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ABSTRACT 

Model calibration is a crucial step in building a reliable microscopic traffic simulation application, 
because it serves as the additional check to ensure the model parameters accurately reflect the local 
driving environment, such that decisions made based on these results would not be misinformed decisions. 
Because of its stochastic nature and complexity, the calibration problem, usually formulated as an 
optimization problem, is often solved using heuristic methods. To-date, calibration is still a time-
consuming task because many of the adopted methods require many simulation runs in search of an 
optimal solution. Moreover, many aspects of the calibration problem are not fully understood and need 
further investigation. In this study, we develop another heuristics calibration algorithm based on the 
simultaneous perturbation stochastic approximation (SPSA) scheme, and applied it to calibration several 
networks coded in Paramics. Our results indicate that the new heuristic algorithm can reach the same 
level of accuracy with considerably less iterations and CPU time than other heuristic algorithms such as 
the genetic algorithm (GA) and the trial-and-error iterative adjustment (IA) algorithm. Applications of all 
three heuristic methods in a northern California network also reveal that some model parameters affect 
the simulation results more significantly than others. These findings can help modelers better choose 
calibration methods and fine tune key parameters.  
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INTRODUCTION 

Model calibration is the process that adjusts model parameters so that the simulated measurements (e.g., 
traffic volumes and speeds, path travel times) can match the field observed ones. This process is crucial to 
all simulation models, micro simulation in particular, because it serves as the check to ensure that the 
simulation models represent the real world traffic correctly and that misinformed decisions based on the 
results from an ill-calibrated model can be avoided. Unfortunately, calibration is also a time-consuming 
task, since micro simulation models are generally high fidelity and can easily have hundreds of 
parameters. It is not uncommon that even a medium size network [1] could take months to build, and 
most of the work time was consumed in calibrating these parameters [2]. Moreover, both the temporal 
and spatial scope of micro simulation has been considerably expanded to go beyond a freeway section [3, 
4] or an isolated location such as an interchange or an intersection [5] to include corridor networks [6-8] 
and city and region wide transportation networks over 520 km2 [9, 10]. In this trend, calibration task 
becomes an even more demanding task. Therefore, researchers begin to carry out systematic studies on 
how to calibrate the micro simulation models efficiently.  

Documented calibration efforts have usually formulated this problem as an optimization problem, where 
the optimal set of model parameters is sought to minimize the objective function, i.e., the measurement of 
the “distance” between simulation results and real world traffic measurements. Because of the stochastic 
nature of micro simulation and the complex relations between its parameters and its outcomes, it is 
difficult to compute the gradient information. Mathematical programming methods are thus not applicable. 
Researchers resort to heuristic methods to search optimal parameter values. For example, genetic 
algorithm [3, 4, 11, 12 and 13], simulated annealing [14], Complex algorithm [15] and even trial-and-
error enumeration [16] have been reported in literature. These methods automate the calibration process 
to a certain degree and it was generally reported that they improve simulation performance over the 
default model parameter values.  

Yet several important questions remain unanswered.  Micro simulation is a complex system that all 
parameters work together to influence its modeling results. In calibrating such a complex model, users 
could get trapped in a never-ending process of adjusting parameters at one place only to find problems 
popping up at others. To overcome this difficulty, Zhang et al [17] proposed a five-step procedure to 
divide the parameters into distinct groups that each can be calibrated individually with a certain order, so 
as to minimize the mutual interactions between different sets of parameters. For example, four major 
groups with relatively clear distinctions from each other, namely global driving behavior model 
parameters, local driving behavior model parameters, departure time and route choice model parameters 
and demand input [17] are identified. This calibration logic has also been implicitly applied in [18, 19]. 
Even within each group, however, it is still unknown whether there are key parameters that affect 
modeling results more significantly than others, and if the answer is yes, which are the key parameters.  
There are also lingering questions pertaining to optimization methods. Even though all heuristics methods 
were reported to obtain improved calibration results, did they get the “true” optimal set of parameter 
values? Which method can obtain similar or better calibration results with much less computational time?  
The latter is important to know as micro simulations are applied to larger and larger networks. Answers to 
these questions will help the analysts carry out model calibration more efficiently and reliably.   

This study attempts to answer the above questions through calibrating the driving behavior model 
parameters in Paramics. We first introduce the simultaneous perturbation stochastic approximation 
(SPSA) method [20] that has been used successfully in other fields [21]. This heuristic method differs 
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from others in that it does not rely on evaluating a large pool of feasible solutions when updating the 
searching direction at every iteration. Meanwhile, the search direction is along the gradient approximated 
at each iteration. We then implement the genetic algorithm (GA) and trial-and-error iterative adjustment 
method to calibrate the same set of parameters and compare them with the SPSA results. Next, we apply 
these three methods to the calibration of a northern California network, which sheds lights on some of the 
questions raised above. Finally, we discuss the application guidelines of these heuristic calibration 
methods.  

HEURISTIC CALIBRATION METHODS  

Heuristic methods start with a feasible parameters’ set(s) and evaluate the closeness between the field 
measurements and simulation under these feasible set(s). Based on rules unique to every method, unfit 
parameter sets will be replaced by better ones. This process is carried out iteratively until the gap is 
narrowed to an acceptable level. Three heuristics methods are introduced in this study, namely 
Simultaneous Perturbation Stochastic Approximation (SPSA), Genetic Algorithm (GA), and trial-and-
error Iterative Adjustment (IA). Since the last two are widely applied, they are only briefly presented here. 
Our major coverage is on the SPSA method.  

The Simultaneous Perturbation Stochastic Approximation (SPSA) Algorithm  

The introduction and formulation of the SPSA method draws mainly on the theoretical work from [20-22].  

The simultaneous perturbation stochastic approximation (SPSA) method works in the following way. For 
a system, the general objective function θL is a scalar-valued performance measure, and θ is a 
continuous-valued p-dimensional vector of the control parameters that can be manipulated to achieve a 
better system performance. In the micro simulation calibration context,θ would be the vector of selected 
parameters to be calibrated. It is common that a noise ε could occur when observing )(θL

)(
, that is, the 

observation θz would be: 

εθθ += )()( Lz  (1) 

Assuming )(θL  is differentiable over θ and the minimum is obtained at a zero point of the gradient, i.e., 
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With an initial guess 0θ (e.g., the default parameter values in the simulation software), SPSA method 
applies a series of “simultaneous perturbation” over the successive steps until the approximation of the 
gradient )(θg converges to zero almost surely (a.s.), under several regularity conditions. The readers are 
referred to [20] for the theoretical development of the regularity conditions. It is observed that for most 
engineering problems these conditions are almost automatically satisfied [20] with only one exception: 
the fitness value function is restricted from becoming excessively large in the calibration context. This 
would imply that the simulated results cannot represent the real world traffic at all when replacing the 
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default parameters in simulation with the estimated parameters ( kθ ). Since it could be avoided by 
restricting certain feasibility ranges, this would be unlikely to occur in the calibration process.  

Along the successive steps, kθ is updated recursively in the standard form: 

)ˆ(ˆˆˆ
1 kkkk ga θθθ −=+  (3) 

where the gain sequence  also needs to satisfy the regularity conditions, and is the derived 
gradient at each step.  

}{ ka )(ˆ •g
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where is a positive scalar (A1), and , are the measurements of the system under the 

perturbation , , respectively. The approximated gradient will read: 
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Spall [20] shows that by recursively updating kθ , the gradient will converge to zero that implies a local 
optimum, since it is unlikely that the approximation would settle down at a maximum or a saddle point 
because of the stochastic nature of the algorithm.  

The gain sequences of and generally take the form of power functions:  ka kc

γα )1(
1,

)1( k
c

kA
aa kk +

=
++

=  (7) 

where is the iterator, and k A is a constant introduced to stabilize the optimization process. 
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The above SPSA procedure is suitable for unconstrained optimization, and it has to be adapted to 
accommodate the constraints described above, i.e., imposing a lower and an upper bound for each 
component (the so-called “box” constraints). Sadegh [22] proposed a projection method to restrict 

at iteration k to fall in the feasibility range. It simply replaces any violating with the 
nearest

k R∈θ kθ
θθ G∈ )(  is the feasibility set of the parameters to be calibrated:  θGk , where 

))ˆ(ˆˆ(ˆ
1 kkkkk gaP θθθ −=+  (8) 

The perturbed vectors in evaluating the system performances will also be projected into the 
feasibility region in the same manner. By enforcing an additional regularity condition (Proposition 1 in 
[22]) over the constraints, constrained SPSA is still able to converge to a Karash-Kuhn-Tucker point 
(zero-gradient as one of the necessary conditions) a.s. 

kkk c ∆±θ̂

Based on the above constrained SPSA method, we develop a SPSA calibration algorithm as follows: 

SPSA Algorithm for Micro Simulation Calibration  
Step 1: Initialization and Selection of Algorithmic Coefficients. 

1.0 Set iterator k  = 0;  
1.1 Select the set of parameters to be calibrated asθ  and normalize it; 
1.2 Pick an initial feasible solution of 

0θ (e.g., default values in the simulation software); 
1.3 Select nonnegative algorithmic parameters  a, c, A, α andγ . 

Step 2: Simultaneous Perturbation. 
Generate a p-dimensional random perturbation vector k∆ , where each component is mutually 
independent Bernoulli ±1 distributed with probability of ½ for each ±1 outcome. 

Step 3: Loss Function Evaluation by Running Simulation with Perturbed Parameters. 
3.1 Perturb the vector  withkθ̂ kkc ∆±  as in (4-5);  
3.2 Project the perturbed vectors onto )( kG θ from (7);  
3.3 Evaluate the calibration performance by running simulation with perturbed parameter sets 
obtained in  (4-5). 

Step 4: Compute the Approximate Gradient. 
Calculate the approximated gradient from (6). 

Step 5: Parameter Update. 
Update  with (8). kθ̂

Step 6: Check  convergence. 
Check if the maximum number of  iterations has been reached or convergence criterion is met. If 
yes, stop. If not, set k =k +1 and go to step 2. 

Genetic Algorithm (GA) 

Genetic algorithm (GA) is a popular calibration method for micro simulation, and has been shown to 
obtain near-global optima (e.g., [3-4, 11-13]). We refer the readers to [24] and [17] for an introduction of 
GA as well as detailed guidelines for calibration applications.  
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Trial-and-error Iterative Adjustments (IA) 

The trial-and-error iterative adjustment method first enumerates the feasible solutions by dividing the 
feasible region into equal intervals and picking a value from each interval, then runs the simulation based 
on combinations of selected parameter values, often one parameter at a time. One can make the intervals 
smaller to increase the precision. This process continues until both precision requirements and the 
performance target are met. This method is simple and easy to apply. Thus, many calibration efforts ([15, 
16, 25]) rely on trial-and-error to find a suitable set of model parameters. However, the choice of the 
feasible range and incremental steps of each parameter is quite ad hoc, often relying on the analyst’s 
modeling experience and judgment.  

DRIVING BEHAVIOR MODEL PARAMETER CALIBRATION  

Global and Local Model Parameters 

A reliable driving behavior model in a micro simulation ensures that local travelers’ car-following, lane-
changing and merging behavior can be realistically represented in the simulation. Following the 
framework in [17], the driving behavior model parameters are categorized into two related groups: 1) 
global parameters that affect driving behavior throughout the network, 2) local parameters that are 
peculiar to bottleneck locations, such as lane-drop locations or junctions where several roads meet, e.g., 
on-ramp merging sections or intersections.   

Global model parameters and local model parameters are calibrated separately in this study. This idea is 
akin to highway capacity analysis, where one first identifies a set of ideal conditions and the ideal 
capacity under such conditions, then adjusts the ideal capacity for non-ideal conditions through discount 
factors to obtain the prevailing capacity.  Similarly, we want to identify typical road sections for the 
calibration of global parameters, and road sections with special features (such as sharp curvatures, lane 
drops, on-ramps and intersections) for the calibration of local model parameters.  Through such 
calibration, we want to obtain a set of parameters that can reproduce the flow capacities of various types 
of road sections.  

Different simulation packages have their own underlying driving behavior models and corresponding 
parameters. The Paramics package (V5) has ten such parameters, as shown in Table 1[26].  
(TABLE 1) 

The Calibration Procedure  

(Figure 1) 
 

Figure 1 shows global and local parameter calibration in more detail. The process begins with 
extracting/creating a sub-network from the entire simulation network that has been coded and checked for 
coding errors. A typical road section is first selected at one location where no capacity affecting road 
features occur in the vicinity. That is, a sub-network consists of a typical road section with no special 
features such as i) on-ramps or off-ramps, without lane addition or lane drop; ii) sharp horizontal curves; 
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iii) significant vertical grade and iv) operational restrictions. One then performs calibration to obtain an 
optimal set of global parameter values. These values will be used as default throughout the network. Then 
for each bottleneck location, one extracts a sub-network and calibrates its local parameters against the 
bottleneck capacity and other selected traffic flow characteristics (such as the shape of the flow-density 
diagram). The process is complete when all bottleneck locations are calibrated.  

Calibration target: Link Capacities 

Various measurements have acted as calibration targets. A conveniently applicable measurement is the 
flow profile, where the 30-second or 1-minute flow rates at adjacent detector locations shall be matched 
in the simulation. This has been used in [3-4] for driving behavior model calibration. However, most 
networks may not have well-placed detector stations suitable for this approach, and finding such a place 
appropriate for global parameter calibration is even harder. Moreover, since the goal of driving behavior 
model calibration is to ensure the simulated roadway has the same maximum flow rates as in the field, a 
fundamental diagram (FD) approach is selected to calibrate the link capacities.  

The FD approach is based on capacity and the shape of the flow-occupancy diagram (fundamental 
diagram) [27]. If the car-following model is able to reflect reality, field observed capacities of those 
sections as well as critical occupancies when the capacities occur should be closely replicated. As 
capacity and critical occupancy are not influenced by traffic volumes, an accurate O-D demand matrix is 
not necessary. Therefore, it is possible to use an artificial demand matrix in this approach. 

In order to identify capacity and critical occupancy, one needs to increase traffic volume gradually so that 
a peak is clearly created. The goal is to obtain the top portion of the fundamental diagram for capacity and 
critical occupancy calculation (see Figure 6). Paramics provides a demand factor, which globally adjusts 
volume between each O-D pair by a certain percentage ranging from 0% to 200%. This factor is used to 
create the demand fluctuations for generating the shape of fundamental diagrams under different 
parameters in calibration. Then the maximum flow rate and the corresponding critical occupancy are 
estimated and compared with their counterparts obtained from field data. Readers can get the 
implementation details from [17].  

The closeness between the simulated capacities and field observed ones is measured using the following 
fitness function: 

∑
=

×+=
M

i
ii OccGEHACapGEHF

1
)]()([  (9) 

Where: 

M: number of data collection locations 

Capi: capacity of all general purpose lanes in one direction on which the data collection location i is 
located; 

Occi: critical occupancy of a link on which the data collection location i is located. 

A: a weighting factor; in general, the GEH values of occupancy are found to be one magnitude lower than 
those of capacity, the value of A is chosen to be 10 in this work;  
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and GEH is a statistics by the British engineers [28] that reads: 
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(10) 

where Vp = value predicted by the model and  Vm = value measured in the field. Note that the perfect 
match will result in a zero of the GEH value.  

APPLICATION IN A NORTHERN CALIFORNIA NETWORK 

State Route 99(SR-99) in the city of Sacramento, California is a congested corridor [17]. A network has 
been built to study the high occupancy vehicle (HOV) lanes along a 24-mile section of freeway in 
southbound, starting from MP (milepost) 24.35 to the county line. The study period spans one hour of PM 
peak, from 2:30 to 3:30. Because of the closely located interchanges and the existing HOV facilities, the 
driving behavior model is particularly important for the simulation performance. This network is then 
chosen to test various heuristics calibration methods; furthermore, a few PeMS loop detectors [29] 
provide the traffic measurements necessary for calibration needs, including flow rates and occupancies in 
a resolution as fine as 30 seconds.  

The site for global calibration is selected based on those guidelines discussed above: a straight road 
section with no drastic changes in geometric features. The network is examined and a section between 
Florin Road and Mack Road meets the needs. This section is 2-mile long with two general purpose lanes 
and one HOV lane. A sub-network is then constructed with this section.  

Global Model Parameter Calibration Results 

The search space for global parameters calibration includes four dimensions: mean target headway 
(MTH), mean reaction time (MRT), driver aggressiveness (AGGR) and driver awareness (AWAR) 
(TABLE 1). Through an ordinary division of each dimension, e.g., a resolution of 0.02, the total number 
of feasible solutions can easily reach near 5 million. While enumerating all feasible solutions and then 
selecting the best set becomes impractical using the trial-and-error IA method, genetic algorithm (GA) 
and SPSA algorithm can generally obtain an optimal solution in much fewer number of iterations. For 
example, the genetic algorithm took only 600 simulation runs (population 30 times generation 20) to 
converge to a local optimal solution. Naturally one would wonder how good this solution is. Thus a trial-
and-error IA process that searches exhaustively a reduced solution space (using a coarser division) is 
conducted to benchmark the calibration results.  

Two separate exhaustive searches were carried out on the SR-99 network [17], one enumerating MTH 
and MRT with fixed mean driver aggressiveness and mean driver awareness, and the other, vice versa. 
For simplicity, herein we only report the first one. The first exhaustive search keeps aggressiveness and 
awareness unchanged, and enumerates MTH from 0.6 through 2.1 and MRT from 0.6 through 1.8, with 
the increment of 0.02 for each parameter. The results of IA exhaustive search are shown in Figure 2 and 
Figure 3.  
(Figure 2) 
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Figure 2 visualizes the changes of the fitness value (FV) under various MTH-MRT combinations. First 
one can notice numerous local optima marked by small “valleys”, denoting the lowest FV within the close 
vicinity of the local minimizers. Even though these local optimal could be caused by the stochasticity of 
micro simulation rather than the changes of MTH-MRT pairs, this feature adds to the difficulty of seeking 
the global optima. Second, one can also notice that a certain range of MRT values produced a similar 
level of FVs, marked by a big “valley”. In the contour plot of Figure 3, correspondingly, a downward-
bending band of low FVs is clearly shown, and the global optimal MTH-MRT combinations falls in the 
center of the band (the intersection of the two white dashed lines). These two figures indicate that in this 
network context, the simulation performance is more sensitive to the changes of MRT than those of 
MTH; and similar link capacities can be obtained from a certain range of the combinations.  
(Figure 3) 

(Figure 4) 

Both GA and SPSA are run on the same reduced search space. Their FV convergence processes are 
shown in Figure 4 and the results are summarized in TABLE 2. Generally, both GA and SPSA can reach 
stable solutions that are very close to the global optimum obtained from the exhaustive enumeration. 
However, the fitness values in the SPSA calibration process show a quick drop during the first few 
dozens of iterations. Its FV drops to an acceptable value (lower than 2) in less than 50 simulation runs. 
Because the overwhelming proportion of computation time is spent on simulation runs, the SPSA 
calibration algorithm can obtain an acceptable solution in significantly less time (TABLE 2). But GA 
manages to reach a better solution in this context.  

(TABLE 2) 

Calibration of Local Driving Behavior Parameters  

Based on the global parameters calibrated above, local driving behavior model parameters are calibrated 
subsequently. In the SR-99 network, the SR-99 southbound section between Fruitridge Road and Mack 
Road, including the Florin Road / SR-99 interchange, has three general purpose (GP) lanes to the north of 
the interchange but only two GP lanes to the south. The lane drop section, two on-ramps and two off-
ramps, create frequent merging and weaving maneuvers. This section is thus selected for local parameter 
calibration [17]. The demand for this sub-network is obtained via the OD Estimator in the Paramics suite 
[30].  

Calibration Results of Local Parameters  

One bottleneck link (lane drop) and two onramps in the sub-network generate a total of 15 parameters to 
be calibrated, and the calibration target is the truncated capacity of the link upstream of the bottleneck. 
The target link has one PeMS detector group (VDS 312513) that provides flow and occupancy data in 
five-minute intervals.  

The trial-and-error IA process becomes impractical in this context because of the large search space. Only 
GA and SPSA calibration algorithms are implemented and compared, shown in Figure 5 and TABLE 3. 
In Figure 5, the FVs from SPSA again show a quick drop during the first few evaluations. However, it 
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becomes very oscillatory during the remaining process. A close examination of the successive solutions 
indicate that only very minor changes occur from one iteration to the next, and generally it falls within the 
close region around the parameters’ values in TABLE 3. It implies that the capacity of the target link is 
very sensitive to the changes of parameter values.  

As to the GA method, a smoother convergence process is observed in terms of average FVs (Avg. Fitness 
in Figure 5). The ranges between the maximum and minimum fitness values within successive GA 
generation become smaller during the process, which implies that GA method manages to reach a more 
stable optimal solution.   

(Figure 5) 

TABLE 3 shows the optimized local parameters. The fitness value associated with the set of parameters 
from GA is 1.59, smaller than that from SPSA (4.94). According to some application guidelines of micro 
simulation [31], both are considered acceptable. But one can notice that these two sets are not close to 
each other. The fundamental diagrams under the set of best-matching parameters and field observations 
are plotted in Figure 6, where the field observed link capacity and critical occupancy are estimated to be 
5,020 veh/hr and 0.10. The counterparts from SPSA and GA are (4,715 0.083) and (4,972  0.13), 
respectively. The GA results are better and thus selected in the application; but GA takes much longer 
time to produce those results than the SPSA method. Compared with the global parameter calibration 
(Figure 2, 3 and TABLE 2), various sets of local parameters can produce similar simulation performances. 
As reported elsewhere [17], the calibrated parameters can be verified to provide better simulation results 
against different data set. The verification implies that it is reliable to use such heuristics methods in 
micro simulation. It also came to our attention during our sessions’ presentations at the TRB annual 
meeting that Balakrishna et al [32] also apply SPSA to calibrate the entire set of micro simulation model 
parameters including O-D matrix, driving behavior and route choice behavior model parameters. 
However, the mutual influence of different parameter groups makes it hard to examine their separate 
impacts upon the simulation performance as indicated in local parameter calibration.   

(TABLE 3) 

(Figure 6) 

APPLICATION GUIDELINES OF SPSA IN CALIBRATION  

SPSA is a method easy to implement, and generally shows good performance, especially when there are 
observation errors. Similar to other heuristics methods, selection of appropriate algorithmic parameters 
(including a, c, A, α and γ  in SPSA) is of crucial importance to its performance. For example, two 
different initial values of a generate diverse convergence performances when searching the best MTH-
MRT pair (Figure 7), although they both start with the same fair guess (MTH = MRH = 1.60 seconds). 
Further analysis shows that in the first experimentation it takes only about 15 iterations to reach the band 
(see Figure 3), while the second experiment takes about 35 iterations to reach the same region. However, 
more experimentation indicates that choosing too large and , i.e., larger a and c that aims at an 

even faster convergence could lead to drastic changes in and the calibration process may not even 
converge. To assist the further application of this method, therefore, some general guidelines [21] and our 
experiences are summarized here.  

}{ ka c
ˆ

}{ k

}{ kθ
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(Figure 7) 

For the value of c, Spall [21] recommended using the standard deviation of the performance measure 
(fitness function value) from a few runs under the initial value 0θ , so that the initial perturbation steps do 

not go excessively large. For , a stabilization parameter A is introduced as}{ ka α)1( ++
=

kA
ak

a
, and 

10% (or less) of the predefined maximum number of iterations proves practically effective for the value 

of A. and the value of a is chosen such that α)1( +A
a

ˆ

(i.e., the initial step of change) times the magnitude 

of would be equal to the smallest change in the magnitude of )(ˆ 00 θg 0θ  during the early iterations. We 

recommend the changes of  during the first few iterations not exceeding 2-4%.  }{ kθ̂

)(±

The other issue concerns the selection of stop criteria. Common criterion determines that a process 
converges when the percentage change of the objective function value is under a certain threshold, e.g., 
2%. It performs well for problems with no observation errors ( ); but it is not the case in micro 
simulation calibration, where performance measures such as the FV defined in equation (9) can easily 
have a variation larger than 2% even under the same set of parameters. For example, in Figure 7, most 
FVs remain under 2 but some variations exist. Therefore, a predefined maximum number of iterations and 
an acceptance level of objective function values are better indicators to decide when to stop the 
calibration process.   

kε

CONCLUSIONS 

The calibration a micro simulation is a complex problem that often defies mathematical programming 
based optimization methods and calls for reliable and more efficient heuristic optimization methods. In 
this study, we introduce another heuristic optimization method, simultaneous perturbation stochastic 
approximation (SPSA) to calibrate driving behavior model parameters. Compared to other heuristics 
methods such as the genetic algorithm, this method can generally obtain an acceptable set of parameters 
in much less time. Nonetheless, one cannot safely say one particular method would outperform all others 
in all cases; in the numerical experimentation, genetic algorithm can reach better and stable solutions. 
This finding can help the analyst determine the degree of tradeoff between calibration accuracy and 
computational time. Even though more powerful software and hardware advances such as parallel 
computing can nowadays reduce the computational burden, efficient algorithms such as SPSA are still 
able to significantly save the personnel and computational resources when calibrating micro simulation 
models.  

Micro simulation responds more sensitively to the changes of some parameters but remains relatively 
invariant to others in certain ranges of parameter values. In the context of global driving parameters, for 
example, mean reaction time affects the link capacities more significantly than others in the tests. 
However, the formulated optimization problem could have numerous local optima; various calibration 
methods, or even different initial conditions for the same method, could produce different set of 
parameters. Besides using the performance measures such as fitness functions and fundamental diagrams, 
analysts should exercise their engineering judgment in evaluating their calibration results and choose the 
best set of parameter values.  
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TABLE 1 Global and Local Parameters 
Parameter 
Category Parameter Name Feasible Range Unit Description 

Mean Target 
Headway 0.6~2.4 Second Mean headway between a vehicle and its 

following vehicle 

Mean Reaction 
Time 0.4~1.6 Second 

Mean time lag between a change in speed in a 
leading vehicle and the following vehicle’s 
reaction to this change 

Driver 
Aggressiveness 0.2~0.8 (mean) N/A A distribution that determines how long a 

headway is accepted by a DVU 

Global 
Parameters 

Driver Awareness 0.2~0.8 (mean) N/A 
A distribution that affects the use of a longer 
headway when a vehicle approaches a lane 
drop or a ramp 

Link Headway 
Factor 0.5~2.5 N/A Adjustment factor for the mean headway on a 

link 
Link Reaction 
Factor 0.5~2.5 N/A Adjustment factor for the mean reaction time 

on a link 
Ramp Headway 
Factor 0.5~2.5 N/A Adjustment factor for the mean headway on a 

ramp 

Minimum Ramp 
Time 1~3 Second 

Minimum time that a DVU remains on a 
ramp before considering merging into the 
freeway 

Ramp Awareness 
Distance 1~300 Meter A distance at which a freeway DVU is aware 

of an approaching ramp 

Local 
Parameters 

Sign-posting 1~300 Meter 
A distance from the hazard that the most 
aware vehicles become aware of the hazard 
ahead. 
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TABLE 2    Numbers of Performance Evaluations under Various Algorithms at Convergence 

Optimal Solution 
Algorithm 

Total Number 
of FV 
Evaluations Fitness Value Mean Target Headway 

(second) 
Mean Reaction 
Time (second) 

CPU Time 
Taken (hour) 

IA 2,400 0.15 0.96 1.24 12.30 
GA 600 0.61 0.96 1.25 3.1 
SPSA 150 0.70 0.87 1.27 0.9 
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TABLE 3  Best Optimized Local Parameters 
Bottleneck 
(mainline north of the 
interchange) 

On-Ramp from 
Fruitridge Road WB 
 

On-Ramp from 
Fruitridge Road EB 
  

GA SPSA GA SPSA GA SPSA 
Link Headway Factor 0.63 0.93 1.96 0.91 0.53 1.18 
Link Reaction Factor 1.58 0.99 0.93 1.13 0.80 1.06 
Sign-posting 3043 801 924 802 759 805 
Ramp Headway Factor --- --- 1.13 1.13 1.08 0.99 
Minimum Ramp Time --- --- 2.94 1.44 1.28 1.64 
Ramp Awareness 
Distance --- --- 212 484 8.72 245 
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Figure 1 Detailed Global/Local Parameter Calibration Process 
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Figure 2  Mesh Figure from IA Exhaustive Search (Network SR-99) (with Fixed AGGR and AWAR) 
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Figure 3  Contour Plot (MTH-MRT) from IA Exhaustive Search (SR-99) (with Fixed AGGR and AWAR) 
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Figure 4 GA and SPSA based global parameter calibration 
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Figure 5 Local Parameter Calibration Convergence Diagram 
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Figure 6 Best Simulation Results vs. Field Observation 



Ma, Dong and Zhang  - 25 – 
 
 

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

Number of Simulations

F
itn

es
s 

V
al

ue
FV Reduction Under SPSA with Various Control Parameter Values (SR−99)

 

 
a = 0.0035
a = 0.0015

 
Figure 7 Experimentation with SPSA Algorithmic Parameters (SR-99) 
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