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Abstract This paper  proposes a modification to the 

simultaneous per tu rba t ion  stochastic approximation 
(SPSA) methods based on the comparisons made be- 
tween the first o rder  and the second order  SPSA 
(1SPSA and 2SPSA) algori thms f rom the perspective of 
loss function Hessian. At finite iterations, the conver- 
gence rate depends on the matr ix  conditioning of the 
loss function Hessian. It is shown that  2SPSA con- 
verges more  slowly for a loss function with an ill-con- 
ditioned Hessian than the one with a well-conditioned 
Hessian. On the other hand, the convergence rate of 
1SPSA is less sensitive to the matr ix  conditioning of loss 
function Hessians. The modified 2SPSA (M2SPSA) 
eliminates the e r ro r  amplification caused by the inver- 
sion of an ill-conditioned Hessian at finite iterations 
which leads to significant improvements  in its conver- 
gence rate in problems with an ill-conditioned Hessian 
matrix.  Asymptotically, the efficiency analysis shows 
that M2SPSA is also superior  to 2SPSA in terms of 
their convergence rate coefficients. It  is shown that for 
the same asymptotic convergence rate, the ratio of the 
mean square er rors  for M2SPSA to 2SPSA is always 
less than one except for a perfectly conditioned Hes- 
sian. 

1. INTRODUCTION 

The recently developed simultaneous perturbation sto- 
chastic approximation (SPSA) method has found many ap- 
plications in areas such as physical parameter estimation 
and simulation-based optimization. The novelty of the 
SPSA is the underlying derivative approximation that re- 
quires only two (for the gradient) or four (for the Hessian 
matrix) evaluations of the loss function regardless of the 
dimension of the optimization problem. There exist two 
basic SPSA algorithms that are based on the "simultaneous 
perturbation" (SP) concept and that use only (noisy) loss 
function measurements. The first order SPSA (1SPSA) is 
related to the Kiefer-Wolfowitz (K-W) stochastic ap- 
proximation method (Spall, 1992) whereas the second or- 
der SPSA (2SPSA) is a stochastic analogue of the determi- 
nistic Newton-Raphson algorithm (Spall, 2000). There 
have been several studies that compare the efficiency of 

1SPSA with other stochastic approximation (SA) methods 
(e.g., Spall, 1992; Chin, 1997; Spall et al., 2000). It is 
generally accepted that 1SPSA is superior to other first- 
order SA methods (such as the standard K-W method) due 
to its efficient estimator for the loss function gradient. 

Spall (2000) shows that a "standard" implementation 
of 2SPSA achieves a nearly optimal asymptotic error, with 
the asymptotic root-mean-square error being no more than 
twice the optimal (but unachievable) error from an infea- 
sible gain sequence depending on the third derivatives of 
the loss function. This appealing result for 2SPSA is 
achieved with a trivial gain sequence (E k = 1/k in the no- 

tation below), which effectively eliminates the nettlesome 
issue of selecting a "good" gain sequence. Because this 
result is asymptotic, however, performance in finite sam- 
ples may sometimes be improved using other considera- 
tions. 

The purpose of this paper is to provide a comparison 
between 1SPSA and 2SPSA from the perspective of the 
conditioning of the loss function Hessian matrix. To 
achieve the objectivity of the comparison we also suggest 
a new mapping for implementing 2SPSA that eliminates 
the non-positive-definiteness while preserving key spectral 
properties of the estimated Hessian. There are two ap- 
proaches to compare different algorithms: theoretical and 
empirical. The theoretical approach attempts to discover 
the asymptotic convergence rate of an algorithm that will 
hold for general loss functions. On the other hand, the em- 
pirical approach generally assesses different algorithms 
based on a few selected examples. Our comparisons in 
this paper will focus on both the empirical results at finite 
iterations and the theoretical results on the asymptotic ef- 
ficiency. The numerical examples illustrating the empiri- 
cal results at finite iterations will be carefully chosen to 
represent a wide range of matrix conditioning for the loss 
function Hessians. The asymptotic results cover most pa- 
rameter domains for the gain sequence specification. 

2. MATRIX CONDITIONING AND ITS RELATION TO 
2SPSA 

The stochastic approximation (SA) algorithms are the 

general recursions for the estimate ( 0k ) of a solution ( 0* ) 

with dimension p. The core recursions for the SPSA algo- 
rithms are 
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1SPSA (Spall 1992)" 

()k+l - Ok - a k  gk  (Ok) ,  k = O, 1, 2 . . . .  

2SPSA (Spall 2000): 

O k + l - O k - - d k H k l g ,  k ( O k ) ,  H k  = f k ( H k ) ,  

(1) 

(2a) 

• "~-k k --  1 - H k - 1  + ~ / - ) k ,  k = O, 1, 2 . . . .  (2b) 
k + l  k + l  

where a k and a-- k are the scalar gain series that satisfy 

certain SA conditions, gk is the SP estimate of the loss 

function gradient that depends on the gain sequence of 

c k = c / k r ,  f t k  is the SP estimate of the Hessian matrix, 

and J~)c maps the usual non-positive-definite Hk to a posi- 

tive definite p×p matrix. Readers are referred to Spall 
(1992, 1998, 2000) for more detailed definitions and dis- 
cussions on implementation aspects, including some pos- 
sible forms for the mapping fk • 

2.1 A new f o r m  o f  mapp ing  f k f o r  2SPSA 

One crucial aspect of implementing 2SPSA is to de- 

fine the mapping fk from H k to H k since the former is 

hardly positive definite in practice. We suggest the fol- 
lowing approach that eliminates the non-positive- 
definiteness while preserving key spectral properties of 

Hk.  First, we compute the eigenvalues of Hk and to sort 

them into descending order: 

A k - diag[/~l, ;~ 2 ..... 2Cq_l,2Cq,2Cq+ 1 ..... 2p ] (3) 

where/~q > 0 a n d / ~ q + l  <-- 0. Next, by considering that all 

the negative eigenvalues are unphysical and are caused by 

errors in H k we replace them together with the smallest 

positive eigenvalue with a descending series of positive 
eigenvalues" 

fbq -- F_.~q_l , "~'q+l -- l?.~q . . . . .  fb 1) -- 'f'f~p-1, (4) 

where the adjustable parameter 0 < ~ < 1 can be specified 
based on the existing positive eigenvalues 

- 2  

Numerical experiments show that large eigenvalues (e.g., 
2l, '12) quickly approach near steady values in iterations 

whereas small eigenvalues (e.g.,/;q,/~q+l) v a r y  noticeably 

per iteration. Hence, the smallest positive eigenvalue (/~q) 

has also been redefined at each iteration to avoid its possi- 
ble near-zero value. Equations (4) and (5) indicate that the 
spectral character of the existing positive eigenvalues as 
measured by the ratio of its maximum to minimum values 
is extrapolated to the rest of the matrix spectrum. The 

specification of (5) bears an ad hoc feature that is COl-nrnon 
in all the extrapolation techniques. Other forms of specifi- 

cations such as ~ = (3.q_ 1/~1)(q-2)/2 O1" g = 1 would also 
I 

effectively eliminate the non-positive-definiteness. Since 
the separating point between the positive and negative ei- 
genvalues q slowly increases from 1 to p, we find numeri- 
cally that the specification based on (5) yields relatively a 

faster convergence rate in most cases. Since H k is sym- 

metric it is orthogonally similar to the real diagonal matrix 
of its real eigenvalues (e.g., Horn and Johnson, 1985, p. 
171) 

H k = PAk  p T  , (6) 

where the orthogonal matrix P consists of all the eigen- 

vectors of H k , which are usually derived together with 

the eigenvalues (e.g., Press, 1992, p. 460). Now, the map- 
ping fk can be expressed as 

f k (-Hk ) = Pf'lk p T  , (7) 

where Ak is the diagonal matrix A k with part of its ei- 

redefined according to (4). Since it is H~ -1 that genvalues 

is used in the 2SPSA recursion (2a) the mapping (7) with 

the available eigenvectors of Hk also leads to an easy in- 

version of the estimated Hessian: 

H k 1 - p A ; 1 p  T . (8) 

The 2SPSA (2) based on the mapping (7) makes the pro- 

cedure of eliminating the non-positive-definiteness of He 

a precise one. It is noted that the key parameters needed 
for the mapping (6 and 5lq_ 1 ) are internally determined by 

H k at each iteration. This is different from some other 

forms of fe where an externally prescribed number series 

is needed. 

2.2 Ef fec t  o f  matr ix  condi t ion ing  on 2SPSA  

It is noted that the 2SPSA recursion (2a) involves 

computing the inverse matrix H~ -1 . The mapping fk  de- 

fined by (7) guarantees that Hk is a nonsingular matrix. 

Our mapping procedure of replacing a possible near-zero 

with a better behaved /~q also eliminates the possibil- 

ity of a near-singular matrix. However, the elements of 

H k resulted from the SP approximation and imperfect 

measurements of the loss function are subject to errors. 
These errors will directly affect the computed matrix in- 
verse. An underlying rationale for 2SPSA is the strong 

convergence of both t) k and its Hessian (Spall, 2000): 
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Ok --+ 0",-Hk (Ok) --+ H(O*) (ahnost surely) as k --+ oo .(9) 

Thus, the convergence rate of 0/~ at finite k should be re- 

lated to that of It k . The recursion (2a) indicates a direct 

relation: the convergence rate of O k is proportional to the 

convergence rate of H k 1 . Therefore, the performance of 

2SPSA will be sensitive to how the errors are amplified 
through the matrix inversion. 

The amplification of errors in a matrix inversion can 
be quantitatively described by its matrix condition number 
~-with respect to a matrix norm (e.g., Horn and Johnson, 
1985, p. 336) 

where II'll denotes matrix norm. For a symmetric Hessian 

matrix H with all positive eigenvalues, its condition num- 

ber with respect to the spectral norm ( ~ 2 )  is the ratio of 

the maximum eigenvalue to the minimum one (Horn and 
Johnson, 1985, p. 340) 

/f,¢ (H)  -/~max / "~min • ( 11 ) 

It can be shown that when H k only slightly deviates from 

the exact H(O*), the amplification of the errors through 

the matrix inversion is approximately proportional to the 
matrix condition number (Horn and Johnson, 1985, p. 336) 

IIV: I1 11 < 

ifll llll.,ll l, 
where AH = Hk - H  is the perturbation to the exact Hes- 

sian. It is noted that depending on how Hk is derived the 

perturbation matrix AH = Hk - H may also change with 

7c. Based on our analyses of (2a) and (12) we can conclude 
that the convergence rate of 2SPSA for an ill-conditioned 
Hessian of a greater ~ H )  will be slower than a well-con- 

ditioned Hessian of a smaller K(H). Since 1SPSA (1) does 
not work with matrix inverses, the additional errors intro- 
duced by matrix inversion that is directly connected to 
~/-/) will not exist in 1SPSA. 

3. MODIFIED 2SPSA 

3.1 Description of a modified 2SPSA (M2SPSA) 

Several numerical studies have suggested that 2SPSA 
may outperform 1SPSA in practice (e.g., Spall, 2000; 

Luman, 2000). The underlying reason can be understood 
as follows: 1SPSA prescribes the gain series (ak) in the 

whole iteration process whereas 2SPSA derives a gener- 

alized gain series (E k H k 1 ) that is adapted to near opti- 

mality at each iteration. However, based on our analyses 
in the last section, the inverse of the estimated Hessian 

generally amplifies the errors inherited in H k for a non- 

perfectly conditioned matrix (~:>1). To avoid computing 
inverse of an ill-conditioned and error-bearing matrix 
while still optimizing the gain series at each iteration we 
can modify the first recursion for 2SPSA (2a) by replacing 

/lk in the mapping f/~ (7) with A--- k that contains constant 

diagonal elements 

dk+l =Ok - ~kX~-12~ (Ok), (13) 

where 2k is the geometric mean of all the eigenvalues of 

Hk 

~L -- (~1~2 "'" ~q-l~q~q+l "'" ~l' )1/p (14) 

The recursions (13) and (2b) together with (3)-(5) and (14) 
form a modified 2SPSA (M2SPSA) that takes advantage of 
both the well-conditioned 1SPSA and the higher order 
convergence rate of 2SPSA. Following Spall (2000), both 
gain series a k and a- k are picked as proportional to 

(k + A) -°~ , A _> 0, with c~ (= 0.602) near its theoretically 

allowed low value to achieve fast convergence with finite 
iterations. The proportionality coefficient a in 1SPSA de- 
pends on the individual loss function and is generally se- 
lected by a trial-and-error approach in practice (e.g., Spall, 
1998). On the other hand, 2SPSA removes such an un- 
certainty in selecting the proportionality coefficient since 
the near-optimal selection of its E is 1 (Spall, 2000). The 
crucial property that a in 1SPSA is dependent on the indi- 
vidual loss function has been built into 2SPSA by its gen- 

gain series ( (k + A) -c~ H~-I ). From this perspec- eralized 

tive, our M2SPSA (13) can be considered as an extension 

of 1SPSA in which a is replaced by a scalar series 2,--k -1 

that depends on the individual loss function and varies 
with iteration. 

3.2 Asymptotic efficiency analysis 

To see further connections between M2SPSA and 

1SPSA we note the asymptotic normality of t~ k in 1SPSA 

(Spall, 1992) 

k fl/2 (O k --0") dist ) N(~:,Z) as k-+oo, (15) 

where the mean ~: depends on the third derivatives of the 

0* loss function at and generally vanishes except for a 
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special set of gain sequence. The covariance matrix X for 
c~ < 1 is orthogonally similar to the diagonal matrix that is 
proportional to the inverse eigenvalues of the Hessian 

, -1 , -1 ,T 
.S ~ aP* diag[2i '-I , 22 ,---, 21, ]P (16) 

According to the eigenvalue perturbation theorem (Horn 
and Johnson, 1985, p. 365) the difference between 2 i (i = 

1,2 ..... p) at the kth iteration and 2~ in (16) is bounded by 

the difference in its Hessian 

I *1 * 11 * II 2 i - 2  i <K-(P ) E  k ( 0 k ) - H ( 0  ) , i=1 ,2  ..... p. (17) 

Since H-k (t~k) converges ahnost surely to H(0* )  and the 

mapping from H k to H k defined by (7) preserves the 

matrix spectra we also have the following strong conver- 
gence for the eigenvalues of Hessian 

A k - - > A * -  diag[2 ' ; ,£2, . -- ,£; , ] ,  

- ~ 
2 k --> (ahnost surely) as k --> ~ ,  (18) 

where ~-'~ is the geometric mean of all the eigenvalues of 

H ( 0 * ) .  Based on (15), (16) and (18) we conclude that 

the choice of a- k 2~ -1 in M2SPSA can also be considered as 

a natural extension of 1SPSA with a sensible selection of a 
based on its asymptotic normality. 

To further illustrate the above point and compare 
M2SPSA with 2SPSA asymptotically, we consider the as- 

ymptotic normality of 6~ k for 2SPSA for the gain sequence 

of the form a-- k ---k -c~ and C k - k - r .  It is given by 

(Spall, 2000) 

kfl /2(Ok --0") dist > N(/A,.(2) as k--->~, (19) 

where fl = c~ -  27/. The covariance matrix .(2 is propor- 

tional to H ( 0 * ) - 2  = p A * - 2 p T  and the mean /1 depends 

on both the gain sequence parameters and the third deriva- 

0* tives of the loss function at . The mean square error 

(MSE) of t~ k - 0 "  for the asymptotic distribution (19) is 

(Spall 2000) 

MSE2sPs  A (oe, 7") = k - f l  [/AT/1 + trace(O)].  (20) 

We first consider a special case of a diagonal Hessian 
"t" 2 t  ~ with constant eigenvalues ( 2  i = 2 = ). It can be shown 

that the asymptotic normality of t~ k in 2SPSA (Spall, 

2000) is identical to that in 1SPSA (Spall 1992) when the 
optimal gain sequences are picked: 

N(/A, X2) = N(~,Z')  when Ek = 1/k and a k = 1/(k2).  (21) 

Equation (21) suggests that the optimal MSE in 2SPSA 
can be achieved in 1SPSA by picking its proportionality 
coefficient a in such a way that a - 1 / 2 .  Since a in 
1SPSA is externally prescribed, such an optimal picking of 
a is only theoretically possible. On the other hand, the 

internally determined gain sequence of Ek~~ 1 (=  k-12k 1 ) 

in M2SPSA with (18) makes the optimal picking practi- 
cally possible. 

Next, we consider the specification of the gain se- 
quence c~ < 1 and 37/- c~ / 2 > 0 from which we have/A = 

= 0 (Spall 1992, 2000). The MSE for 2SPSA under this 
condition is inversely proportional to the sum of all the 
eigenvalues squared 

MSE2sPS A (c~, 7") = k - f l  trace .(2 

p 

k - f l  trace(A *-2 ) = k - f l  Z £~-2 (22) 
i=1 

On the other hand, the MSE for M2SPSA can be derived 

by setting a - 1/X* in 1SPSA 

MSE M 2SPSA (6g, ~") -- k -f l  trace ~r I a=l/£~ 

p 

~: k - f l  2 '-1 trace(A *-1 ) = k -fl 2 '-1 ~ £j~-I (23) 
i=1 

Therefore, the ratio of MSEs for M2SPSA to 2SPSA is 
given by 

MSEM 2SPSA (o(, y) 

MSE2sPSA (~, 7") 

p P 

[ H g - 1 ] I / P  L Z 2 j  :-1 
i=1 p i=l 

- 7  "-- - -  

- R 0 < 1, (24) 

where we have used a well-known relation in the last ine- 
quality of (24) 

(geometric mean) < (arithmetic mean) 
< (root-mean-square). (25) 

The equality in (24) holds only when all the eigenvalues 
are equal which corresponds to a perfectly conditioned 
Hessian of 7¢2(H)=1.  It is noted that the comparison 

between M2SPSA and 2SPSA has been made under the 
assumption of both MSEs having the same rate of conver- 

gence of k - p  
It is possible for both 1SPSA and 2SPSA to set c~ = 1 

for their gain sequence selection. The near-optimal rate of 
convergence in 2SPSA by setting E =1 can be accom- 
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plished in 1SPSA by adjusting its a to yield the same rate 
of convergence as 2SPSA (Spall 2000). The implemen- 

tation of M2SPSA requires one to pick a = 1/,,~. This 
does not allow one to set c~ = 1 in M2SPSA because such 
a setting will generally lead to a violation of the condition 

2mini(/~i/ ,¢) > fl for 1SPSA (Spall 1992). A higher rate 

of convergence in M2SPSA can be achieved by choosing a 
different set of c~ m <1 and Ym ~:y from those for 

2SPSA. 
We now consider 3 7 " - c ~ / 2 > 0  when c~=l  in 

2SPSA. This setting again corresponds to ¢z = ~: = 0 in 
2SPSA and M2SPSA. It can be shown that given c~- 1 

and y -  (1/6) + c ,  ~>0, we can choose c~ m and Ym such 

that 1 - 3 ~ < c ~  m < l  and Y m - ( 1 / 6 ) - 6  with 6 < c / 2  

that satisfy the condition 3y m -c~ m / 2 > 0 and at the same 

time yield 

M S E  M 2SPSA (ggm, 7"m ) k-t im 
MSEzsPs A (1, y) k-¢ ~ R° ---> 0 as k ---> o~ (26) 

where tim = c~m - 2Ym • Similarly, given set of c~ m and 

Ym for M2SPSA we can also appropriately choose a dif- 

ferent set of o~ and y for 2SPSA that yields a better as- 
ymptotic MSE. In other words, there is no superiority of 
either one of M2SPSA and 2SPSA to the other in terms of 
the rate of convergence. The superiority of M2SPSA to 
2SPSA shown by (24) only shows an improvement in the 
convergence rate coefficient. 

Spall (2000) showed that by setting c~=l  and 

y = 1/6 an asymptotically optimal MSE can be achieved 

with a maximum rate of convergence of k -p  = k -3/2 in 
both 1SPSA and 2SPSA. Since the setting of c~ = 1 is not 
generally allowed in M2SPSA we can again show that the 

maximum rate of convergence of k -3/2 can only be a su- 
premum for M2SPSA. It should be pointed out that the 
optimal setting of c~ = 1 and ~' = 1/6 should always be 

understood in the limit process of k --~ oo For any given 

k < o o ,  one can always find y ' = l / 6 + g / 2  with ~ > 0  

(and /1 = 0 ) such that 

MSE2sPs A (1, y') k c trace ,(2 

MSE2sPs A (1, 1~66) [/1 T/I + traceX2] 
<1 for any k <  

(27) 

Equation (27) coupled with (26) shows that by choosing 
such that 

log[/.t T/.t + trace X2] - log[trace X2] 
0 < g < (28) 

logk 

we can construct a gain sequence for M2SPSA that can be 
infinitely close to the maximum rate of convergence of 

k -3/2  achieved by 2SPSA and 1SPSA. 

The relationships among 1SPSA, 2SPSA and 
M2SPSA can also be understood from a different perspec- 
tive: 1SPSA (1) and M2SPSA (13) weight the different 

components of the estimated gradient ~k (t~k) equally 

whereas 2SPSA (2a) weights them differently to account 
for different sensitivities of 0. A steeper eigen-direction 
(greater 2i) requires a smaller step (-1/,~i) to effectively 

reach the exact solution (e.g., Pierre, 1986, p. 273). Both 
2SPSA and M2SPSA have captured the dependence of the 
step size on the overall sensitivities of 0 at each iteration. 
From this perspective, 2SPSA and M2SPSA are superior to 
1SPSA. However, M2SPSA (13) weights the different 

components of gk (Ok) equally with an averaged step 

( -  1 /2  k ), it has given up the further advantage of higher 

order sensitivity of 0. Therefore, whether M2SPSA is 
better than 2SPSA or not at finite iterations is determined 
by the relative importance of two competing factors that 
influence the convergence rate: the elimination of the ma- 
trix inverse that accelerates or the lacking of gradient sen- 
sitivity that decelerates. The asymptotic relation (24) pro- 
vides a theoretical rationale of adopting M2SPSA over 
2SPSA. The rationale of proposing M2SPSA at finite it- 
erations is the fact that the amplification of errors in an ill- 
conditioned H through the matrix inversion is a well-es- 
tablished result whereas the efficiency of the gradient sen- 
sitivity through Newton-Raphson search only shows near 

the extreme point (0" )  with a near-exact Hessian (e.g., 
Pierre, 1986, p. 308). Further justification for M2SPSA 
over 2SPSA at finite iterations is given in the numerical 
experiments in the next section. 

We have shown that the convergence rate of 2SPSA is 
dependent on the matrix conditioning of H due to two 
competing factors. Since both factors are strongly related 
to the same quantity of the matrix conditioning, the rela- 
tive efficiency between M2SPSA and 2SPSA might be less 
dependent on specific loss functions. It is noted that re- 
placement of the recursion (2a) by (13) eliminates the part 
of errors amplified by matrix inverse computation. It also 
removes the higher order sensitivity of 0 that too depends 
on the matrix conditioning. However, such a replacement 
does not necessarily suggest that the convergence rate of 
M2SPSA be independent on the matrix conditioning of H 

since the computation of 2 k is dependent on the matrix 

properties of H. 

4. NUMERICAL COMPARISONS 

To study the efficiencies of three SPSA algorithms 
(1SPSA, 2SPSA and M2SPSA) to the matrix conditioning 
of the loss function Hessian we consider here the simple 
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quadratic loss function built on the prescribed Hessian 
with p - 10 

L(O) = --] 0 r HO, (29) 
2 

.1< 

The minimum occurs at = 0 with L(O*) = 0. A non- 

negative noise is added to the loss function to represent the 

measurement errors y(O) = L(O)+I N(0, o -2) I, where 

N(0, o -2) is a normal distribution with zero mean and o °- 

variance. Note that, consistent with the case here, the 
regularity conditions for 2SPSA in Spall (2000) do not re- 
quire mean-zero noise. The matrix elements of the Hes- 
sian are specified according to 

(H)ij = fl eXp[m( i - j)2/~z2 ] .  (30) 

1 0 0  ~ . . . ,  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  

1 0  -1 

03 
t -  

.o_ 

O c ' -  

U _  

03 
0 9  

0 0 -  2 
" 1 
" O  
(1) 

._N 
m 

E 
L_ 
O 

z 

1 0  -3 

~ 1 S P S A  - A 

- - ~ - -  1 S P S A  - C 

- - I - 2 S P S A  - A 

- - E a -  2 S P S A  - C 

M 2 S P S A  [ A 

_ 

o = 0.001 
10-4  . . . .  , . . . .  I . . . . .  , . . . .  ~ . . . .  , . . . .  , . . . .  , . . . .  

0 5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  3 0 0 0  3 5 0 0  4 0 0 0  

Number of loss function evaluations (N) 

Figure 1. Normalized loss functions versus the 
number of loss function evaluations for 1SPSA (tri- 
angles), 2SPSA (squares), and M2SPSA (circles). 
The matrix condition numbers for Cases A (filled 
symbols) and C (open symbols) are 10 and 1000, re- 
spectively. The noise level or= 0.001. 

The following tour cases are considered for numerical 
studies. 

Case A: f l=  0.1291, c~= 1.1311, ~;t= 10; 

Case B: f l=  0.2144, c~= 1.5416, ~c;t= 100; 

Case C: fl = 0.3941, c~= 1.9047, ~',a.= 1,000; 

(31a) 

(31b) 

(31c) 

Case D: fl - 0.7763, c~- 2.2597, ~2 - 10,000. (3 ld) 

All four cases have the same geometric mean of eigenval- 

ues of ,,; - 0 . 1 .  In the above, we have also listed the ma- 
trix condition number with respect to the spectral norm for 
different cases. Case D (with ~¢ = 10,000) is worse ill- 

conditioned than Case C, which in turn is worse ill-condi- 
tioned than Cases B and A. 

1 0  o 

1 0  -1 

(/3 l -  

. o  

0 r -  

1 0  -2 
LL  

03 
03 
O 

_.1 

(1) 
U 

(13 0-3 E 1 

O 

z 

1 0  -4 

1 0  .5 

- - e - -  2 S  P S A  - A 

- - ~ - -  2 S P S A  - B 

- - e - -  2 S P S A  - C 

- - ~ - -  2 S P S A  - D 

- e - -  M 2 S P S A  - A 

- - m - M 2 S P S A -  B 

- - ~ - M 2 S P S A  - C 

- - A - - M 2 S P S A -  D 

\ 

\ 
\ O -  

, , , , I , , ~ I , , , I , , , 

2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  1 0 0 0 0  

Number of loss function evaluations (IV) 

Figure 2. Normalized loss functions versus the num- 
ber of loss function evaluations for 2SPSA (dashed 
lines) and M2SPSA (solid lines) and for all four 
cases of different matrix condition numbers. The 
noise level cr = 0. 

Figure 1 shows the plots of averaged loss function 
versus the number of loss function evaluations (N) for two 

cases (A and C) with a noise level of o- = 0.001 after 50 
independent experiments. All the loss functions are nor- 

malized to the initial L(O 1 ). We have followed the gen- 

eral guidance on picking gain series for 1SPSA (Spall, 
1998). The figure shows that in the very early stage of it- 
erations (say N < 400) 1SPSA is better than both 2SPSA 

and M2SPSA since the estimated Hessian ( H  k) carries 

significant errors. As Hk becomes a better approximation 

of the real Hessian, 2SPSA based on (2a) and (8) outper- 
forms 1SPSA in the chosen parameter setting when the 
matrix condition number is not extremely large. The re- 
sults of Fig. 1 support our conjecture that larger matrix 
condition number yields a slower convergence rate for 0. 
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On the other hand, 1SPSA is less sensitive to the condition 
number. Figure 1 also shows that M2SPSA based on (13) 
and (14) is consistently better than 2SPSA in all cases, in- 
dicating a sound improvement of M2SPSA over 2SPSA 
based on the elimination of the matrix inversion errors. It 
is noted from Fig. 1 that the convergence rate of M2SPSA 
also depends on the matrix condition number that suggests 
a possible relation between errors in eigenvalue computa- 
tion and matrix property such as its condition number. 
Similar results are obtained for the numerical experiments 
with a greater noise level of cr = 0.01 or a noise-free (or = 
0) setting. 

In Fig. 2, we show the comparison between 2SPSA 
and M2SPSA for all four cases of numerical experiments 
for the noise-free (or = 0) setting for the loss function. 
Again, M2SPSA consistently outperforms 2SPSA in all the 
cases and the improvements become even more significant 
at large N. 

5. CONCLUSIONS 

We have made both empirical and theoretical com- 
parisons between 1SPSA based on (1) and 2SPSA based 
on (2a) and (8) in the perspective of the loss function Hes- 
sian matrix. It is found that the additional errors intro- 
duced by matrix inversion in 2SPSA at finite iterations 
make the convergence rate more slowly for an ill-condi- 
tioned Hessian than a well-conditioned Hessian. On the 
other hand, the convergence rate of 1SPSA is less sensitive 
to the matrix conditioning of loss function Hessians. By 
analyzing the results for a special loss function Hessian, 
we show how the asymptotically optimal MSE for 2SPSA 
is only theoretically achievable by 1SPSA. To eliminate 
the errors introduced by matrix inversion we suggest a 
modification (13) to 2SPSA that replaces the Hessian in- 
verse with a scalar inverse of the geometric mean of all the 
Hessian eigenvalues. At finite iterations, the newly intro- 
duced M2SPSA based on (13) and (14) consistently out- 
performs 2SPSA in the experimental cases representing a 
wide range of matrix conditioning. We also show how the 
asymptotically optimal MSE for 2SPSA might be practi- 
cally achieved by M2SPSA. When the gain sequence does 
not take the optimal values, we show that the ratio of 
MSEs for M2SPSA to 2SPSA given by (24) is always less 
than one except for a perfectly conditioned Hessian. 
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