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Abstract—Real-time traffic signal control is an integral part of
the urban traffic control system, and providing effective real-time
traffic signal control for a large complex traffic network is an
extremely challenging distributed control problem. This paper
adopts the multiagent system approach to develop distributed
unsupervised traffic responsive signal control models, where each
agent in the system is a local traffic signal controller for one
intersection in the traffic network. The first multiagent system
is developed using hybrid computational intelligent techniques.
Each agent employs a multistage online learning process to update
and adapt its knowledge base and decision-making mechanism.
The second multiagent system is developed by integrating the
simultaneous perturbation stochastic approximation theorem in
fuzzy neural networks (NN). The problem of real-time traffic
signal control is especially challenging if the agents are used for an
infinite horizon problem, where online learning has to take place
continuously once the agent-based traffic signal controllers are
implemented into the traffic network. A comprehensive simulation
model of a section of the Central Business District of Singapore
has been developed using PARAMICS microscopic simulation
program. Simulation results show that the hybrid multiagent sys-
tem provides significant improvement in traffic conditions when
evaluated against an existing traffic signal control algorithm as
well as the SPSA-NN-based multiagent system as the complexity
of the simulation scenario increases. Using the hybrid NN-based
multiagent system, the mean delay of each vehicle was reduced
by 78% and the mean stoppage time, by 85% compared to the
existing traffic signal control algorithm. The promising results
demonstrate the efficacy of the hybrid NN-based multiagent sys-
tem in solving large-scale traffic signal control problems in a
distributed manner.

Index Terms—Distributed control, hybrid model, neural con-
trol, online learning, traffic signal control.

I. INTRODUCTION

THE INCREASE in urbanization and traffic congestion
creates an urgent need to operate our transportation sys-

tems with maximum efficiency. As traffic volume continues to
increase, the streets become more and more congested. One of
the most cost-effective measures for dealing with this problem
is traffic signal control. Traffic signal retiming and coordination
of existing signals have been proven to bring about substantial
reductions in traffic delay, considerable energy savings, and
consequently, huge reduction in travel time and increased safety
for the public.
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Fig. 1. Traffic control loop.

Control of traffic signals for efficient movement of traffic
on urban streets constitutes a challenging part of an urban
traffic control system (UTCS). Traffic signal control varies in
complexity, from simple systems that use historical data to
determine fixed timing plans, to adaptive signal control, which
optimizes timing plans for a network of signals according to
traffic conditions in real time. Some of the common traffic
signal operations for controlling the traffic flow are cycle time
adjustment; split adjustment, where “split” is defined as the
fraction of the cycle time that is allocated to each phase for a set
of traffic movements [1]; and offset adjustment, where “offset”
is the time difference between the beginning of green phases
for a continuous traffic movement at successive intersections
that may give rise to a “green wave” along an arterial [1]. The
basic elements of a traffic control loop are shown in Fig. 1.

The traffic flow behavior in the network depends on control
inputs that are directly related to corresponding control devices,
such as traffic lights, variable message signs, etc., and distur-
bances, whose values cannot be manipulated but may possibly
be measurable (e.g., demand) or detectable (e.g., incident). The
network’s performance is measured via suitable indices such as
the total time spent by all vehicles in the network over a time
horizon, the total mean delay experienced by all vehicles in the
network, and average vehicle speed. The function of the control
strategy module is to specify the control inputs in real time
based on available measurements (e.g., from loop detectors),
estimations, or predictions so as to achieve the control objec-
tives despite the influence of various disturbances.

For UTCS used for controlling traffic signals in a large-scale
traffic network, it is crucial that the traffic signal control system
has the capability to examine both the microscopic level of the
situation (the traffic state of each intersection) as well as the
macroscopic level of the situation (the overall traffic state of
the traffic network). In addition, the traffic signal control system
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should be able to adjust various traffic signal control parameters
(such as the green time, cycle length, etc.) in response to the
varying traffic demand (as opposed to the fixed signal plans of
some older systems). However, for a large-scale traffic man-
agement system, it may not only be difficult or impossible to
tell whether the traffic network is flowing smoothly and assess
its current state, but predicting the effects of modifying any of
the traffic control parameters is a difficult task due to nonlinear
and stochastic events in a traffic network. Additionally, given
the complexity and dynamicity of the traffic signal control
problem, the control system should be adaptive in nature so
that its control function can be adjusted whenever necessary.
In fact, such advanced traffic-responsive closed-loop systems
and adaptive traffic signal systems are becoming increasingly
critical for transportation agencies to meet their day-to-day
operation and management needs [1]–[8]. It is anticipated that
new technology, such as traffic-responsive closed-loop systems
or adaptive traffic signal systems using advanced surveillance
and traffic management centers, will become increasingly crit-
ical for city, region, and state organizations to meet future
transportation needs.

The interdependency of each intersection on its neighbors
makes it extremely difficult to set the signal parameter values
for a large complex traffic network with multiple intersections.
An attractive approach to deal with this complicated traffic sig-
nal control problem is the use of distributed control technique
involving multiple intelligent agents. The primary objective of
the multiagent system is to achieve coordinated traffic signal
control so as to reduce the likelihood of traffic congestion. It
is imperative that such a system performs real-time update of
traffic signals in the traffic network based on the changes in
the traffic volume. For a case where individual agents are con-
trolling the traffic signals for an indefinite amount of time after
they have been installed into the traffic network, the problem
of real-time traffic signal control can be said to take the form
of an infinite horizon distributed control problem. Hence, for
effective traffic signal control, such controllers need to adapt
themselves continuously.

Various computational intelligence-based approaches have
been proposed for designing real-time traffic signal controllers,
such as fuzzy sets [2], [3], genetic algorithm and reinforcement
learning [4], and neural networks (NN) [5]–[7]. Most of these
works are based on the distributed approach, where an agent
is assigned to update the traffic signals of a single intersection
based on the traffic flow in all the approaches of that
intersection. As some of these models (e.g., [5] and [7]) have
implemented and tested the controller on a simplified traffic net-
work model consisting of a single intersection, the effectiveness
of the proposed neural controller for controlling a large-scale
traffic network with multiple intersections cannot be estab-
lished. The method proposed in [6] involves the application of
simultaneous perturbation stochastic approximation (SPSA) in
modeling the weight update process of an NN. Although the
SPSA algorithm is a viable option for online weight update as
it presents some form of stochastic exploration and converges
to a set of optimal values under certain conditions, the model
proposed in [6] has some limitations concerning its robustness
and responsiveness (more details will be given in Section IV).

The work presented by Choy et al. [8] introduced a hybrid
multiagent system architecture for real-time system control.
This paper presents an enhanced version of SPSA-NN-based
multiagent system, which has been tested in more complex sce-
narios to determine its efficacy. These two multiagent systems
as well as an existing traffic signal control algorithm Green
Link Determining (GLIDE) are used to control the signalized
intersections of a large simulated traffic network based on a
section of the Central Business District (CBD) of Singapore.
This paper seeks to demonstrate the efficacy of the hybrid
multiagent system in solving the infinite horizon distributed
control problem.

The paper is arranged as follows: Section II describes the
modeling of the traffic signal control problem using a form
of a directed graph. Section III describes the performance
measures that are used to evaluate the traffic signal control
models developed in this paper. Section IV presents the SPSA-
NN-based multiagent system, whereas Section V presents the
hybrid NN-based multiagent system. Section VI describes the
experimental setup. Finally, Section VII presents the simulation
results and, Section VIII concludes the findings of this paper.

II. MODELING THE TRAFFIC SIGNAL CONTROL PROBLEM

The problem of traffic signal control for a large traffic net-
work can be divided into subproblems, where each subproblem
is handled by a local traffic signal controller or an agent. For
such a distributed approach, each agent will generate its own
control variables based on the local information it receives.
Based on the approach in [9], the following are defined:
G = (N,L), directed graph with a set N of n nodes and

a set L of l links describing the traffic network;
Ai agent acting at node iεN ;
T total number of temporal stages at time t;
Ii(T ) local input information vector of Ai at stage T ;
ci(T ) vector of control parameters of Ai at stage T ;
ci(T )o optimal vector of control parameters of Ai at stage T ;
ui(T ) = FiT[Ii(T ), ci(T )], control function of Ai at

stage T ;
ui(T )o = F o

iT[Ii(T ), ci(T )o], optimal control function of Ai

at stage T ;
s(T ) state vector of the traffic network at stage T ;
C cost function for the entire traffic network.

The distributed control problem of the traffic network is
therefore finding the set of control function ui(T ) for each Ai,
i ∈ N that minimizes the cost function C, where C is a function
of the states of the traffic network at different temporal stages.

The distributed control problem can be easily rephrased
based on this definition, depending on the nature of the con-
trol techniques and the application domain. For example, if
the agents are implemented using only NNs, then ci(T ) will
represent the weight and bias vector of the NN and ui(T ) will
be the neural control function modeled by the NN. Due to the
difficulty in obtaining the optimal solution for the distributed
control problem in an analytical manner, an alternative ap-
proach involving an approximated optimal solution can be used.
The optimal control function ui(T )o for each agent will be
used as an approximation to the optimal control function for
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the traffic network. In the case where all the Ais of the traffic
network are designed for continuous traffic signal control, the
optimization problem becomes that of an infinite horizon one. A
reasonable approximation of such a problem has been presented
in [9] based on [10] in the form of the “receding-horizon limited
memory” where the requirement for infinite memory storage
capacity can be overlooked.

For the receding-horizon limited-memory optimization
problem, at stage T = 0, one has to solve the distributed control
problem for the stage {0, . . . ,M}, M > 0. The approximated
optimal control variables generated by the optimal control
functions ui(0)o, i ∈ N are applied at stage T = 0. For the
next stage T = 1, the distributed control problem is restated
again for stage {1, . . . ,M + 1}. Once again, the approximated
optimal control variables generated by the control functions
ui(1)o, i ∈ N are applied at T = 1. Two important issues to be
addressed here are the approximation ability of the techniques
that are used to implement the Ai and the ability of each Ai to
derive a good approximation of the optimal solution in a timely
manner. The first issue involves the appropriate usage of various
relevant techniques that have good approximating capabilities
while facing an ill-defined problem with a high level of associ-
ated uncertainty and diverse input data. In this case, well-known
techniques in the field of computational intelligence, such as
NNs, provide possible solutions, whereas some classical traffic
signal control techniques may have severe limitations. The
second issue, however, may not be easily solved even if the first
issue has been resolved. The difficulty in obtaining a reasonably
good approximated optimal solution for stage {0, . . . ,M} at
stage T = 0 (or any other future state) is due to the limited
number of stage M in which each Ai can be considered at any
particular stage T due to finite memory storage space as well as
the computational speed of the processor. Some of the existing
algorithms such as the parameters update algorithms for
connectionist networks are mainly designed for finite horizon
learning processes, and hence, adjustments need to be made
in order for them to deal with the infinite horizon problem.
Possible adjustments include the adoption of hybrid techniques
that can possibly leverage on the strength of the individual
techniques so as to overcome their individual shortcomings.

Based on the limitations of earlier research works, it is
evident that more needs be done to implement a systematic
unsupervised distributed control scheme for testing in a com-
plex traffic network simulated based on a real-world scenario.
This paper presents a hybrid multiagent system that integrates
the advantages offered by various computational intelligence
techniques to implement a new distributed control architecture
as described in the following sections.

III. PERFORMANCE MEASURES

The performance of the multiagent systems developed in
this paper is evaluated using two measures, namely 1) mean
delay of vehicles and 2) mean stoppage time of vehicles. The
microscopic traffic simulation platform of PARAMICS has
been used to take detailed measurements of various parameters
associated with each vehicle that enters and leaves the traffic
network. As such, during the course of the simulations, the

delay faced by each vehicle entering and leaving the network
was being stored in memory, and the mean delay of vehicles
was calculated as

TMD =
TD

TV
(1)

where TMD is the mean delay of vehicles, TD is the total
delay, and TV is the total number of vehicles that entered and
left the traffic network during the time the measurement was
taken. Similarly, the total stoppage time for each vehicle was
also stored in memory to facilitate the calculation of the mean
stoppage time, which is expressed as

TMST =
TST

TV
(2)

where TMST is the mean stoppage time for the vehicles and
TST is the total amount of stoppage time faced by all vehicles
that entered and left the traffic network during the time the
measurement was taken.

The current vehicle mean speed (equivalent to the instanta-
neous speed of a vehicle) is defined as the average speed of
all the vehicles that are currently in the traffic network. These
two performance measures are reflective of the overall traffic
condition in the network. For an overcongested traffic network,
the total mean delay of the vehicles will be high and the current
mean speed of the vehicles that are in the traffic network
will be low.

IV. SPSA-NN MODEL

Stochastic optimization is the process of finding a minimum
point θ∗ of a real-value function C(θ) in the presence of noise.
Stochastic approximation is a popular technique of stochastic
optimization and is often applied when the gradient g(θ) of the
cost function C(θ) is not readily available. The relations (e.g.,
convergence properties) between some of the online learning
techniques such as Q-learning and stochastic approximation
theory have been established in [11] and [12]. Spall [13] intro-
duces a new form of stochastic approximation theory termed as
SPSA and establishes the conditions in which SPSA converges
and becomes asymptotically normally distributed.

The approximating properties of neural networks with a
single hidden layer for solving the Distributed Control Problem
have been established in [15]–[17].

A. Using SPSA to Update the Neurons’ Weights

Given the favorable properties of SPSA mentioned pre-
viously, it has been used to update the weights of an NN
[6], [18], [19] in order to find the minimum point of the loss
function. The distributed control problem can be redefined as
finding the set of NN weight parameters wi(T ) for each Ai,
i ∈ N that minimizes the approximated cost function Ĉ, where
Ĉ is a function of wi(T ).

For clarity and without the loss of generality, some of the
notations used in the earlier section can be redefined as
wT estimate of θ at stage T for each Ai, iεN ;
ĝT (wT ) estimate of g(θ) at stage T for each Ai, iεN .
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The Robbin–Monro stochastic approximation (RMSA) [14]
can then be written as

wT+1 = wT − αT ĝT (wT ) (3)

where αT is the gain sequence that must satisfy the following
well-known convergence conditions:

αT > 0 ∀T ; αT → 0 as T → ∞
∞∑

T=0

αT = ∞

∞∑
T=0

α2
T < ∞. (4)

Based on the preceding conditions, Spall [13] developed
SPSA using the idea of “simultaneous perturbation” to estimate
the gradient. The formal proof of convergence of SPSA and the
asymptotic normality of wT can be found in [13]. Some of the
expressions of the SPSA algorithm are given as follows to facil-
itate the understanding of how SPSA can be applied in an NN.

Let ∆T ∈ RP be a vector of p mutually independent mean-
zero random variables {∆T1,∆T2, . . . ,∆TP} satisfying the
various conditions given in [13] (an example would be a sym-
metrical Bernoulli distribution) at stage T . Let cT be a positive
scalar. The noisy measurement of the loss function L(θ) is
given as

y
(+)
T =L(wT + cT ∆T ) + ε

(+)
T

y
(−)
T =L(wT − cT ∆T ) + ε

(−)
T (5)

where cT ∆T is the stochastic perturbation that is applied to wT

during stage T and ε
(+)
T and ε

(−)
T represent measurement noise

terms that must satisfy the following:

E
(
ε
(+)
T − ε

(−)
T |{w1, w2, . . . , wT }

)
= 0 a.s., ∀T. (6)

The estimate of g(θ) can thus be written as

ĝT (wT ) =




y
(+)
T

−y
(−)
T

2cT ∆T1
...

y
(+)
T

−y
(−)
T

2cT ∆TP


 . (7)

Defining the error term as

eT (wT ) = ĝT (wT ) − E (ĝT (wT )|wT ) (8)

(3) can be rewritten in a more generalized form as

wT+1 = wT − αT [ĝT (wT ) + bT (wT ) + eT (wT )] (9)

where bT (wT ) is the bias in ĝT (wT ) bT (wT ) → O(c2T )(cT →
0) or near unbiasness if the loss function L(θ) is sufficiently
smooth, the measurement noise satisfies (6), and the conditions
for ∆T are met.

The strong convergence of (9) to θ∗ has been proven in
[13] subject to stated assumptions. As such, the iterative forms
presented in (3) and (9) can be used to model the iterative
weight update process in an NN controller.

Fig. 2. Five-layered fuzzy NN.

In [6], the SPSA-NN model was applied to control traffic
signals for a large traffic network with multiple intersections,
using a three-layer NN and taking relevant traffic variables as
inputs. This model, however, had two shortcomings. First, the
approach involved the use of heuristics to manually identify the
general traffic patterns (morning peaks and evening peaks) and
the assignment of time periods for each pattern. The robustness
of the system may come into question if the fluctuations of the
traffic volume in the traffic network are not periodic. Second,
an NN is assigned to each time period, and the weights of the
NN are updated only during the duration of the time period.
This implies that the weight update is done only on a daily
basis whenever the same traffic pattern and time period arises.
As such, the traffic controllers may not be able to respond well
to changes in the traffic network within the same time period.
Although the results in [6] show that the SPSA-NN is able to
converge to a set of optimal signal plans, the NN has to be
reupdated time and again to take into consideration changes
in the long-term dynamics of the traffic network even after
the convergence. In addition, no formal proof of convergence
to a set of globally optimal solutions is presented in [6] or in
[18] and [19]. Nevertheless, given that the research work in [6]
yields good results for traffic signal control of a large traffic
network and coupled with the favorable characteristics of the
SPSA algorithm, an alternative SPSA-NN that overcomes the
aforementioned limitations has been implemented in this paper
and its performance compared to that of the hybrid NN-based
multiagent system.

B. Structure of an Agent Using SPSA-NN

As mentioned, the modified SPSA-NN model used in this
paper strives to avoid the two limitations of [6]. The structure
of Ai is formulated in such a way that each Ai can act as an
independent intelligent agent once it has been implemented. A
five-layer fuzzy NN in Fig. 2 is used as the basic building block
for each component in Ai.

In the fuzzy NN shown in Fig. 2, the operators between
the fuzzification layer (second layer) and the implication layer
(third layer) are taken to be T-norm, whereas the operator
used between the implication layer (third layer) and the con-
sequent layer (fourth layer) is S-norm. Singleton membership
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Fig. 3. Structure of a Ai for the SPSA-NN-based multiagent system.

functions are used for the fuzzy output terms to reduce the
computational complexity in the defuzzification process. The
structure of an agent Ai is shown in Fig. 3.

The agent Ai takes in traffic parameters as its inputs and
generates a set of signal plans as the output via a two-stage
process. The state estimation stage generates the estimated
current state of the traffic network. Each agent Ai also contains
several fuzzy NN-based decision makers (DMs), one for each
state. The number of DMs used in the decision-making stage
depends on the complexity of the problem and is determined
based on the estimated current state of the traffic network. The
decision-making and learning processes of each Ai are enabled
by the NNs as follows: At stage T , the weights belonging
to the state estimator are randomly perturbed by cT ∆T using
the stochastic perturbation shown in (5). The state estimator
estimates the current state of the intersection based on the input
parameters. A DM is chosen to generate the signal plans for
the intersection based on this estimate. The weights for the DM
are also perturbed by cT ∆T using (5). The signal plans are then
implemented into the simulated traffic network, and the average
delay is calculated for all the vehicles passing through that
intersection after the implementation of the new signal plan. If
the weights of the state estimator (SE) have not been updated in
the previous round (stage T − 1), they are now updated using
(9) based on the scaled difference between the delay during
stage T and stage T − 1; otherwise, the average delay is stored.
The gradient can be estimated using (7).

The delay estimator is used for computing the average
delay for each intersection during each stage T . The com-
putation of the average delay is based on well-known delay
equations [1], and the cost or error function of the SE at stage T
is computed as

ErrorSE = M(ave. delay at stage T

− ave. delay at stage T − 1). (10)

The cost (error) function of the DM at stage T is calculated as

ErrorDM = M(ave. delay at stage T

− ave. delay at stage n) n < T (11)

where M is a constant that takes the value 0 < M < 1 and
stage n is the stage prior to stage T in which the chosen DM
at stage T was previously selected.

Fig. 4. Structure of an agent Ai for the hybrid multiagent system.

V. HYBRID MULTIAGENT SYSTEM

The hybrid NN-based multiagent system has been designed
to solve the distributed control problem directly, as opposed to
the indirect method used for the SPSA-NN-based model pre-
sented previously. In this hybrid system, each agent Ai consists
of a five-layered fuzzy NN that facilitates its decision-making
process. The cost function C is a function of s(T ), which is the
state of the traffic network at stage T . The structure of each Ai

in the hybrid NN-based multiagent is as shown in Fig. 4.
A multistage online learning process has been implemented

for real-time update of weights and connections in the NN.
This online learning process overcomes the problems of lack
of stochastic exploration and the possibility of getting stuck
in local minima, which are often associated with performing
online learning for an infinite horizon control problem [20],
[21]. The learning process is a three-stage process that involves
reinforcement learning, weight adjustment, and adjustment of
fuzzy relations, as shown in Fig. 5.

The first step in this online learning process involves re-
inforcement learning. The reinforcement obtained from this
process is backpropagated to each Ai, following which, all Ai

proceed to adjust the learning rate for each neuron and activate
the forgetting mechanism if necessary as determined by the
value of the reinforcement that the Ai received. Next, each Ai

adjusts the weights of the neurons according to the topological
weight update method. Finally, the reinforcement is used to
update the fitness value of each neuron in the Ai’s NN. If
the fitness values of the neurons fall below some prespecified
values, the fuzzy relations (represented by how the outputs
of a layer of neurons are connected to the inputs of the next
layer of neurons) are updated using the evolutionary algorithm
fuzzy relation generator (EAFRG). A detailed description of the
multistage online learning process can be found in [8].

In this dynamically changing problem domain, the fuzzy
rules and their membership functions need to be regularly
updated to remain valid. In this work, fuzzy rules adjustment
process is also performed online throughout the running of the
simulation in order to accommodate possible fluctuations of the
system dynamics. The evolutionary algorithm fuzzy relation
generator (EAFRG) is used to generate new fuzzy relations
based on the reinforcements received by the agents, thus chang-
ing the knowledge representation for each agent as the traffic
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Fig. 5. Multistage online learning process.

Fig. 6. Chromosome structure.

network evolves. The chromosome that is used in an EAFRG
for an agent is as shown in Fig. 6.

Each chromosome determines the way nodes in layer 2 of
the fuzzy NN (Fig. 2) are linked to the implication nodes in
layer 3 for each link. Individual alleles in each chromosome
have binary values. The first nine alleles represent the neurons
in layer 2, whereas the last six alleles represent the neurons in

Fig. 7. Mapping of a chromosome to antecedent–implication relations.

layer 3. Only alleles representing different layers and having a
binary value of one (1) are connected to one another. Fig. 7
shows a possible mapping of a chromosome to antecedent–
implication relations. In Fig. 7, we can derive the following
antecedent–implication relations:

{occupancy is Medium}&{flow is Low}
&{rate is High} => {load is Medium}

{occupancy is Medium}&{flow is Low}
&{rate is High} => {cooperation is Low}

Obtaining a suitable fitness function to evaluate the generated
fuzzy relations is not an easy task because an ideal fitness func-
tion should be able to produce a fuzzy relation that results in a
generally satisfying (i.e., how much/little deviations the fuzzy
relation possesses in comparison with some well-known guide-
lines or rule-of-the-thumb for the chosen problem domain) as
well as contextually valid/eligible fuzzy rule that can accommo-
date exceptions in the current problem state to a reasonable ex-
tent. As such, the fitness function should take into consideration
the current eligibility of the fuzzy relation as well as the degree
to which the rule is generally satisfying.

The fitness function F for the EAFRG is therefore defined as

F =
E

|diff(cur_chromo, gen_chromo)| + 1
+ γG (12)

where E is the current eligibility of the antecedent–implication
relation, G is the measure of whether the relation is generally
satisfying, and γ is the sensitivity factor for G (determined
empirically). Hence, as shown, E and G have counterbalancing
influence on each other. A relation may be generally satisfying
and have a high G value but may not be eligible due to the
changing system dynamics, causing a low E value as a result.
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E is further defined as

E = µET (13)

where µ is the eligibility sensitivity factor, which is determined
empirically. ET is the eligibility trace at stage T and is com-
puted as

ET (T ) = (1 −D)R(T − 1)A(T − 1) + ET (T )D (14)

where D is the decay constant (determined empirically), R
is the reinforcement, and A is the activation value, which
is zero if the rule is not activated and one (1) if activated.
The function diff() denotes taking the difference between two
chromosome vectors. In this case, the first chromosome vector
is cur_chromo, which is the current chromosome used by the
fuzzy NN, and the second chromosome vector is gen_chromo,
which is the chromosome generated by EAFRG. For this re-
search, G is defined as

G =
∑

i

∑
j

Corr(i, j) (15)

where i denotes a node in the antecedent (second layer) and j
denotes a node in the implication (third layer) such that the ij
relation is zero if nodes i and j are not linked, and Corr(i, j)
denotes the correlation between i and j.

Extensive simulations and tests were carried out to optimize
these parameters according to the requirements of the system.
A population size of 100, 7% probability of mutation, and
40% probability of crossover were found to be optimal. The
algorithm was run for 50 generations. It was observed that the
computational speed of the EAFRG does not hinder the real-
time performance of the controller agent due to the small size
of the population and the binary nature of the chromosome.

VI. SIMULATION SETUP

The multiagent systems presented in the previous sections
were tested in a simulated real-world scenario in order to
effectively evaluate their performances when applied to a large
complicated and realistic problem. This section describes in
detail how a real-world traffic network was modeled using a
microscopic simulation program and presents the results as
compared to those obtained from the GLIDE benchmark.

A. Modeling of the Traffic Network in PARAMICS

The traffic network used to evaluate the performance of the
proposed multiagent architecture was based on a section of
the CBD area of Singapore. This section represents one of
the busiest regions of the road network where frequent traffic
jams are common during peak hours and the size of the traffic
network is significantly bigger compared to those used in pre-
vious research works [2]–[7]. The traffic network was modeled
using Version 4.0 of PARAMICS [23]. The use of PARAMICS
Modeler version 4.0 provides the advantages of microscopic
simulation whereby various microscopic details of the traffic
network such as driver behaviors and incidents can be mod-
eled to reasonable accuracy to ensure a close resemblance to

TABLE I
DETAILS OF THE SIMULATION NETWORK

the real-world scenario. Details regarding the simulated traffic
network model are given in Table I.

Important information such as lane occupancy, flow, and
rate of change of flow is obtained via loop detectors in real
time while the simulation is running. These loop detectors are
coded in the simulated network at stop lines of the intersec-
tion approaches, as in the real-world installations. Using the
PARAMICS application programming interface (API), infor-
mation such as occupancy and flow was extracted from the loop
detectors, and the rate of change of flow was calculated. The
flow, occupancy, and rate of change of flow were measured at
the green phase only (including the amber time). In addition,
signal control directives (i.e., agents output) were implemented
in the simulation via the PARAMICS API to effect the latest
signal optimization actions. Policies recommended from the
various levels of controller agents were translated into signal
control directives, and changes were made to the signal plans
in real time using the API. The total number of signalized
intersections in the simulated traffic network is 25. As such, for
each multiagent system, 25 agents were implemented to control
the traffic signals of each intersection. Given that PARAMICS
is a microscopic simulator and has the ability to model indi-
vidual vehicles, it is able to accurately depict various traffic
behaviors such as congestion formation and dispersion.

Simulation results under three types of scenarios of different
time horizons are presented to evaluate the performance of
different neural-network-based multiagent systems. Three-hour
and 6-h simulations are used to test the response of the proposed
control models before they are used for the infinite horizon
problem. Due to time constraint and practical reasons, the
infinite horizon problem is approximated using 24-h simulation
runs. The number of peak periods for simulation runs for the
three simulation scenarios is 1, 2, and 8, respectively, where
each peak period lasts for 1 h.

B. Implementation of the Multiagent Systems

The multiagent systems are implemented using Java and its
multithreading technology. During the running of the simula-
tion in PARAMICS Modeler, the multiple threads/processes
in Java representing the agents are running concurrently. The
sampling rate for the agents can be adjusted in order to make
sure that the agents make timely responses to the dynamically
changing traffic network. For this paper, the agents for the
multiagent systems are tuned to sample the traffic network for
the traffic parameters once every 10 s (simulation clock time).

Fig. 8 shows the concurrent running of the traffic network
and the multiagent systems in two windows, namely 1) the fore-
ground depicting the simulated traffic network in PARAMICS
Modeler and 2) the background, which is the Java graphical
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Fig. 8. Concurrent running of PARAMICS and the multiagent system.

user interface (GUI) for the multiagent system. The inset shows
the map of the Suntec City area and the 25 intersections, which
are being controlled by the agents.

The coordinated offset adjustment allows users to monitor
the dynamic changes of the signal policies that are taking place
in real time. As shown, the green wave starts from node ICA5
in the Java GUI, representing the critical intersection for offset
adjustment and follows through several successive green nodes.
These nodes correspond to the congested intersections as shown
in the PARAMICS Modeler GUI in the foreground.

The traffic signal plans generated by each agent are first
deposited in the signal plans repository before they are decoded
by the signal plans interpreter and implemented into the traffic
network. Each agent has eight different types of signal plans
that it can use to control the traffic signals at its intersection.
These plans are designed to cater for different amounts of traffic
loading at the intersection. It is up to each agent to choose an
appropriate signal plan based on its own perception of the traffic
loading of its intersection.

C. Benchmarking

It is difficult to find a good benchmark for this large-scale
traffic signal control problem for several reasons. Existing
algorithms or control methodologies have been developed for
controlling the traffic networks of other cities [5]–[7] with dif-
ferent traffic patterns, and hence, the results obtained from those
works cannot be applied directly on this problem. Moreover,
some of the algorithms presented in the literature [5], [7] are de-
veloped for simplified scenarios and hence are not suitable for
benchmarking. Last, commercial traffic signal control programs
that are known to have worked well are not easily available due
to proprietary reasons.

Fig. 9. Number of vehicles for a typical scenario with one morning peak.

In view of these issues, the signal settings used for bench-
marking are derived from the actual signal plans implemented
by Land Transportation Authority (LTA)’s GLIDE traffic signal
control system. GLIDE is the local name of Sydney Coordi-
nated Adaptive Traffic System (SCATS) and is one of the state-
of-the-art adaptive traffic signal control systems [24] widely
used in many countries. As such, for simulation scenarios with-
out the local neural-network-based controllers, the signal plans
selected and executed by GLIDE are implemented in the traffic
network at the respective intersections as the traffic loading at
each intersection changes with time. The information obtained
from GLIDE includes the position of the loop detectors at the
various approaches (or links), the number of signal phases,
traffic movements of each signal phases, and the number of
lanes for each approach (or link). Based on this information,
a signalized intersection (termed as “node” in PARAMICS)
can be configured so that it represents the actual intersection.
However, these data are insufficient to fully configure the
signalized intersection because it does not have the values for
the various traffic signal control parameters such as green time,
cycle length, etc. Additionally, there is no information on the
number of vehicles that pass through each approach during
the day. Hence, two more sets of data need to be collected
and interpreted to obtain information pertaining to these as-
pects. The number of vehicles that pass through the various
approaches of an intersection is recorded via the loop detectors
implemented at the intersection in the CBD. This information is
collated and presented on a daily basis. From this information,
an estimation of the number of vehicles passing through the
various approaches can be derived, and the vehicle flow can
thus be coded into the simulated traffic network in PARAMICS.

VII. RESULTS AND DISCUSSIONS

Three types of simulations as previously described are used
to evaluate the performance of the multiagent systems and the
GLIDE benchmark. The typical scenario with a single morning
peak is used to test the response for the multiagent systems
when they are implemented to provide real-time traffic signal
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Fig. 10. Number of vehicles for a short extreme scenario with two peaks.

control of a large traffic network for a short duration. The short
extreme scenario is designed to increase the level of difficulty
of a short simulation run by having two peak periods closely
packed together. These two short scenarios are basically used
to verify the efficacy of the multiagent systems before they
are tested for the infinite horizon problem. The long extreme
scenario with multiple peaks lasting 24 h simulates a fictitious
scenario, where numerous peak periods are cascaded closely
together within a 24-h period. This fictitious scenario greatly
increases the level of difficulty of the dynamic problem given
that the multiagent systems will now have to deal with more
frequent fluctuations of traffic volume. With that, it can be said
that the 24-h simulation (extreme) is an approximation of an
infinite horizon problem.

Traffic volume will increase substantially during these peak
periods. Even though the increase in demand during the differ-
ent peak periods is largely similar, the number of vehicles that
are actually released into the traffic network varies according to
the random seeds that are set before the simulations. Consid-
ering that PARAMICS is able to model various characteristics
(such as gap acceptance, lane changing, driver aggression, car
following, etc.) of vehicles on an individual basis, the outcome
of each simulation run varies with the use of different random
seeds. The following figures show how the current number of
vehicles in the traffic network typically changes for the three
different types of simulations. Note that in Figs. 9–11, a gray-
shaded region denotes a single-peak period.

A. Three-Hour Simulations

For the typical scenario with morning peak (3 h), 15 separate
simulation runs using different random seeds were carried
out for each control technique (SPSA-NN, hybrid NN-based
multiagent system, and GLIDE). Because the variances of the
outcomes of the simulations are small, the average values are
taken to be reasonable representation of a typical outcome. The
control schemes and the GLIDE benchmark are evaluated using
all two performance measures, namely 1) total mean delay of
vehicles and 2) current mean speed of vehicle. Table II shows
the respective average values of the total mean delay of vehicles
and the current vehicle mean speed at the end of the peak period

Fig. 11. Number of vehicles for an extreme scenario with multiple peaks.

TABLE II
TOTAL MEAN DELAY AND MEAN SPEED FOR TYPICAL

SCENARIO WITH MORNING PEAK (3 h)

(i.e., at 0900 h) for all these control techniques. The results
show that the SPSA-NN-based multiagent system as well as the
hybrid NN-based multiagent system outperforms the GLIDE
signal plans at the end of the 3-h simulation runs.

B. Six-Hour Simulations

The 6-h short extreme scenario is similar to the 3-h simu-
lations, wherein the total mean delay of vehicles and current
vehicle mean speed are used to evaluate the performances
of the techniques involved. The results for a 6-h simulation
with two peak periods are shown in Table III. Like in the
previous case, results shown in Table III were obtained by
taking the average of 15 separate simulation runs using different
random seeds for each control method. It can be observed
that the performance levels of the multiagent systems at the
end of the second peak period are rather similar compared to
their respective performance levels at the end of the first peak
period. The GLIDE benchmark, on the other hand, shows a sign
of degradation. However, it has been verified experimentally
(via observing PARAMICS Modeler) that all three techniques
managed to ease the traffic congestion at the end of the 6-h
simulations even though the traffic network is somewhat more
loaded when the GLIDE benchmark is being implemented. It is
also observed that the current mean speed of vehicles recovers
at the fastest rate at the end of the second peak period when
the hybrid NN-based multiagent system is implemented into the
traffic network.
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TABLE III
TOTAL MEAN DELAY FOR SHORT EXTREME SCENARIO WITH TWO PEAKS

TABLE IV
TOTAL MEAN DELAY FOR THE LONG EXTREME SCENARIO WITH

MULTIPLE PEAKS (24 h)

TABLE V
CURRENT VEHICLE MEAN SPEED FOR THE LONG EXTREME SCENARIO

WITH MULTIPLE PEAKS (24 h)

C. Long Extreme Scenario With Multiple Peaks (24 h)

Based on the successful results of the 3-h and 6-h simula-
tions, the control techniques are tested in simulation runs that
have significantly longer durations. The long extreme scenario
with multiple peaks is a hypothetical scenario designed to test
the robustness of the different techniques under extreme condi-
tions. Six separate runs are carried out using different random
seeds for each of the three control techniques. Once again, it has
been observed that the variances of all the simulation runs that
are performed for a single control technique are small. Hence,
the mean of these values provides a good representation of a
typical outcome for that particular control technique.

The simulation results are summarized in Tables IV and V.
It is evident that the GLIDE benchmark as well as the SPSA-
NN-based multiagent system fails to provide effective real-
time traffic signal control for the 24-h simulation period. It
can be observed that the total mean delay of vehicles begins to
increase steadily during the fifth peak period when the GLIDE
benchmark is being implemented. When the SPSA-NN-based
multiagent system is implemented, the average value of the total
mean delay starts to increase after the seventh peak period (at
around 2100 h). A similar degradation in performance is also
reflected in the current vehicle mean speed.

Fig. 12. Traffic network controlled by SPSA-NN-based multiagent system
after 24 h.

In Table V, it is shown that the current vehicle mean speed
comes to zero at the end of the fifth peak period when the
GLIDE benchmark is implemented. When SPSA-NN-based
multiagent system is implemented, the current vehicle mean
speed drops to almost zero after the seventh peak period.
On the other hand, the hybrid NN-based multiagent system
demonstrates its capability to provide effective real-time traffic
signal control even under this long extreme scenario. The
average value of the total mean delay of vehicles as well as the
current vehicle mean speed is maintained at a reasonable level
throughout the duration of the simulations.

It should be noted that the main reason for the overall drop in
performance for this long extreme scenario is the large number
of vehicle injection during the eight peak periods. The fre-
quency with which the traffic volume fluctuates is much higher
(as shown in Fig. 11) in this fictitious extreme scenario com-
pared to the former two cases, requiring the control techniques
to quickly adapt to cope with these frequent fluctuations in traf-
fic volume. Given this difficulty as well as the existence of other
constraints such as the actual capacity of the traffic network,
it is largely expected that the overall performance of all three
techniques will drop and the total mean delay will increase.

In order to better illustrate the conditions of the traffic
network at the end of the 24-h simulation runs, two two-
dimensional screenshots of the traffic network are taken from
the PARAMICS Modeler when the traffic network is controlled
by the SPSA-NN-based multiagent system (Fig. 12) and hybrid
NN-based multiagent system (Fig. 13). The two screenshots are
captured at 0030 h at the end of the 24 h.

The PARAMICS modeling environment was preset to denote
13 stopped or queued vehicles with a hotspot or red circle. As
shown in Fig. 12, the traffic network evolves into a pathological
state with oversaturation at 0030 h with the SPSA-NN-based
multiagent system due to the steady increase of mean delay
and mean stoppage time after 17 h. The number of congested
links is well over 30. Using the hybrid NN-based multiagent
system, congestions are confined to the upper section of the
traffic network (refer to Fig. 13), and the number of congested
links is reduced to less than ten.
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Fig. 13. Traffic network controlled by hybrid NN-based multiagent system
after 24 h.

D. Continuous Online Learning Capabilities
of the NN Models

For the approximated version of the infinite horizon problem,
it is very important that the control functions of individual
agents can produce good approximates of the optimal control
function each time the distributed control problem is restated.
Hence, the control algorithm as well as the whole multiagent
system needs to have a high level of adaptability. This implies
that the learning period for the multiagent systems will have to
vary from time to time depending on the nature of the dynamic
problem.

From the simulation results, it is observed that in comparison
to GLIDE, the overall percentage reduction in mean delay was
8%, 44%, and 50% for 3-h, 6-h, and 24-h simulations, re-
spectively, when SPSA-NN was used, whereas with the hybrid
NN-based multiagent system, the percentage reduction in mean
delay was 23%, 36%, and 78%, respectively.

These results indicate that the hybrid NN-based multiagent
system is able to effectively control the traffic signals in a
dynamically changing environment even as the complexity of
the problem increases. This indicates that the hybrid NN-based
multiagent system is able to adjust its weights parameters
effectively throughout the duration of the simulation so that the
signal plans it generates can accommodate the periodic as well
as random fluctuations of traffic volumes.

The differences in the performance of the hybrid NN-based
multiagent system and the SPSA-NN-based multiagent system
maybe due to their individual weight update algorithms. For
the SPSA-NN-based multiagent system, the weight update
algorithm follows the form of (9), and the gain sequence (or
learning rate) has to satisfy the classical stochastic approxima-
tion conditions defined in (4). Choosing an appropriate form
for the gain sequence is not a trivial matter as it would affect
the performance of the NN in the long run. This is because
the SPSA algorithm converges under conditions stated in [6],
and when SPSA is applied to adjust the neural weights, the
convergence property may result in premature convergence of
the neural weights. The weight update algorithm for the hybrid

NN-based multiagent system, however, is performed at various
stages, each involving tuning the weight parameters, learning
rate, and the neural connection in response to the changes in the
environment. Once the hybrid NN becomes a good approximate
of the optimal control function, the neural weights will be
updated by a smaller amount (or possibly not updated at all).
If, on the other hand, the external random dynamics produce a
significant change in the existing dynamics of the environment
(e.g., random injection of large amount of vehicles into the
traffic network), negative reinforcements will be received and
weights are updated again as the control functions do not con-
tinue to be a good approximate of the optimal control functions
anymore.

E. Cooperation and Learning Mechanisms
of the Multiagent Systems

The SPSA-NN-based multiagent system is a nonhierarchi-
cal multiagent system with fixed cooperative zones. Hence,
communication-based cooperation mechanisms (CCMs) are
only present within each cooperative zone and are essentially
in the form of lateral communication channels. Such a de-
sign results in a less complex multiagent system and eases
the process of implementation and offline optimization of the
various control parameters. However, the tradeoff is that each
agent within the SPSA-NN-based multiagent system will not
have the chance to obtain the overall perspective of the traffic
network (i.e., the regional perspective), and consequently, it can
only learn based on the perspectives it derived from its own
cooperative zone. At the same time, its collaborative actions
are limited to within its cooperative zone only. These limita-
tions contribute toward the factors affecting the performance
of the SPSA-NN-based multiagent system in the 24-h extreme
scenario with multiple peaks.

The agents in the hybrid NN-based multiagent system, on the
other hand, use mainly vertical-based communication channels
given the nature of its structure. Individual agents relay their
cooperative perspectives to their parent agents, which in turn
serve as arbitrators for them. Each agent also uses a multistage
online learning process. As a result of the hierarchical structure
and the multistage online learning process, this multiagent
system has a more complex design. Additionally, the process
of implementation as well as offline optimization of its control
parameters is also more time consuming. In this system, each
agent has the opportunity to gain the overall perspective of the
traffic network despite the fact that its cooperative zone is fixed
in size. The regional scope of the collaborative actions proves to
be advantageous in the 24-h extreme simulation scenario, where
traffic flow fluctuates frequently over a long period of time.

VIII. CONCLUSION

A hybrid NN-based multiagent system involving a novel
multistage online learning process has been successfully tested
together with an enhanced SPSA-NN-based multiagent system
in highly complex traffic simulation scenarios. Simulation re-
sults using actual data showed that both multiagent systems
achieved an overall better performance compared to GLIDE for
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the three simulation scenarios, the hybrid NN-based multiagent
system demonstrating clearly superior performance for the 24-h
extreme scenario. The results suggest that the hybrid NN-based
multiagent system can provide effective control of the large-
scale traffic network even as the complexity of the simulation
increases. This research work has extended the application of
hybrid computational intelligence techniques to a large-scale
real-world application using an approximated version of an
infinite horizon problem. For such applications, the concept
of effective continuous learning is of utmost importance given
the undesirability of having to retune the controllers from
time to time.
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