology void 
in early-conceptual-stage development.

To avoid the problem with micro-level technical, 
design, or performance-related parameters gener-
ally unavailable at this stage of development, this 
solution set uniquely applies techniques using 
key macro-parametric cost and schedule drivers 
that are readily available or determinable in pre-
design stages across TAs. The addition of the RD3 
and TA parameters substantially augments prior 
baseline TIL/SHL-based models, providing a more 
complete picture of the key drivers of technolog-
ical and system scale, complexity, functionality, 
maturity, difficulty, and integration. Limited legacy 
technology development models based on a coarse 
two-dimensional TIL × SHL cost grid38 are thereby 
transformed by up to three hundred and sixty 
times the predictor output using comprehensive 
four-dimensional TIL, SHL, RD3, and TA solutions. 
High-level risks (known and unknown) associated 
with conceptual-stage technology development are 
also effectively captured by the generation of com-
posite PDFs tailored to each specific project para-
metric configuration. Forecasting power, depth, 
and precision are all greatly enriched, reflecting a 

38 Alexander, “Parametric Cost and Schedule Modeling for 
Early Technology Development.”
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comprehensive set of primary technological, pro-
grammatic, and cost risk factors.

Results of cost models show that expected cen-
tral costs for RDT&E projects can range from 
single-digit millions to billions of US dollars and 
spike exponentially at higher TIL and SHL levels. 
Cost uncertainty can vary as much as two to three 
times just within the typical planning range of the 
fiftieth (median) to eightieth percentile for a partic-
ular project configuration (TIL, SHL, RD3, TA) and 
as much as 4.5 times across RD3 levels for a fixed 
TIL and SHL configuration. This is expected, and 
there are valid reasons for this variability related to 
both known and unknown risks that are common 
in early-stage technology and system development.

A breakdown of common development processes 
into WBS elements linked to standard acquisition 
milestones and readiness levels was also created. 
This consensus framework was further related 
to cost benchmarks employing empirical studies 
and historical DoD RDT&E data. This contrib-
utes value to the macro-parametric cost modeling 
capabilities by developing a useful method with 
which to estimate cost at various interim stages of 
development. In addition, the relative TRL transi-
tion cost factors deliver a technique to refine broad 
uniform five-level TIL progressions into the full 
range of thirty-six discrete TRLStart to TRLEnd val-
ues. These improvements profoundly expand and 
transform the gross initial twenty-five-point TIL/
SHL cost forecasts into a nine-thousand-point 
high-definition rendering of the R&D landscape.

The risk-adjusted parametric cost models, in con-
cert with the proposed standard development 
framework with integrated milestone cost bench-
marking, advance a unique estimating capability for 
conceptual-stage technology and system develop-
ment that allows program executives, project manag-
ers, and investment decision-makers to better plan, 
forecast, and budget overall development-phase 
costs. These models can provide another estimating 
method as a check on other estimating techniques at 

a minimum, but they can also help long-term plan-
ning and potentially reduce the risk of cost over-
runs, milestone breaches, and wasteful program 
cancellations and the opportunity costs of valuable 
alternative resource investments.

The extensive enhancement to the fidelity of 
the first-generation development models, along 
with the development milestone cost bench-
marking and other applied techniques from this 
research, yield improved capabilities for estimating 
conceptual-stage development.

Future Considerations
The expansion and enrichment of useful macro- 
parameters should continue to evolve early-stage 
development estimating. This could take many 
forms, including the addition of other TA cate-
gories and larger project data sets for all the key 
macro-parameters. Considerations for extending 
TRLs to level 10, mapped to MRL level 10 at FOC, as 
well as isolating and creating a “system-of-systems” 
level 6 in the SHL scale, also deserve consideration.

Composite system readiness and integration mea-
sures using as IRL, SRL, MRL, programmatic 
readiness level (PRL), and sustainment maturity 
level (SML) focused on various facets of matu-
rity also hold potential to complement TRL-based 
macro-parametric forms of technology and system 
estimating. SRL and IRL measures, especially as 
modeled by Sauser et al.,39 may add greater value 
to development-phase estimating since they con-
sider both technology and broader systems devel-
opment dimensions, including critical integration 
requirements.

The two largest underlying drivers of cost, sched-
ule, and risk for any development are nearly always 
measures of project scale and complexity (i.e., both 
technological and overall system). Project scale is 

39 Sauser et al., Development of Systems Engineering Maturity 
Models and Management Tools.



AdvAnCed estimAting methodologies for ConCeptuAl-stAge development  23

effectively embodied by SHL, but a comprehensive 
measure of complexity might provide a dimension 
with the greatest potential to improve modeling 
utility. However, complexity is affiliated with a vari-
ety of the underlying dimensions and attributes of 
TIL, SHL, RD3, and TA macro-parameters. These 
characteristics are therefore already inherent in the 
estimating methods included with this analysis, so 
a technique to remove redundant complexity in 
applying an explicit overall system measure would 
need to be developed and applied.

The DoD, civil agencies including NASA, major 
research institutions, and industry technology lead-
ers are beginning to more broadly endorse develop-
ing, measuring, and capturing standardized forms 
of macro-parameters to enhance project planning, 
estimating, and performance measurement. Several 
important papers have expounded on the need to 
use readiness and integration measures early in the 
development process. Among these are two Defense 
Acquisition Research Journal (ARJ) papers.40 Other 
significant work on this topic includes the Con-
ference on Systems Engineering Research (CSER) 
Procedia Computer Science papers by Gove and 
Uzdzinski41 and Atwater and Uzdzinski.42 These var-
ious measures hold substantial promise to advance 
parametric estimating capabilities, but more project- 
level cost and schedule information will be needed 
for their application in resource planning and 
investment decision-making to reach its potential. 
Governmental, industrial, and institutional orga-
nizations with significant development program or 
project history may have the greatest opportunity 
to contribute to methodology advancements and 
impact progress of the estimating discipline through 
expanded sharing of project technical and cost data.

40 Ross, “Application of System and Integration Readiness Lev-
els”; and Eder, Mazzuchi, and Sarkani, “Beyond Integration 
Readiness Level (IRL).”
41 Gove and Uzdzinski, “A Performance-Based System Matu-
rity Assessment Framework.”
42 Atwater and Uzdzinski, “Wholistic Sustainment Maturity.”
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Appendix A Macro-Parameter Definitions

This appendix includes definitions for technology readiness level (TRL), system hierarchy level (SHL), 
system readiness level (SRL), integration readiness level (IRL), and manufacturing readiness level (MRL).

Figure A-1. NASA TRL Definitions

Table A-1. NASA SHL Definitions

No. Tier Definition Example

5 system An integrated set of constituent elements that 
are combined in an operational or support 
environment to accomplish a defined objective

A spacecraft or launch vehicle stage

4 subsystem A portion of a system A satellite’s propulsion system or launch 
vehicle’s propulsion system

3 Assembly A set of components (as a unit) before they are 
installed to make a final product

A satellite’s thruster or launch vehicle’s engine 
turbomachinery

2 Component/part A portion of an assembly A satellite’s propellant valve or a launch vehicle’s 
engine injector

1 hardware/material An item or substance used to form a component Alloy, polymer, screws, bolts, pipes, 
semiconductor chips

Source: Adapted from Cole et al., Technology Estimating.

Numbers in the first column are inverted from the original table to correspond to the progressive ordinal numbers necessary to perform the 
analysis.
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Table A-2. SRL Definitions

Level Name Definition

5 operations and support execute a support program that meets operational support performance requirements 
and sustains the system in the most cost-effective manner over its total life cycle.

4 production and development Achieve operational capability that satisfies mission needs.

3 system development and 
demonstration

develop a system or increment of capability; reduce integration and manufacturing risk; 
ensure operational supportability; reduce logistics footprint; implement human systems 
integration; design for producibility; ensure affordability and protection of critical program 
information; and demonstrate system integration, interoperability, safety, and utility.

2 technology development reduce technology risks and determine appropriate set of technologies to integrate into a 
full system.

1 Concept refinement refine initial concept. develop system/technology development strategy.

Source: Sauser et al., “From TRL to SRL.”

Table A-3. IRL Definitions

Level Definition

7 the integration of technologies has been verified and validated with sufficient detail to be actionable.

6 the integrating technologies can accept, translate, and structure information for its intended application.

5 there is sufficient control between technologies necessary to establish, manage, and terminate the integration.

4 there is sufficient detail in the quality and assurance of the integration between technologies.

3 there is compatibility (i.e., common language) between technologies to orderly and efficiently integrate and interact.

2 there is some level of specificity to characterize the interaction (i.e., ability to influence) between technologies through 
their interface.

1 An interface (i.e., physical connection) between technologies has been identified with sufficient detail to allow 
characterization of the relationship.

Table A-4. MRL Definitions

Level Definition

1 Basic manufacturing implications identified.

2 manufacturing concepts identified.

3 manufacturing proof of concept developed.

4 Capability to produce the technology in a laboratory environment.

5 Capability to produce prototype components in a production-relevant environment.

6 Capability to produce a prototype system or subsystem in a production-relevant environment.

7 Capability to produce systems, subsystems, or components in a production-representative environment.

8 pilot line capability demonstrated. ready to begin low-rate production.

9 low-rate production demonstrated. Capability in place to begin full-rate production.

10 full-rate production demonstrated and lean production practices in place.

Source: Office of the Secretary of Defense Manufacturing Technology Program and the Joint Service/Industry MRL Working Group, 
Manufacturing Readiness Level (MRL) Deskbook.
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Appendix B Highest-Performing First-Generation Cost Model

This appendix illustrates the highest-performing model—the technology readiness level (TRL) improve-
ment (TIL)/system hierarchy level (SHL) cost model—from the previous study.43 The study evaluated sev-
eral hundred cost curve fit and regression models.

Costs were escalated to fiscal year 2019 dollars. Color-coded TIL lines do not represent continuous functions but are shown to 
illustrate the progression of costs within and across SHLs and TILs. Uncertainty probability density functions (PDFs) for each 
TIL/SHL project data point were also constructed using lognorm functions in the original study.

Figure B-1. First-Generation Model No. 9—Mean Total Cost vs. f [TIL + SHL]

43 Alexander, “Parametric Cost and Schedule Modeling for Early Technology Development.”
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Appendix C Relationship Screening

Total project cost data were parsed into the range of research and development degree of difficulty (RD3) 
levels and technology area (TA) categories for the two data sets to perform initial data relationship screen-
ing between the RD3 and TA predictors and the cost response variable. Some outliers from the samples 
(1.1% of TA project data and 2.3% of RD3 data) were filtered, and the remaining project cost statistics for 
the deconstructed RD3 level and TA categorical data are shown in Tables C-1 and C-2.44 Linear regressions 
of cost versus RD3 produce adjusted coefficient of determination (R2 Adj.) values over 0.7 and cost versus 
TA regression R2 Adj. exceeding 0.8, both implying that relatively durable relationships may exist.

Table C-1. RD3 Total Project Data Cost Statistics

Level No. Records
Cost (FY19$)

Mean Median Standard Deviation

1 17 18,072,037 9,799,623 18,436,153

2 153 32,399,635 13,242,734 52,082,945

3 174 44,543,794 19,864,101 111,674,939

4 76 56,739,467 26,485,469 85,282,868

5 6 79,677,118 57,605,894 73,348,093

Table C-2. TA Total Project Data Cost Statistics

TA No. 
Records

Cost (FY19$)

Mean Median Standard Deviation

1 launch propulsion systems 159 29,482,594 896,999 125,232,312

2 in-space propulsion technologies 111 22,420,479 1,122,812 68,386,702

3 space power and energy storage 229 21,455,560 800,408 136,454,438

4 robotics, telerobotics, Autonomous systems 73 25,936,013 13,246,144 42,926,634

5 Communication and navigation 182 8,439,804 972,011 24,215,606

6 human health, life support, habitation systems 224 53,192,277 15,891,281 87,320,195

7 human exploration destination systems 59 48,878,481 26,485,469 62,394,548

8 science instruments, observatories, sensor systems 123 8,934,078 926,115 39,299,914

9 entry, descent, and landing systems 15 356,640,735 25,965,543 668,318,491

10 nanotechnology 24 2,762,815 401,754 5,452,029

11 modeling, simulation, information tech 95 39,777,986 1,491,313 176,746,995

12 materials, structures, mechanical systems, manufacturing 229 11,845,815 803,508 33,782,225

13 ground and launch systems processing 23 50,093,679 13,529,154 126,535,384

14 thermal management systems 85 19,242,667 2,648,547 37,251,256

15 Aeronautics 99 5,904,203 393,329 16,990,139

44 Costs presented in this report for NASA Technology Cost and Schedule Estimating (TCASE) source data and first-generation 
model results have been escalated to fiscal year 2019 dollars using the Research, Development, Test, and Evaluation (RDT&E) 
Appropriation TY$ indices from the current Naval Center for Cost Analysis Joint Inflation Calculator.
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Although two of the RD3 categories contained somewhat limited project sample sizes, project cost statistics 
demonstrate a direct and progressive incremental relationship to RD3 across all five levels. Cost statistics 
for TA categories produced mixed results, with five categories being apparent outliers. TAs 5, 8, 9, 10, and 
15 exhibited very low or high mean cost values versus the overall TA project sample; TAs 1, 3, 9, 11, and 
13 contained extensive cost ranges with very significant standard deviations; and most TAs also contained 
very large coefficients of variation (CVs). The large cost ranges and variability across categories is primarily 
due to the fact that each TA category spans a full range of project scale, complexity, and maturity and does 
not reflect any graduated measurement levels with respect to cost. A closer examination of the underlying 
project data reveals that some of low and high central value behavior can also be largely attributed to lim-
ited sample sizes and a focus of similar small- or large-scoped projects in some categories. The reason for 
these project size concentration anomalies is unclear, but they are possibly related to repetitive-type devel-
opment efforts, project budgeting, or execution policies or practices for particular technical areas. They 
may also simply reflect the way cost data were reported, captured, or characterized by individuals provid-
ing historical project information for certain TA categories in the TCASE database.

As noted for the data investigation described in the main report, there were not enough projects containing 
all four variables to produce comprehensive multiple-regression models; however, other techniques were 
explored to leverage cost impacts from the additional parameters. To effectively apply these techniques, 
further screening tests and analysis were first conducted to look for multicollinearity and residual auto-
correlation among the TIL, SHL, RD3, and TA independent variables. First, regression analysis between 
combinations of the four independent parameters versus the cost response was performed. These tests pro-
duced favorable results, with a Durbin Watson (DW) statistic in the range of 1.83 to 2.13 for all regressions 
and about 92% of parameter category levels possessing a variance inflation factor (VIF) less than 4 and an 
average overall category-level VIF of ~2.4 across models. For more detail on the DW and VIF statistics and 
specific results of tests conducted, refer to Appendix D.

Last, the absolute value of correlation coefficients assessed between independent parameters fell to under 
0.1 for 85% of the category combinations, between 0.1 to 0.2 for 13% of cases, and between 0.2 to 0.4 for 
the remaining 2% of cases. Therefore, all three indicators—DW statistic, VIF, and correlation coefficients—
suggest no noteworthy residual autocorrelation or multicollinearity between the four predictor variables. 
This supports their independence, and bringing the two additional parameters into the analysis should 
therefore not introduce any significant common influential effects or overlapping causal factors with 
respect to cost.
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Appendix D Independent-Variable Multicollinearity and Residual 
Autocorrelation Testing

Variance inflation factors (VIFs) and regression correlation coefficients (CCs) between independent predic-
tor variables were assessed as indicators of potential multicollinearity. To check for autocorrelation among 
regression residuals used in independent-variable screening, the Durbin Watson (DW) statistic was also 
evaluated. A VIF detects multicollinearity in regression analysis. Multicollinearity occurs when there is 
correlation between predictors (i.e., independent variables) in a model, and its presence can adversely affect 
regression results. The VIF estimates how much the variance of a regression coefficient is inflated due to 
multicollinearity in the model. VIFs begin at 1 and move upward. The numerical value for VIF indicates (in 
decimal form) what percentage the variance (i.e., the standard error squared) is inflated for each coefficient. 
A rule of thumb for interpreting the VIF is, in general, a VIF of 1 is not correlated, a VIF between 1 and 5 is 
moderately correlated, and a VIF greater than 5 is highly correlated.45

The DW statistic tests the null hypothesis that the residuals from an ordinary least-squares regression are 
not autocorrelated. The statistic ranges in value from 0 to 4. A value near 2 indicates non-autocorrelation, a 
value toward 0 indicates positive autocorrelation, and a value toward 4 indicates negative autocorrelation. 
A rule of thumb is that test statistic values in the range of 1.5 to 2.5 are relatively normal, and even those in 
the 0.5 to 3 range are generally considered acceptable.46

To test for multicollinearity in the model forecasts of cost response to the four independent-variable terms,47 
multiple-regression CCs and VIFs were assessed. Multiple-regression models were formulated to perform 
these tests between the RD3/TIL/SHL, TA/TIL/SHL, and RD3/TA independent cost variables.

For the RD3/TIL/SHL independent cost variable multiple regressions, of the thirty-two independent-variable 
term combinations, twenty CCs (63%) fell in the –0.1 to 0.1 range, eleven (34%) fell in the –0.2 to –0.1 or 
0.1 to 0.2 range, and one (3%) fell in the 0.3 to 0.4 range. VIFs for the various RD3/TIL/SHL terms ranged 
from 1.1 to 3.5, with an average of 1.68, 67%, falling under 2.0. For the multiple regressions between the 
TA/TIL/SHL independent cost variables, of the one hundred forty-four independent-variable combina-
tions, one hundred twenty-six CCs (88%) fell in the –0.1 to 0.1 range, fifteen (1 %) fell in the –0.2 to –0.1 
or 0.1 to 0.2 range, and three (2%) fell in the 0.2 to 0.3 or –0.2 to –0.3 range. A total of 95% of VIFs for the 
various TA/TIL/SHL terms fell under 4.0, with 1 TIL term at 5.3 and an average VIF of 2.51. Finally, to test 
for multicollinearity between the two new variables introduced, RD3 and TA, using multiple regressions, 
for the forty-eight independent-variable cost term combinations, forty-four CCs (92%) fell in the –0.1 to 
0.1 range, three CCs (6%) fell in the –0.2 to –0.1 or 0.1 to 0.2 range, and one CC (2%) in fell the 0.2 to 0.4 
range. A total of 81% of VIFs for the various RD3/TA terms fell under 4.0, with an average of 3.22.

For the same cost regressions, these tests produced DW statistic values of 2.1 for RD3/SHL/TIL variables, 
2.1 for TA/SHL/TIL variables, and 1.8 for the RD3/TA variables. These results suggest that no autocorrela-
tion issues are evident.

45 Penn State Eberly College of Science, “What is a Variation Inflation Factor?”
46 Glen, “Durbin Watson Test & Test Statistic.”
47 Technology readiness level (TRL) improvement level (TIL) and system hierarchy level (SHL) from the original parametric mod-
els with the newly introduced research and development degree of difficulty (RD3) and technology area (TA) parameters.

https://www.statisticshowto.datasciencecentral.com/what-is-the-standard-error-of-a-sample/
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Appendix E Data Types

The development cost response variable applied in this analysis is a continuous quantitative variable. Tech-
nology readiness level (TRL) improvement level (TIL), system hierarchy level (SHL), and research and 
development degree of difficulty (RD3) predictor variables are discrete ordered categorical values. Technol-
ogy area (TA) is simply a list of categorical class values. Categorical variables that have two or more incre-
mental levels are often measured on an ordinal scale so that the characteristic or property described by the 
category levels or class (i.e., 1 through K) can be considered as ordered, but not as equally spaced. This is 
the case with TRL, SHL, and RD3, as determination of those levels can involve various subjective criteria 
that span a wide range of scale and complexity both between and within categories.

Traditional linear regression models, however, make no distributional assumptions about the independent 
predictor variables. Consequently, ordinal variables must be interpreted carefully when attempting to fit 
a continuous function, especially if large or random interval variance is possible between class rankings. 
Fortunately, statistical analysis tools, such as SAS JMP used for the first-generation TIL/SHL models,48 
solve this potential issue by employing a regression technique that leverages response to the ordinal inter-
val values. Further, since the dependent cost variable response in this analysis is being assessed at the dis-
crete ordinal levels only and not as continuous functions, that completely neutralizes any concerns that a 
possible lack of a natural ordinal interval size structure could impact results.

Historically, ordinal response variables have been substantially investigated in regression modeling, but 
less research has been performed on ordinal predictors. Anderson49 notes two major types of ordinal cat-
egorical predictor variables: “grouped continuous variables” and “assessed ordered categorical variables.” 
Various techniques to model ordinal predictor variables have been suggested (e.g., quadratic penalization 
regression, ridge reroughing, and five-point Likert scales),50 but no definitive method or approach has been 
identified in the literature.

Ordinal qualitative measures nevertheless are ordered, and for technologies, this progression can be driven 
by certain underlying development structure, known or unknown, such as architecture, functionality, com-
plexities, common development processes, and support activities. As a result, a quantitative relationship 
can exist, and it may be modeled between an ordinal scale (or the variability in such a scale) and continu-
ous numeric parameters. Since this relationship is not necessarily or even likely to be linear in nature, data 
transformations, coefficient/correction/adjustment factors, and nonlinear functions are often applied to 
normalize ordinal values to account for the variability in cost and schedule modeling.51

48 Alexander, “Parametric Cost and Schedule Modeling for Early Technology Development.”
49 Anderson, “Regression and Ordered Categorical Variables.”
50 Stauner, “Effect of Two Demographic IVs”; Gertheiss and Tutz, “Penalized Regression with Ordinal Predictors”; and Berry, 
Understanding Regression Assumptions.
51 Malone et al., “Application of TRL Metrics to Existing Cost Prediction Models”; Smoker and Smith, “System Cost Growth Asso-
ciated with Technology-Readiness Level”; and Conrow, “Estimating Technology Readiness Level Coefficients.”
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Appendix F Curve Fit Methodology

All probability density function (PDF) cost curve fits for this analysis were produced using Palisade’s 
@RISK software. Sample data and calculated distribution data values were “fit” to a library of possible 
probability-based distribution functions using the tool’s distribution fitting utility and standard fit mea-
surement techniques. More than twenty functions (or families of functions) are assessed, including beta, 
chi-square, Erlang, exponential, gamma, inverse Gaussian, Lévy, loglogistic, lognorm, Pareto, Pearson, 
program evaluation and review technique (PERT), Raleigh, triangular, uniform, Weibull, and several oth-
ers. The distribution fit utility is applied to down-select higher-performing functions using the following 
commonly applied goodness-of-fit statistical significance methods/techniques:

 • Akaike information criterion

 • Bayesian information criterion

 • Kolmogorov–Smirnov

 • Anderson–Darling

 • Chi-square tests

A lower bound of zero and unlimited upper bound were input as search range criteria to best replicate the 
highly right-skewed cost functions involved, which are common to cost and schedule behavior and related 
early-life-cycle estimating methodologies. Functions with best-result consensus across these techniques 
are selected, considering key statistical metrics versus the sample data, such as fit of the estimate mean, 
a commonly applied budget planning and forecast range between the fiftieth (i.e., median), seventieth, 
and eightieth percentile, the standard deviation, and distribution shape characteristics (skewness, kurtosis, 
etc.). The curve fits produced appropriately reflect the highly uncertain environments; they have relatively 
wide dispersion and large standard deviations around the central datum, which is expected because of the 
high level of unknowns in conceptual stages of development.
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Appendix G Investigation of Project Data Sample Equivalence

A data relationship between either the research and development degree of difficulty (RD3) or technol-
ogy area (TA) sample project cost data and the system hierarchy level (SHL)/technology readiness level 
improvement level (TIL) project cost data can be established via means translations (i.e., factor of the 
sample means). In addition to the data groups coming from a common population with a small differ-
ence in sample means and other empirical evidence described below, equivalence tests were also applied 
to demonstrate a degree of sample equivalence. These equivalence tests include the two one-sided test 
(TOST) and the Welch’s t-test.

In a classical hypothesis test, the goal is to reject the null hypothesis of equality. As part of an equivalence 
test, however, the goal is to validate the equivalence between two samples. TOST is a test of equivalence 
based on the classical t-test used to test the hypothesis of equality between two means. Therefore, equiva-
lence tests differ from standard t-tests in that the null and alternative hypothesis are reversed:

 • Null hypothesis (H0)—The difference between the means is outside your equivalence interval. The 
means are not equivalent.

 • Alternative hypothesis (H1)—The difference between the means is inside your equivalence interval. The 
means are equivalent.

The TOST equivalence test can be used to validate the equivalence of the means of two groups by demon-
strating that they do not differ by more than a specified margin. When the sample sizes and variances 
of two groups are unequal (nonparametric), such as with the SHL/TIL, RD3, and TA data samples being 
compared, Welch’s t-test for unequal variance (also known as the Satterthwaite’s test, the Smith/Welch/
Satterthwaite test, the Aspin–Welch test, or the unequal variances t-test) is also commonly used to test 
sample equivalence.52

Welch’s t-test is more robust than the Student’s t-test and maintains type  I error rates that are close to 
nominal for unequal variances and for unequal sample sizes,53 as is the case for this analysis. Welch’s t-test 
also remains robust for skewed distributions and large sample sizes,54 again present in this investigation. 
When group sizes are unequal, a small proportion of outlying observations is commonly trimmed to alle-
viate problems related to the skewness in underlying distributions. This was first proposed by Tukey and 
McLaughin (1963) and later combined with Welch’s test by Yuen (1974).55 The resulting trimmed Welch’s 
test is resistant to outliers and alleviates some of the problems that occur because of skewness in the under-
lying distributions. In applying this method, G represents the percent of data trimmed, which generally less 
than 25% and often in the 5% to 10% range.56

52 NCSS, “Equivalence Tests for Two Means (Simulation)”; Ruxton, “Uunequal Variance t-Test”; and Lakens, “Equivalence Tests.”
53 Ruxton, “Uunequal Variance t-Test”; and Lakens, “Equivalence Tests.”
54 Fagerland, “t-Tests, Non-parametric Tests, and Large Studies.”
55 NCSS, “Equivalence Tests for Two Means (Simulation).”
56 NCSS, “Equivalence Tests for Two Means (Simulation).”

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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Sample equivalence between the cost means for the SHL/TIL data set and the corresponding RD3 and 
TA parameter samples was tested using both the trimmed TOST and Welch’s trimmed t-test, assuming 
unequal variances, in the SAS JMP software. The three data sets involved with the analysis each contain 
sufficiently large sample sizes with a raw number of observations (ni) = 221, 425, and 1,750 each for the 
SHL/TIL sample (no. 1), RD3 sample (no. 3), and TA sample (no. 2), respectively. All extracted data come 
from a common development project database population (the NASA Technology Cost and Schedule Esti-
mating, or TCASE, database) and include a degree of individual project commonality or overlap. The 
extreme cost data ranges and variance (coefficients of variation, or CVs, in the 1.7 to 3.8 range) within 
the project data can make equivalence testing more challenging. The actual G values for the final samples 
tested both fell well within the acceptable range: G = 2.8% (=55/1,971 for n = 221 + 1,750 = 1,971) for the 
SHL/TIL versus TA stacked project sample and G = 8.4% (=55/656 for n = 221 + 425 = 656) for the SHL/
TIL versus RD3 stacked project sample. Because of the extremely large overall project population cost vari-
ance, the sample data equivalence tests were performed at an alpha level of 0.10. Results of the trimmed 
TOST and Welch’s trimmed test, along with other evidence like sample density plot overlays, are provided 
in Figures G-1 and G-2.

For both sample data set comparisons, TOST test p-values are smaller than alpha (0.1). Therefore, the dif-
ference in population means is located within the lower and upper confidence thresholds, and the sample 
means are practically equivalent. Both Welch tests also indicate that the null hypothesis can be rejected 
as the F-ratio is small and Prob > F is high, and therefore no significant differences in the samples are 
detected.57 Other empirical evidence, such as the very small percentage difference in sample means (only 
0.25% variability between the SHL/TIL versus RD3 trimmed samples and 1.4% for the SHL/TIL versus TA 
trimmed samples) and the comparison and composition of density plots, also provides rational support to 
demonstrate that the parameter sample means are similar enough to practically represent the same popu-
lation. Based on this preponderance of evidence, it is therefore reasonable to extend RD3 and TA influence 
on the SHL/TIL parametric models by applying statistical index values between sample means.

57 JMP Statistical Discovery, “Description of the Welch’s Test Report”; GraphPad Software, “Interpreting Results”; and mdawson69, 
“How Do You Interpret Welch’s Test Results?”
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Means and Standard Deviations

Level No. Mean
Standard 
Deviation

Standard 
Error of the 

Mean

Lower 
90%

Upper 
90%

1 (SHL/TIL) 186 29,304,292 75,771,209 5,555,814.6 20,119,798 38,488,786

3 (RD3) 416 29,717,115 37,905,496 1,858,469.9 26,653,365 32,780,865

Test F-Ratio DFNum DFDen p-Value

Bartlett 136.0031 1 0 <0.0001

F test 2-sided 3.9958 185 415 <0.0001

Practical Equivalence between RD3 (No. 3) and SHL/TIL (No. 1) Samples

Null Hypothesis DF t-Ratio p-Value

Mean difference ≥ 1,000,000 600 –2.0674 0.0196

Mean difference ≤ –1,000,000 600 2.245442 0.0126

Max over both 0.0196*

Cost (FY19$M)
–15 100

Welch’s Test

F-Ratio DFNum DFDen Prob > F

0.0050 1 227.45 0.9439

Welch’s ANOVA testing; means equal, allowing standard deviations not equal
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Figure G-1. Trimmed Equivalence Tests of SHL/TIL vs. RD3 Sample Mean Cost Data
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Means and Standard Deviations

Level No. Mean
Standard 
Deviation

Standard 
Error of the 

Mean

Lower 
90%

Upper 
90%

1 (SHL/TIL) 221 27,052,654 77,816,153 5,234,480.9 18,406,290 35,699,018

2 (TA) 1,703 27,059,297 104,306,493 2,527,574.8 22,899,542 31,219,052

Test F-Ratio DFNum DFDen p-Value

Bartlett 28.7506 1 0 <0.0001

F Test 2-sided 1.7967 1,702 220 <0.0001

Practical Equivalence between TA (No. 2) and SHL/TIL (No. 1) Samples

Null Hypothesis DF t-Ratio p-Value

Mean difference ≥ 1,000,000 1,922 –1.37535 0.0846

Mean difference ≤ –1,000,000 1,922 1.377176 0.0843

Max over both 0.0846

Cost (FY19$M)
–20 100

Welch’s Test

F-Ratio DFNum DFDen Prob > F

0.0000 1 332.22 0.9991

Welch ANOVA testing; means equal, allowing standard deviations not equal
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Figure G-2. Trimmed Equivalence Tests of TIL/SHL vs. TA Sample Mean Cost Data
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Appendix H Mean Cost Index Curve Fit Probability Density Function 
Formulas and Plots

This appendix includes mean cost index (MCI) curve fit probability density functions (PDFs) for research 
and development degree of difficulty (RD3) and technology area (TA).

Tables  H-1 and H-2 PDFs are consistent with the right-skewed lognormal-, gamma-, Weibull-, and 
betaPERT-type PDFs commonly recommended for estimating uncertainty in the Joint Agency Cost Sched-
ule Risk and Uncertainty Handbook (JACSRUH).58 Table H-2 is provided for analysis demonstration pur-
poses only; these PDFs are not recommended for application in modeling for reasons explained in the 
section on the MCI method in the main report.

Table H-1. RD3 MCI Curve Fit PDFs

Level PDF Type @RISK PDF Formula

1 gamma =riskgamma(0.59877,0.68192,riskname(“rd3 lvl 1 mCi”))

2 lognorm =risklognorm(0.84662,2.1681,riskname(“rd3 lvl 2 mCi”))

3 pearson6 =riskpearson6(1.1572,1.7721,0.71302,riskname(“rd3 lvl 3 mCi”))

4 gamma =riskgamma(0.71451,1.9062,riskname(“rd3 lvl 4 mCi”))

5 gamma =riskgamma(1.3688,1.394,riskname(“rd3 lvl 5 mCi”))

Table H-2. TA MCI Curve Fit PDFs

TA PDF Type @RISK PDF Formula

1 launch propulsion systems fréchet =riskfrechet(0,0.016039,0.60073,riskname(“tA1 mean Cost index”))

2 in-space propulsion technologies lognorm =risklognorm(1.0673,18.846,riskname(“tA2 mean Cost index”))

3 space power and energy storage fréchet =riskfrechet(0,0.014939,0.63461,riskname(“tA3 mean Cost index”))

4 robotics, telerobotics, Autonomous 
systems

gamma =riskgamma(0.33743,2.8459,riskname(“tA4 mean Cost index”))

5 Communication and navigation lognorm =risklognorm(0.32008,2.0834,riskname(“tA5 mean Cost index”))

6 human health, life support, habitation 
systems

Weibull =riskWeibull(0.57905,1.2756,riskname(“tA6 mean Cost index”))

7 human exploration destination systems gamma =riskgamma(0.50991,3.5492,riskname(“tA7 mean Cost index”))

8 science instruments, observatories, sensor 
systems

loglogistic =riskloglogistic(0,0.030355,0.8796,riskname(“tA8 mean Cost index”))

9 entry, descent, and landing systems lévy =risklevy(0,0.55536,riskname(“tA9 mean Cost index”))

10 nanotechnology lévy =risklevy(0,0.0070262,riskname(“tA10 mean Cost index”))

11 modeling, simulation, information tech lognorm =risklognorm(1.156,16.677,riskname(“tA11 mean Cost index”))

12 materials, structures, mechanical systems, 
manufacturing

fréchet =riskfrechet(0,0.015598,0.59836,riskname(“tA12 mean Cost index”))

13 ground and launch systems processing pareto2 =riskpareto2(0.49689,1.1179,riskname(“tA13 mean Cost index”))

14 thermal management systems fatiguelife =riskfatiguelife(0,0.11763,3.1833,riskname(“tA14 mean Cost index”))

15 Aeronautics invgauss =riskinvgauss(0.21861,0.008011,riskname(“tA15 mean Cost index”))

58 Naval Center for Cost Analysis, Joint Agency Cost Schedule Risk and Uncertainty Handbook.
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The following RD3 MCI curve fit PDFs for levels 1, 3, 4, and 5 are plots of the continuous functions, with 
the x axis representing the MCI values. These functions can express larger concentrations as they approach 
0; however, they are used because they closely replicate the typical range of interest in the sample data. 
This area of interest is the planning range between the fiftieth to eightieth percentiles generally applied in 
budgeting and investment decision-making. For a more detailed explanation of the curve fit methodology, 
refer to Appendix F.
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Figures H-1. MCI Curve Fit PDFs for RD3 Level 1
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Figures H-2. MCI Curve Fit PDFs for RD3 Level 3
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Figures H-3. MCI Curve Fit PDFs for RD3 Level 4
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Figures H-4. MCI Curve Fit PDFs for RD3 Level 5
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Appendix I Geometric Mean Curve Fit Method

Geometric means (GMs) are preferable over arithmetic means because the GM form tends to minimize 
or dampen the influence of extreme data points, such as large or small data values in the generally highly 
skewed data distributions predominant in the technology project sample data.59 The GM formula60 is rep-
resented as follows, where a series of n data (a1, ... an) are compounded taking the nth root of the product:

Geometric mean = (Πn i=1 ai)
1/n = n

 √a1a2a3 ... ... an  .

Much of the study data includes skewed lognormal or “lognormal-like” distributions common to 
early-life-cycle cost data. With a true lognormal data set, the median and GM are identical, so with highly 
skewed data, they can provide a substantially better indication of central tendency than the arithmetic mean.61

This technique involves creation of composite functions of the independent variables by merging the 
uncertainty distributions of the selected predictor variables for each parametric combination in a GM. The 
blended impacts of individual tailored probability density function (PDF) cost curve fits for each inde-
pendent parameter level are aggregated in a product (i.e., the GM) of their expected values sampling their 
individual values in Monte Carlo simulation. The highest-performing system hierarchy level (SHL) and 
technology readiness level (TRL) improvement level (TIL) PDF cost curve fits from the initial study62 were 
used, along with newly developed research and development degree of difficulty (RD3) level and technol-
ogy area (TA) category cost PDF curve fits (refer to Table I-1 for the RD3 cost curve fit PDFs). The GM of 
the project development cost included combinations of the four parameters is

(PDFSHL × PDFTIL × PDFRD3 × PDFTA)
1/n, 

where n represents the number of independent parameters actually applied (four in this equation). Any 
combination of two to four of the parameters can be modeled in simulation applying the 1/n root power. 
Monte Carlo simulation runs calculating the expected GM for the full range of curve fit PDF combinations 
across the four independent variables (SHL/TIL/RD3/TA) were performed. Output from the simulations 
therefore represent a blended average of the three selected constituent macro-parameters.

Table I-1. RD3 Project Sample Cost Data Curve Fit Functions (FY19$)

Level PDF Form PDF Formula

1 gamma  riskgamma(0.81109,22281302,riskname(“rd3 lvl 1 (fY19$)”))

2 lognorm  risklognorm(35352239,90532673.2,riskname(“rd3 lvl 2 (fY19$)”))

3 Burr12  riskBurr12(0,27822346,1.1144,1.4889,riskname(“rd3 lvl 3 (fY19$)”))

4 Weibull  riskWeibull(0.78281,48452157,riskname(“rd3 lvl 4 (fY19$)”))

5 erlang  riskerlang(1,79677117,riskname(“rd3 lvl 5 (fY19$)”))

59 Hu, “Simple Mean, Weighted Mean, or Geometric Mean?”; and Clark-Carter, “Geometric Mean.”
60 Roenfeldt, “Better than Average.”
61 McChesney, “You Should Summarize Data with the Geometric Mean.”
62 Alexander, “Parametric Cost and Schedule Modeling for Early Technology Development.”
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Results, however, did not effectively capture the compound or aggregate impact of the independent param-
eters and predicted relatively low project costs with rather large residuals. This method was therefore aban-
doned as a viable option for estimating purposes.
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Appendix J Estimating Methodology

This appendix illustrates the estimating methodology for the system hierarchy level (SHL)/technology 
readiness level (TRL) improvement level (TIL)/research and development degree of difficulty (RD3) and 
the TIL/system hierarchy level (SHL)/technology area (TA) composite models.

In Table J-1, values for the three-parameter estimates represent the expected mean point estimate costs 
(in fiscal year 2019 dollars, FY19$) for the 125 possible three-parameter (SHL/TIL/RD3) model combi-
nations. Probability density (PDF) uncertainty distributions for each model are also available by running 
Monte Carlo simulation for the product of TIL/SHL regression model output (Table 1 and Appendix B) × 
the applicable RD3 mean cost index (MCI) PDF functions in Table 6. To produce models including all 
four parameters, simply include another factor for the applicable TA MCI mean value from Table 5 in 
the product in the simulation (e.g., TIL/SHL mean × RD3 PDF × TA MCI). This results in 1,250 possible 
four-parameter model variants (25 TIL/SHL × 5 RD3s × 10 TAs). Finally, to adjust for actual TRL start and 
end states, use the adjustment factors found in the lower section of Table 12 to produce up to 9,000 possible 
model variants (36 TRL Start-End × 5 SHL × 5 RD3 × 10 TA).

In Table J-2, values for the three-parameter estimates represent the expected mean point estimate costs 
(FY19$) for the 250 possible three-parameter (SHL/TIL/TA) model combinations. Costs are the product 
of TIL/SHL regression model output (Table 1 and Appendix B) × the applicable TA MCI values in Table 5. 
To produce models including all four parameters, simply include another factor for the applicable RD3 
MCI PDF from Table H-1 in the product in Monte Carlo simulation (e.g., TIL/SHL mean × TA MCI × RD3 
PDF). This results in 1,250 possible four-parameter model variants (25 TIL/SHL  ×  10 TAs  ×  5 RD3s). 
Finally, to adjust for actual TRL start and end states, use the adjustment factors found in the lower section 
of Table 12 to produce up to 9,000 possible model variants (36 TRL Start-End × 5 SHL × 5 RD3 × 10 TA).
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Table J-1. SHL/TIL/RD3 Composite Model Mean Project Costs (FY19$)

 

Model No. 
(SHL / TIL / 

RD3)

Mean Project Pt. 
Estimate Cost 

(FY19$)

1/1/1 598,201$              
1/1/2 1,136,772$           
1/1/3 1,566,194$           
1/1/4 1,995,468$           
1/1/5 2,795,560$           
2/1/1 681,525$              
2/1/2 1,295,115$           
2/1/3 1,784,351$           
2/1/4 2,273,421$           
2/1/5 3,184,959$           
3/1/1 1,088,950$           
3/1/2 2,069,351$           
3/1/3 2,851,059$           
3/1/4 3,632,499$           
3/1/5 5,088,966$           
4/1/1 1,992,533$           
4/1/2 3,786,448$           
4/1/3 5,216,797$           
4/1/4 6,646,658$           
4/1/5 9,311,665$           
5/1/1 82,440,208$         
5/1/2 156,662,643$      
5/1/3 215,842,718$      
5/1/4 275,002,603$      
5/1/5 385,266,128$      
1/2/1 1,098,362$           
1/2/2 2,087,237$           
1/2/3 2,875,701$           
1/2/4 3,663,896$           
1/2/5 5,132,952$           
2/2/1 1,210,305$           
2/2/2 2,299,965$           
2/2/3 3,168,787$           
2/2/4 4,037,314$           
2/2/5 5,656,093$           
3/2/1 1,737,442$           
3/2/2 3,301,693$           
3/2/3 4,548,923$           
3/2/4 5,795,728$           
3/2/5 8,119,551$           
4/2/1 2,843,150$           
4/2/2 5,402,890$           
4/2/3 7,443,858$           
4/2/4 9,484,130$           
4/2/5 13,286,834$         
5/2/1 87,502,031$         
5/2/2 166,281,719$      
5/2/3 229,095,448$      
5/2/4 291,887,745$      
5/2/5 408,921,444$      

Model No. 
(SHL / TIL / 

RD3)

Mean Project Pt. 
Estimate Cost 

(FY19$)

1/3/1 1,933,886$           
1/3/2 3,674,999$           
1/3/3 5,063,248$           
1/3/4 6,451,023$           
1/3/5 9,037,589$           
2/3/1 2,081,537$           
2/3/2 3,955,583$           
2/3/3 5,449,824$           
2/3/4 6,943,554$           
2/3/5 9,727,604$           
3/3/1 2,758,042$           
3/3/2 5,241,157$           
3/3/3 7,221,030$           
3/3/4 9,200,227$           
3/3/5 12,889,099$         
4/3/1 4,115,944$           
4/3/2 7,821,604$           
4/3/3 10,776,253$         
4/3/4 13,729,894$         
4/3/5 19,234,956$         
5/3/1 94,029,224$         
5/3/2 178,685,464$      
5/3/3 246,184,767$      
5/3/4 313,661,041$      
5/3/5 439,424,841$      
1/4/1 6,284,160$           
1/4/2 11,941,905$         
1/4/3 16,453,018$         
1/4/4 20,962,592$         
1/4/5 29,367,637$         
2/4/1 6,548,142$           
2/4/2 12,443,555$         
2/4/3 17,144,168$         
2/4/4 21,843,177$         
2/4/5 30,601,297$         
3/4/1 7,711,261$           
3/4/2 14,653,851$         
3/4/3 20,189,415$         
3/4/4 25,723,090$         
3/4/5 36,036,878$         
4/4/1 9,890,770$           
4/4/2 18,795,612$         
4/4/3 25,895,745$         
4/4/4 32,993,457$         
4/4/5 46,222,331$         
5/4/1 116,921,990$      
5/4/2 222,189,008$      
5/4/3 306,121,987$      
5/4/4 390,026,330$      
5/4/5 546,409,134$      

Model No. 
(SHL / TIL / 

RD3)

Mean Project Pt. 
Estimate Cost 

(FY19$)

1/5/1 70,977,471$         
1/5/2 134,879,793$      
1/5/3 185,831,291$      
1/5/4 236,765,406$      
1/5/5 331,697,555$      
2/5/1 71,858,237$         
2/5/2 136,553,530$      
2/5/3 188,137,290$      
2/5/4 239,703,451$      
2/5/5 335,813,623$      
3/5/1 75,601,387$         
3/5/2 143,666,706$      
3/5/3 197,937,504$      
3/5/4 252,189,785$      
3/5/5 353,306,409$      
4/5/1 82,137,053$         
4/5/2 156,086,553$      
4/5/3 215,049,008$      
4/5/4 273,991,345$      
4/5/5 383,849,403$      
5/5/1 279,927,608$      
5/5/2 531,951,583$      
5/5/3 732,898,881$      
5/5/4 933,777,620$      
5/5/5 1,308,179,939$   
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Table J-2. TIL/SHL/TA Composite Model Mean Project Costs (FY19$)

   
  

Model No. 
(SHL/TIL/TA)

Mean Project 
Cost (FY19$) 

1/1/1 1,602,821$          
1/1/2 1,216,034$          
1/1/3 1,163,291$          
1/1/4 1,406,937$          
1/1/6 2,892,111$          
1/1/7 2,651,541$          
1/1/11 2,158,095$          
1/1/12 643,180$              
1/1/13 2,717,763$          
1/1/14 1,043,885$          
1/2/1 2,942,953$          
1/2/2 2,232,771$          
1/2/3 2,135,928$          
1/2/4 2,583,289$          
1/2/6 5,310,228$          
1/2/7 4,868,516$          
1/2/11 3,962,495$          
1/2/12 1,180,947$          
1/2/13 4,990,108$          
1/2/14 1,916,686$          
1/3/1 5,181,658$          
1/3/2 3,931,240$          
1/3/3 3,760,728$          
1/3/4 4,548,397$          
1/3/6 9,349,720$          
1/3/7 8,571,998$          
1/3/11 6,976,767$          
1/3/12 2,079,294$          
1/3/13 8,786,084$          
1/3/14 3,374,709$          
1/4/1 16,837,794$        
1/4/2 12,774,560$        
1/4/3 12,220,483$        
1/4/4 14,780,013$        
1/4/6 30,381,906$        
1/4/7 27,854,698$        
1/4/11 22,670,997$        
1/4/12 6,756,665$          
1/4/13 28,550,373$        
1/4/14 10,966,114$        
1/5/1 190,177,205$     
1/5/2 144,284,351$     
1/5/3 138,026,235$     
1/5/4 166,935,256$     
1/5/6 343,153,385$     
1/5/7 314,609,421$     
1/5/11 256,061,265$     
1/5/12 76,314,253$        
1/5/13 322,466,834$     
1/5/14 123,858,555$     

Model No. 
(SHL/TIL/TA)

Mean Project 
Cost (FY19$) 

2/1/1 1,826,081$          
2/1/2 1,385,418$          
2/1/3 1,325,327$          
2/1/4 1,602,912$          
2/1/6 3,294,958$          
2/1/7 3,020,879$          
2/1/11 2,458,699$          
2/1/12 732,769$              
2/1/13 3,096,325$          
2/1/14 1,189,289$          
2/2/1 3,242,894$          
2/2/2 2,460,331$          
2/2/3 2,353,618$          
2/2/4 2,846,573$          
2/2/6 5,851,437$          
2/2/7 5,364,707$          
2/2/11 4,366,346$          
2/2/12 1,301,307$          
2/2/13 5,498,691$          
2/2/14 2,112,031$          
2/3/1 5,577,275$          
2/3/2 4,231,388$          
2/3/3 4,047,858$          
2/3/4 4,895,665$          
2/3/6 10,063,566$        
2/3/7 9,226,465$          
2/3/11 7,509,439$          
2/3/12 2,238,047$          
2/3/13 9,456,897$          
2/3/14 3,632,366$          
2/4/1 17,545,107$        
2/4/2 13,311,187$        
2/4/3 12,733,835$        
2/4/4 15,400,883$        
2/4/6 31,658,173$        
2/4/7 29,024,803$        
2/4/11 23,623,348$        
2/4/12 7,040,495$          
2/4/13 29,749,702$        
2/4/14 11,426,772$        
2/5/1 192,537,133$     
2/5/2 146,074,790$     
2/5/3 139,739,016$     
2/5/4 169,006,772$     
2/5/6 347,411,609$     
2/5/7 318,513,440$     
2/5/11 259,238,754$     
2/5/12 77,261,244$        
2/5/13 326,468,356$     
2/5/14 125,395,528$     

Model No. 
(SHL/TIL/TA)

Mean Project 
Cost (FY19$) 

3/1/1 2,917,735$          
3/1/2 2,213,638$          
3/1/3 2,117,625$          
3/1/4 2,561,152$          
3/1/6 5,264,724$          
3/1/7 4,826,797$          
3/1/11 3,928,540$          
3/1/12 1,170,828$          
3/1/13 4,947,347$          
3/1/14 1,900,261$          
3/2/1 4,655,306$          
3/2/2 3,531,905$          
3/2/3 3,378,714$          
3/2/4 4,086,371$          
3/2/6 8,399,976$          
3/2/7 7,701,255$          
3/2/11 6,268,067$          
3/2/12 1,868,080$          
3/2/13 7,893,595$          
3/2/14 3,031,906$          
3/3/1 7,389,903$          
3/3/2 5,606,599$          
3/3/3 5,363,422$          
3/3/4 6,486,768$          
3/3/6 13,334,250$        
3/3/7 12,225,089$        
3/3/11 9,950,025$          
3/3/12 2,965,418$          
3/3/13 12,530,412$        
3/3/14 4,812,894$          
3/4/1 20,661,572$        
3/4/2 15,675,598$        
3/4/3 14,995,693$        
3/4/4 18,136,478$        
3/4/6 37,281,483$        
3/4/7 34,180,359$        
3/4/11 27,819,465$        
3/4/12 8,291,069$          
3/4/13 35,034,018$        
3/4/14 13,456,462$        
3/5/1 202,566,538$     
3/5/2 153,683,937$     
3/5/3 147,018,127$     
3/5/4 177,810,463$     
3/5/6 365,508,543$     
3/5/7 335,105,046$     
3/5/11 272,742,697$     
3/5/12 81,285,841$        
3/5/13 343,474,340$     
3/5/14 131,927,476$     

(continues)
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Table J-2 (continued)

 

Model No. 
(SHL/TIL/TA)

Mean Project 
Cost (FY19$) 

4/1/1 5,338,798$          
4/1/2 4,050,459$          
4/1/3 3,874,777$          
4/1/4 4,686,333$          
4/1/6 9,633,261$          
4/1/7 8,831,954$          
4/1/11 7,188,346$          
4/1/12 2,142,351$          
4/1/13 9,052,533$          
4/1/14 3,477,051$          
4/2/1 7,617,942$          
4/2/2 5,779,609$          
4/2/3 5,528,927$          
4/2/4 6,686,938$          
4/2/6 13,745,721$        
4/2/7 12,602,333$        
4/2/11 10,257,065$        
4/2/12 3,056,926$          
4/2/13 12,917,078$        
4/2/14 4,961,411$          
4/3/1 11,028,270$        
4/3/2 8,366,969$          
4/3/3 8,004,064$          
4/3/4 9,680,482$          
4/3/6 19,899,273$        
4/3/7 18,244,025$        
4/3/11 14,848,850$        
4/3/12 4,425,421$          
4/3/13 18,699,672$        
4/3/14 7,182,488$          
4/4/1 26,501,352$        
4/4/2 20,106,145$        
4/4/3 19,234,071$        
4/4/4 23,262,567$        
4/4/6 47,818,710$        
4/4/7 43,841,085$        
4/4/11 35,682,351$        
4/4/12 10,634,455$        
4/4/13 44,936,022$        
4/4/14 17,259,793$        
4/5/1 220,078,217$     
4/5/2 166,969,763$     
4/5/3 159,727,701$     
4/5/4 193,182,004$     
4/5/6 397,106,399$     
4/5/7 364,074,550$     
4/5/11 296,321,037$     
4/5/12 88,312,923$        
4/5/13 373,167,361$     
4/5/14 143,332,477$     

Model No. 
(SHL/TIL/TA)

Mean Project 
Cost (FY19$) 

5/1/1 220,890,490$     
5/1/2 167,586,021$     
5/1/3 160,317,230$     
5/1/4 193,895,007$     
5/1/6 398,572,054$     
5/1/7 365,418,290$     
5/1/11 297,414,709$     
5/1/12 88,638,871$        
5/1/13 374,544,661$     
5/1/14 143,861,494$     
5/2/1 234,453,152$     
5/2/2 177,875,792$     
5/2/3 170,160,697$     
5/2/4 205,800,148$     
5/2/6 423,044,354$     
5/2/7 387,854,950$     
5/2/11 315,675,954$     
5/2/12 94,081,292$        
5/2/13 397,541,680$     
5/2/14 152,694,581$     
5/3/1 251,942,129$     
5/3/2 191,144,394$     
5/3/3 182,853,794$     
5/3/4 221,151,761$     
5/3/6 454,601,245$     
5/3/7 416,786,896$     
5/3/11 339,223,725$     
5/3/12 101,099,264$     
5/3/13 427,196,205$     
5/3/14 164,084,796$     
5/4/1 313,281,061$     
5/4/2 237,681,244$     
5/4/3 227,372,178$     
5/4/4 274,994,335$     
5/4/6 565,280,452$     
5/4/7 518,259,657$     
5/4/11 421,812,617$     
5/4/12 125,713,333$     
5/4/13 531,203,262$     
5/4/14 204,033,598$     
5/5/1 750,038,705$     
5/5/2 569,042,162$     
5/5/3 544,360,815$     
5/5/4 658,374,926$     
5/5/6 1,353,360,516$  
5/5/7 1,240,786,151$  
5/5/11 1,009,878,439$  
5/5/12 300,975,312$     
5/5/13 1,271,774,953$  
5/5/14 488,484,989$     
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Appendix K Macro-Parametric Model Project Estimating Examples

project 1

The first sample project estimate is for one of the 125 three-parameter system hierarchy level (SHL)/
technology readiness level (TRL) improvement level (TIL)/research and development degree of difficulty 
(RD3) models with a project configuration of SHL = 4, TRLStart = 4, TRLEnd = 7 (TIL = 3), and RD3 = 5 (model 
no. 4/4/7/5 representing SHL/TRLStart/TRLEnd/RD3/technology area, or TA). The methodology starts with 
the SHL/TIL multiple-regression model output for SHL = 4 and TIL = 3 from Table 1 and Appendix B, 
which results in a mean cost of $10,080,685 (in fiscal year, or FY, 2019 thousands of dollars). This mean 
project value is adjusted to discrete TRL start and end states of 3 and 7 (for a TIL = 7 – 4 = 3) applying the 
cost factor from Table 12 of 1.21 (rounded from 1.20788) and further refined by the RD3 mean cost index 
(MCI) value = 1.9081 from Table 4, producing a project mean point estimate of ~$23,233,500. To provide a 
perspective of expected cost with uncertainty, however, a Monte Carlo simulation was run, substituting the 
probability density function (PDF) for the RD3 = 5 MCI from Table H-1 (@RISK formula = RiskGamma 
(1.3688,1.394,RiskName (“RD3 Lvl 5 MCI”)) and Figure H-4 of Appendix H, producing the project cost 
uncertainty distribution shown in Figure K-1. The resulting fiftieth to eightieth percentile cost planning 
range for these project attributes is ~$18 million to ~$36 million with a seventieth percentile of $28.3 mil-
lion, as illustrated in the PDF plot and table. Generating curve fits for this PDF produces and optimal 
function in @RISK of =RiskGamma(1.3689,16972745,RiskName(“4/4/7/5/Project Cost PDF Curve Fits 
(FY19$)”).
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Figure K-1. Project 1 Uncertainty PDF: SHL = 4, TRLStart = 4, TRLEnd = 7 (TIL = 3), and RD3 = 5
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project 2

Similarly, a four-parameter SHL/TIL/RD3/TA macro-parametric model estimate is demonstrated for a 
hypothetical project characterized by SHL = 1, TRLStart = 3, TRLEnd = 7 (TIL = 4), RD3 = 5, and TA = 4 (i.e., 
robotics, telerobotics, autonomous systems) (model no. 1/3/7/5/4 representing SHL/TRLStart/TRLEnd/RD3/
TA). This estimate is calculated starting with a base TIL/SHL macro-parametric regression model and then 
fine-tuned by the discrete TRL start/end cost factor and both the RD3 MCI and TA MCI estimate values. 
Again, to provide a perspective of estimate uncertainty, the inputs are run in a Monte Carlo simulation, 
replacing the RD3 MCI point estimate with the corresponding RD3 MCI PDF. The SHL/TIL regression 
model returns a mean point estimate of $15,391,037 (FY 2019 dollars), from Table 1 and Appendix B. This 
mean project value is adjusted by a TRL start/end (=3/7) to TIL (=4) average cost factor of 0.97 (rounded 
from 0.96525) from Table 12, an RD3 MCI value of 1.9081 from Table 4, and a TA MCI = 0.9603 from 
Table 5, producing a project mean point estimate value of ~$27,221,700. To develop the overall expected 
cost with uncertainty, a Monte Carlo simulation is run using the PDF for RD3 = 5 MCI from Table H-1 
(@RISK formula = RiskGamma (1.3688,1.394,RiskName (“RD3 Lvl 5 MCI”)) and Figure H-4 of Appen-
dix H, producing the project cost uncertainty PDF shown in Figure K-2. The resulting median to eighti-
eth percentile cost planning range for these project characteristics is ~$21 million to ~$42.5 million with a 
seventieth percentile of $33.2 million, as illustrated in the PDF plot and table.
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Figure K-2. Project 2 Uncertainty PDF: SHL = 1, TRLStart = 3, TRLEnd = 7 (TIL = 4), RD3 = 5, and TA = 4
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Appendix L Detailed Standard Development Framework Work Breakdown 
Structure Elements

This appendix provides a detailed four-level work breakdown structure (WBS) for containing a data dictio-
nary and suggested element descriptions associated with corresponding research, development, test, and 
evaluation (RDT&E) budget activities (BAs).63 This detailed WBS is not intended to be prescriptive but 
instead serves as general guidance in identifying the full range of processes in development, yet allowing for 
specific product orientation or system architectures to be threaded in where appropriate. This structure pro-
vides a comprehensive basis to help ensure that relevant design, development, integration, test, and demon-
stration requirements are effectively identified and captured for estimate development and budget planning.

Table L-1. Four-Level WBS

WBS No. WBS Name WBS Descriptiona

1.0 development technology and systems development advancing and transitioning technology from concep-
tual scientific investigation through full systems development and demonstration in an opera-
tional environment to full operational capability (foC).

 1.1 technology development proof of concept (poC) or feasibility demonstration in simulation and laboratory environment.

  1.1.1 Basic research Basic research is systematic study directed toward greater knowledge or understanding of 
the fundamental aspects of phenomena and of observable facts without specific applications 
toward processes or products in mind. generally performed by others outside of government 
programs at government or commercial labs, research universities, or industry independent 
research and development (irAd) efforts.

  1.1.2 technology research incubation-stage scientific investigation with translation to basic principles and early explor-
atory development during pre-materiel solution analysis (pre-msA).

  1.1.3 Analytical poC validation Analytical poC or feasibility demonstrated in a simulated environment establishing initial prac-
ticality of proposed solutions to technological requirements.

   1.1.3.1 development nonrecurring 
systems engineering (nre)

development nre including security considerations.

   1.1.3.2 systems hardware systems hardware development, modifications or purchases (commercial off-the-shelf, or 
Cots), needed for this phase of demonstration.

   1.1.3.3 systems software systems software development, modifications, or purchases (Cots), needed for this phase of 
demonstration.

   1.1.3.4 systems integration system integration activities including internal and external interfaces needed for this phase of 
demonstration,

   1.1.3.5 testing testing including any applicable test labor, equipment, labs/ranges, or platform costs and certi-
fication requirements, etc. needed for this phase of demonstration.

   1.1.3.6 project management (pm) project planning, management, and oversight activities.

   1.1.3.7 support services other support services may include logistics support, configuration management, facilities, it, 
security, etc.

   1.1.3.8 other direct Costs (odCs) odCs may include applicable subcontract services, network/communications costs, travel, etc.

  1.1.4 validation in a laboratory envi-
ronment (vle)

Component or breadboard validation or ad hoc demonstration testing in a laboratory environ-
ment (vle).

   1.1.4.1 development nre development nre including security considerations.

   1.1.4.2 systems hardware systems hardware development, modifications, or purchases (Cots), needed for this phase of 
demonstration.

   1.1.4.3 systems software systems software development, modifications, or purchases (Cots), needed for this phase of 
demonstration.

… … …

63 US Office of the Under Secretary of Defense (Comptroller)/CFO, Financial Management Regulation.

(continues)
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  1.1.5 vre Component or breadboard high-fidelity poC validation or demonstration in a laboratory or 
relevant environment (vre) (around srr).

   1.1.5.1 development nre development nre including security considerations.

   1.1.5.2 systems hardware systems hardware development, modifications, or purchases (Cots), needed for this phase of 
demonstration.

   1.1.5.3 systems software systems software development, modifications, or purchases (Cots), needed for this phase of 
demonstration.

… … …

  1.1.6 prototype demo in relevant 
environment (dre)

prototype system/subsystem technology design, integration build, test, and checkout for dre.

   1.1.6.1 prototype system design design of prototype architecture functional product breakdown of primary hardware, soft-
ware, and all internal and external interfaces.

   1.1.6.2 vendor nre vendor nre.

   1.1.6.3 prototype system Build(s) Build of prototype architecture functional product breakdown of primary hardware, software, 
and all internal and external interfaces.

   1.1.6.4 support platform(s)/ 
systems modification design

platforms like sea/air/land/space assets and communications systems that require modifica-
tions to support concepts of operations.

   1.1.6.5 system integration, Assembly, 
test, and Checkout (iAt&C)

prototype iAt&C.

   1.1.6.6 systems data prototype data and documentation including vendor system specs, drawings/diagrams and 
operations manuals as well as government purchase of intellectual data property rights.

 1.2 systems development Advancing technology from prototype to full-scale system functional integration, test and 
demonstration with operational system through ioC to foC; includes prototype system inte-
gration and test and technology demonstration in an operational environment.

  1.2.1 systems prototype demo in 
operational environment (doe)

systems prototype doe.

  1.2.2 full-scale systems development 
and demonstration (sdd)

system test and evaluation (t&e)—functional or operational system test and demonstration.

   1.2.2.1 full-scale system (fss) design design of full-scale architecture functional product breakdown of primary hardware, software, 
and all internal and external interfaces.

   1.2.2.2 fss vendor nre vendor nre.

   1.2.2.3 fss low-rate initial production 
(lrip) Build(s)

Build of lrip full-scale systems including primary hardware, software, and all internal and exter-
nal interfaces.

   1.2.2.4 fss support platform(s)/
systems modification design

platform modification and integration design and including sea/air/land/space assets and 
communications, command, control and intelligence (C3i) systems to support concepts of 
operations.

   1.2.2.5 fss iAt&C fss iAt&C.

   1.2.2.6 fss data fss data and documentation including vendor system specs, drawings/diagrams, and opera-
tions manuals as well as government purchase of intellectual data property rights.

   1.2.2.7 fss test labor government (military and civilian) and contractor personnel to plan and perform the opera-
tional system field tests.

   1.2.2.8 fss test equipment procurement or lease of all necessary fss test equipment.

   1.2.2.9 fss test support organizations 
and ranges

Costs for use of all test facilities, labs, ranges and associated odCs.

   1.2.2.10 fss test platforms procurement, lease, or usage fees for test support platforms including sea/air/land/space assets 
and C3i systems that are part of the operational concept of operations.

   1.2.2.11 fss pre-test Certification Costs associated with certification/approval to integrate development systems with operation-
al systems for testing.

   1.2.2.12 fss demonstration test system t&e/demonstration testing.

   1.2.2.13 pm project planning, management, and oversight activities.

  1.2.3 operational systems 
evaluation (opeval)

full-system operational evaluation (opeval) through full-rate production (rfp) approval, con-
cluding with initial operational capability (ioC).

  1.2.4 operational systems 
development

development efforts such as engineering or design modifications to resolve manufacturing or 
production issues for fielded systems up to foC.

a General WBS guidance only and not intended as prescriptive; tailor WBS to system architecture and project requirements.

(continued)
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