Baldwin KC, see Duncan DD
Bankman IN, Rogala EW, and Pavlik RE, Laser radar in ballistic missile
defense 22(3), 379–393.
Bankman IN, see Maurer DE
Barrios AL, see Gauthier LR Jr
Bateman KL, see York RR
Belle JS, see Steinberg RA
Bement DA, Miller JD, Grant PM III, and LaCamera JJ, Naval theater
ballistic missile defense 22(3), 275–288.
Blodgett DW, see Duncan DD
Boklic RS, see Willey CE
Boone BG, see Maurer DE
Broolland BA, see Koczanski RC
Brody WR, The quantum physics model of the university in the new
millennium: The university without walls 22(1), 67–76.
Carey GM, see Marcotte FJ
Chacos AA, Stader PA, and Devereux WS, Autonomous navigation
and crosstalk communication systems for space applications 22(2),
135–143.
Chrysostomou AK, see Pollack AF
Clemons DE, see Gauthier LR Jr
Cobb WW, Letter to Dr. Roca 22(3), 206.
Cole CE, and Hughes AS, AM/FM noise in the target illumination
signal for semi-active missiles 22(3), 347–354.
Conde RF, see Lew AL
Constantine EW, Air Defense Systems Department: An overview
22(3), 207–214.
Crawford LJ, see Suter JJ
Crowe DG, see Schmid ME
______, see Shapler BA
Devereux WS, see Chacos AA
Dockery GD, see Newkirk MH
______, see Rottier JR
Dowen D, see Willey CE
Duhon CJ, see Sunday DM
Duncan DD, Baldwin KC, Bodggett DW, Elko MJ, Joseph RJ, Mayr
MJ, Prendergast DT, Terry DH, Thomas, ME, and Walts SC,
Experimental and theoretical assessment of mechanical and optical
effects in nonuniformly heated IR windows 22(3), 394–408.
Eddins CL, see Gauthier LR Jr
Edwards RT, Field-programmable analog array architecture 22(2),
102–103.
Elko EC, Howard JW, Koczanski RC, Nguyen TT, and Sanders WM,
Rolling Airframe Missile: Development, Test, Evaluation, and
Integration 22(4), 573–582.
Elko MJ, see Duncan DD
Fraeman ME, 1394 serial bus 22(2), 114–115.
Fraeman ME, see Lew AL
Frank J, Introduction to programs 22(3), 367–368.
______, The science and technology of detect, control, and engage
22(4), 598–599.
Frazier RK, Hanson JP, Leumas MJ, Ratliff CL, Reinecke OM, and Roe
CL, Evolved Seasparrow missile program 22(4), 564–572.
Frostbutter DA, McGrath BE, and Rogé RF, Application of computa-
tional fluid dynamics in missile engineering 22(3), 289–301.
Gauthier LR Jr, Klimek JM, Mattes LA, Eddins CL, Barrios AL, Clems-
ons DE, and Walsh RF Jr, Blast instrumentation for lethality
Gearhart SA, Testing the SM-3 kinetic warhead in the Guidance
System Evaluation Laboratory 22(3), 302–310.
Gehman JZ, see Newkirk MH
Gemery SE, see Baer GE
Genovese AF, The interacting multiple model algorithm for accurate
Goldfinger AD, Spacecraft modeling and simulation standards 22(2),
121–124.
Goldhirsch J, see Rottier JR
Grant PM III, see Bement DA
Gray KM, Transferring APL technology to industry 22(2), 162–167.
Guo Y, Autonomous solar navigation system 22(2), 119–121.
Hanson JM Jr, see Frazier RK

AUTHOR INDEX
Johns Hopkins APL Technical Digest
Volume 22 (2001)

Agrawal AK, Kopp BA, Luesse MH, and O'Haver KW, Active phased
array antenna development for modern shipboard radar systems
22(4), 600–613.
Allen EB Jr, see Thomas JW
Antonicelli ME, see Kuehne BE
Baer GE, and Gemeny SE, Unattended satellite contacts 22(2),
155–161.
Bailey RJ, see Prengaman RJ
______, see Thomas JW

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001) 655
Harrison GA, see Kuehne BE
Hepp AF, see Schwartz PD
Hill SW, see Willey CE
Howard JW, see Elko EC
Howser LM, see Kuehne BE
Huettel B, see Willey CE
Hughes AS, see Cole CE
Jaskulek SE, see Strohbehn K
Joseph RJ, see Duncan DD
Kester RW, see Steinberg RA
Kimmy KV, Parametric multispectral IR bulk filtering for theater ballistic missile defense 22(3), 369–378.
Klein LE, see Steinberg RA
Klimek JM, see Gauthier LR Jr
Kochanski RC, and Breidland BA, Use of AN/SLQ-32A(V) electronic support data for ASCM engagement and situational awareness 22(4), 583–587.
Kochanski RC, see Elko EC
Konstanzer GC, see Rottier JR
Kopp BA, see Agrawal AK
Kuhns MC, see Thomas JW
LaCamera JJ, see Bement DA
Landis MA, Overview of the fire control loop process for Aegis LEAP Intercept 22(4), 436–446.
Le BQ, see Lew AL
_______, see Ling SX
Leuman MJ, see Frazer RK
Lew AL, see Ling SX
_______, see Schwartz PD
Lindberg JS, see Thomas JW
Ling SX, see Schwartz PD
Luesse MH, see Agrawal AK
Lundy RT, Guest Editor's introduction 22(3), 203.
_______, Guest Editor's introduction 22(4), 417–420.
Lutz SA, see Kuehne BE
Marable DL, see Thomas JW
Martin MN, see Strohbehn K
Mattes LA, see Gauthier LR Jr
Maurer DE, Rogala EW, Bankman IN, Boone BG, Vogel KK, and Parris C, A low cost gun-launched seeker concept design for naval fire support 22(4), 634–647.
Mayr MJ, see Duncan DD
McGrath BE, see Frostbutter DA
Meyer WE, A beginning or just a change in course? 22(4), 422–424.
Miller JD, see Bement DA
Montgomery BG, see Suter Jj
_______, Recognition for the Digest 22(2), 97.
Mosher LE, see Lew AL
Muller S, Technology and society in the 21st century 22(1), 83–89.
Newkirk MH, Gehman JZ, and Dockery GD, Advances in calculating electromagnetic field propagation near the Earth's surface 22(4), 462–472.
Nguyen TT, see Elko EC
Nimmo RE, see Reed CLB
O'Haver KW, see Agrawal AK
_______, see Moore CR
Paige KK, Letter to Dr. Roca 22(4), 421.
Parris C, see Maurer DE
Patterson RA, see Kuehne BE
_______, see Steinberg RA
Pavek RE, see Bankman IN
Penn JE, Ka-band MMIC phased array components 22(2), 112–114.
Peregrino LA, Emerging technologies with commercial potential, 22(2), 101.
Peri JSJ, Approaches to multisensor data fusion 22(4), 624–633.
Piszczor MF, see Schwartz PD
Pollack AF, and Chrysostomou AK, ARTEMIS: A high-fidelity end-to-end TBMD federation 22(4), 507–515.
Prendergast DT, see Duncan DD
Ratliff CL, see Frazer RK
Reed CLB, and Nimmo RE, Balancing a business operations model for R&D services to both government and industry: Technology transfer for space applications 22(2), 176–184.
Reeckne OM, see Frazer RK
Rizzuto, see Thomas JW
Roe CL, see Frazer RK
Rogala EW, see Bankman IN
_______, see Maurer DE
Rogér RP, see Frostbutter DA
Rogers SB, Assessing the adequacy of ground tests 22(3), 311–323.
Rottier JR, see Sylvester JJ
Roulette JF, see Thomas JW
Rowland GC, see Rottier JR
_______, see Sylvester JJ
Sanders WM, see Elko EC
Schmid ME, and Crowe DG, Distributed computer architectures for combat systems 22(4), 488–497.
Schmiedeskamp JE, see Kuehne BE
Schulze RC, see Willey CE
Schwartz PD, see Lew AL
Silverman GL, see Thomas JW
Skullwey NE, see Willey CE
Stadter PA, see Chacos AA
Steinberg RA, Kester RW, Klein LE, Belle JS, and Patterson RA, SM-2 Block IVA image-based 6-DOF simulation incorporating IR seeker flight code and online image rendering 22(3), 333–346.
Stott DD, see Schwartz PD
Strohbehn K, Martin MN, and Jaskulek SE, Micro digital solar attitude detector 22(2), 104–105.
Stuckey WD, see Thomas JW
Suter Jj, Crawford LJ, Montgomery BG, and Swann WE, Syntons LLC: APL makes its commercial debut 22(2), 168–175.
Suter JJ, see Reed CLB


Terry DH, see Duncan DD


Tremblay V, Astrophysics faces the millennium 22(1), 59–66.

Tropf WJ, see Marcotte FJ


Vogel KK, see Maurer IN

Walsh RF Jr, see Gauthier LR Jr

Walts SC, see Duncan DD

Wetzlar EC, see Prengaman RJ


Williams BD, see Schwartz PD

York RR, and Bateman KL, Self-defense test ship remote combat system operation 22(4), 588–597.

Zinger WH, Bringing science and new technology to bear on the Navy’s needs 22(3), 215–219.

SUBJECT INDEX

Johns Hopkins APL Technical Digest

Volume 22 (2001)

ADVANCED MICROWAVE TECHNOLOGY

Ka-band hybrid inflatable dish antenna 22(2), 110–112. Willey CE, Bokulic RS, Skullney WE, and Schulze RC

Ka-band MMIC phased array components 22(2), 112–114. Penn JE

AEROSPACE TECHNOLOGY

Microsatellites: An enabling technology for government and commercial aerospace applications 22(2), 124–134. Lew AL, Le BQ, Schwartz PD, Fraeman ME, Conde RF, and Mosher LE

APPLIED RESEARCH

Active phased array antenna development for modern shipboard radar systems 22(4), 600–613. Agrawal AK, Kopp BA, Luuese MH, and O’Haver KW

Advances in calculating electromagnetic field propagation near the Earth’s surface, 22(4), 462–472. Newkirk MH, Gehman JZ, and Dockery GD

Approaches to multisensor data fusion 22(4), 624–633. Peri JSJ

DARPA: Into the future 22(1), 29–38. Fernandez FL


Integrated power source 22(2), 106–110. Schwartz PD, Hepp AF, Le BQ, Le AL, Ling SX, Piscoor MF Jr, Stott DD, Suter JJ, and Williams BD

Interacting multiple model algorithm for accurate state estimation of maneuvering targets 22(4), 614–623. Genovese AF

Introduction to programs 22(3), 367–368. Frank J

Laser radar in ballistic missile defense 22(3), 379–393. Bankman IN, Rogala EW, and Pavek RE

Low cost gun launched seeker concept design for naval fire support 22(4), 634–647. Maurer DE, Rogala EW, Bankman IN, Boone BG, Vogel KK, and Parris C

Parametric multispectral infrared bulk filtering for theater ballistic missile defense 22(3), 369–378. Kitzman KV

Science and technology of detect, control, and engage 22(4), 598–599. Frank J

ATMOSPHERIC ELECTROMAGNETIC PROPAGATION

Advances in calculating electromagnetic field propagation near the Earth’s surface 22(4), 462–472. Newkirk MH, Gehman JZ, and Dockery GD

BALLISTIC MISSILE DEFENSE

ARTEMIS: A high-fidelity end-to-end TBMD federation 22(4), 507–515. Pollack AF, and Chrysostomou AK

Laser radar in ballistic missile defense 22(3), 379–393. Bankman IN, Rogala EW, and Pavek RE

Naval theater ballistic missile defense 22(3), 275–288. Bement DA, Miller JD, Grant PM III, and LaCamera JJ

Parametric multispectral infrared bulk filtering for theater ballistic missile defense 22(3), 369–378. Zinger WH

BASIC SCIENCE

Astrophysics faces the millennium 22(1), 59–66. Trimble V

BOOK REVIEWS

Server-side Java 22(4), 648–649. Slywczak RA

COMBAT SYSTEMS

Active phased array antenna development for modern shipboard radar systems 22(4), 600–613. Agrawal AK, Kopp BA, Luuese MH, and O’Haver KW

Advances in calculating electromagnetic field propagation near the Earth’s surface, 22(4), 462–472. Newkirk MH, Gehman JZ, and Dockery GD
Aegis anti-air warfare tactical decision aids 22(4), 473–487. Sylvester JJ, Konstanzer GC, Rottier JR, Dockery GD, and Rowland JR
APL's contributions to Aegis programs: An overview 22(4), 425–427. Wilkinson JG Jr
Approaches to multisensor data fusion 22(4), 624–633. Peri JSJ
ARTEMIS: A high-fidelity end-to-end TBMD federation 22(4), 507–515. Pollack AF, and Chrysostomou AK
Beginning or just a change? 22(4), 422–424. Meyer WE
Decade of prototype displays 22(4), 428–435. Sunday DM, and Dunson CJ
Distributed computer architectures for combat systems 22(4), 488–497. Schmid ME, and Crowe DG
Evolved Seaspawr missile program 22(4), 564–572. Frazer RK, Hanson JM, Leumas MJ, Ratliff CL, Reinecke OM, and Roe CL
Guest editor's introduction 22(3), 203. Lundy RT
Guest editor's introduction 22(4), 417–420. Lundy RT
Integrated ship defense 22(4), 523–535. Prengaman RJ, Wetzel EC, and Bailey RJ
Interacting multiple model algorithm for accurate state estimation of maneuvering targets 22(4), 614–623. Genovese AF
Introduction to SSDS concepts and development 22(4), 516–522. Whitley JR Jr
JEDSI: Java Enhanced Distribution System Instrumentation 22(4), 498–507. Shapter BA, and Crowe DG
Letter to Dr. Roca 22(4), 421. Paige KK
Low cost gun launched seeker concept design for naval fire support 22(4), 634–647. Maurer DE, Rogala EW, Bankman IN, Boone BG, Vogel KK, and Parris C
Navy in the 21st century, Part I: Surface warfare 22(1), 7–18. Mullen MG
Overview of the fire control loop process for Aegis LEAP intercept 22(4), 436–446. Landis MA
Science and technology of detect, control, and engage 22(4), 598–599. Frank J
Self-defense test ship remote combat system operation 22(4), 588–597. Yorik RR, and Bateman KL
Ship self-defense system architecture 22(4), 536–546. Norcutt LS
Use of AN/SLQ-32A(V) electronic support data for ASCM engagement and situational awareness 22(4), 583–587. Kochanski RC, and Bredland BA

COMPUTER ARCHITECTURE
Distributed computer architectures for combat systems 22(4), 488–497. Schmid ME, and Crowe DG

COMPUTER SCIENCE AND SYSTEMS
Server-side Java 22(4), 648–649. Slywczak RA

DEVELOPMENT
DARPA: Into the future 22(1), 29–38. Fernandez FL

EDUCATION
Quantum physics model of the university in the new millennium: The university without walls 22(1), 67–76. Brody WR
Science and engineering education of women in the 21st century 22(1), 77–82. Jackson SA
Technology and society in the 21st century 22(1), 83–89. Muller S

FLEET DEFENSE
Navy in the 21st century, Part I: Surface warfare 22(1), 7–18. Mullen MG

HISTORY
Letter to Dr. Roca 22(1), 206. Cobb WW
Letter to Dr. Roca 22(4), 421. Paige KK
Looking back, looking forward 22(1), 3–7. Moorjani K
Technology and society in the 21st century 22(1), 83–89. Muller S

HISTORY OF TECHNOLOGY
APL's contributions to Aegis programs: An overview 22(4), 425–427. Wilkinson JG Jr

IN MEMORIAM

INFORMATION SCIENCE AND TECHNOLOGY
Server-side Java 22(4), 648–649 Slywczak RA

INSTRUMENTATION
JEDSI: Java Enhanced Distribution System Instrumentation 22(4), 498–507. Shapter BA, and Crowe DG
MILLENNIAL CHALLENGES

Astrophysics faces the millennium 22(1), 59–66. Trimble V

DARPA: Into the future 22(1), 29–38. Fernandez FL

Dilemma of nuclear weapons in the 21st century 22(2), 185–190. Turner S

Looking back, looking forward 22(1), 3–7. Moorjani K


Navy in the 21st century, Part I: Surface warfare 22(1), 7–18. Mullen MG


Quantum physics model of the university in the new millennium: The university without walls 22(1), 67–76. Brody WR

Science and engineering education of women in the 21st century 22(1), 77–82. Jackson SA

Technology and society in the 21st century 22(1), 83–89. Muller S


MISSILE SYSTEMS AND TECHNOLOGY


Application of computational fluid dynamics in missile engineering 22(3), 289–301. Frostbutter DA, McGrath BE, and Rogér RP

Assessing the adequacy of ground tests 22(3), 311–323. Rogers SB


Bringing science and technology to bear on the Navy's needs 22(3), 215–219. Zinger WH

Evolved Seasparrow missile program 22(4), 564–572. Frazer RK, Hanson JM, Leumas MJ, Ratliff CL, Reinecke OM, and Roe CL

Exo-atmospheric intercept: Bringing new challenges to Standard Missile 22(3), 260–274. Sullins GA


Guest editor’s introduction 22(3), 203. Lundy RT

Guest editor’s introduction 22(4), 417–420. Lundy RT

Introduction to programs 22(3), 367–368. Frank J

Laser radar in ballistic missile defense 22(3), 379–393. Bankman IN, Rogala EW, and Pavek RE

Letter to Dr. Roca 22(3), 206. Cobb WW

Naval theater ballistic missile defense 22(3), 275–286. Bement DA, Miller JD, Grant PM III, and LaCamera JJ

Navy in the 21st century, Part I: Surface warfare 22(1), 7–18. Mullen MG

Parametric multispectral infrared bulk filtering for theater ballistic missile defense 22(3), 369–378. Kitzman KV


SM-2 Block IVA image-based 6-DOF simulation incorporating IR seeker flight code and online image rendering 22(3), 333–346. Steinberg RA, Kester RW, Klein LE, Belle JS, and Patterson RA


Testing the SM-3 kinetic warhead in the Guidance System Evaluation Laboratory, 22(3), 302–310. Gearhart SA

OPTICS


OTHER TOPICS

Recognition for the Digest 22(2), 97. Moorjani K

PATENTS

22(2), 199.

PROGRAMS

Advances in calculating electromagnetic field propagation near the Earth’s surface, 22(4), 462–472. Newkirk MH, Gehman JZ, and Dockery GD

Aegis anti-air warfare tactical decision aids 22(4), 473–487. Sylvester JF, Konstanzer GC, Rottger JR, Dockery GD, and Rowland JR


APL’s contributions to Aegis programs: An overview 22(4), 425–427. Wilkinson JG Jr

ARTEMIS: A high-fidelity end-to-end TBMD federation 22(4), 507–515. Pollack AF, and Chrysostomou AK

Decade of prototype displays 22(4), 428–435. Sunday DM, and Duhon CJ

Distributed computer architectures for combat systems 22(4), 488–497. Schmid ME, and Crowe DG

Evolved Seasparrow missile program 22(4), 564–572. Frazer RK, Hanson JM, Leumas MJ, Ratliff CL, Reinecke OM, and Roe CL

Exo-atmospheric intercept: Bringing new challenges to Standard Missile 22(3), 260–274. Sullins GA

Introduction to programs 22(3), 367–368. Frank J

JEDSI: Java Enhanced Distribution System Instrumentation 22(4), 498–507. Shapter BA, and Crowe DG

Overview of the fire control loop process for Aegis LEAP Intercept 22(4), 436–446. Landis MA

PUBLICATIONS, PRESENTATIONS, AND COLLOQUIA

22(1), 90.
22(2), 194.
22(3), 409.
22(4), 650.

SHIP SELF-DEFENSE SYSTEMS
Evolved SeaSparrow missile program 22(4), 564–572. Frazer RK, Hanson JM, Leumas MJ, Ratliff CL, Reinecke OM, and Roe CL
Integrated ship defense 22(4), 523–535. Pengaman RJ, Wetzel EC, and Bailey RJ
Introduction to SSDS concepts and development 22(4), 516–522. Whitley JE Jr
Self-defense test ship combat system operation 22(4), 588–597. York RR, and Bateman KL
Ship self-defense system architecture 22(4), 536–546. Norcutt LS
Use of AN/SLQ-32A(V) electronic support data for ASCM engagement and situational awareness 22(4), 583–587. Kochanski RC, and Breidland BA

SPACE SCIENCE AND TECHNOLOGY
1394 serial bus 22(2), 114–115. Fraeman ME
Autonomous navigation and crosslink communication systems for space applications 22(2), 135–144. Chacos AA, Stadler PA, and Devereux WS
Autonomous solar navigation system 22(2), 119–121. Guo Y
Balancing a business operations model for R&D services to both government and industry: Technology transfer for space applications 22(2), 176–184.
Reed CLB, and Nimmo RE
Emerging technologies with commercial potential 22(2), 101. Peregrino LA
Evaluating and implementing commercial processes for producing reliable, cost-effective miniaturized space electronics 22(2), 144–154. Ling SX, Le BQ, and Lew AL
Field programmable analog array architecture 22(2), 101–104. Edwards RT
Guest editors’ introduction 22(2), 98. Reed CLB, and Suter JJ
Ka-band hybrid inflatable dish antenna 22(2), 110–112. Willey CE, Bokalic RS, Skulley WE, and Schulte RC
Ka-band MMIC phased array components 22(2), 112–114. Penn JE
Micro digital solar attitude detector 22(2), 104–106. Strohbehn K, Martin MN, and Jaskulek SE
Miniature mechanisms tool kit for micro spacecraft 22(2), 115–119. Willey CE, Haertl B, Dowen D, and Hill SW
Spacecraft modeling and simulation standards 22(2), 121–124. Goldfinger AD
Unattended satellite contacts 22(2), 155–161. Baur GE, and Gemeny SE

SYSTEMS ENGINEERING

SYSTEMS INTEGRATION

TECHNOLOGY DEVELOPMENT
Bringing science and technology to bear on the Navy’s needs 22(3), 215–219. Zinger WH
Guest editors’ introduction 22(2), 98. Reed CLB, and Suter JJ

TECHNOLOGY TRANSFER
1394 serial bus 22(2), 114–115. Fraeman ME
Autonomous navigation and crosslink communication systems for space applications 22(2), 135–144. Chacos AA, Stadler PA, and Devereux WS
Autonomous solar navigation system 22(2), 119–121. Guo Y
Balancing a business operations model for R&D services to both government and industry: Technology transfer for space applications 22(2), 176–184.
Reed CLB, and Nimmo RE
Emerging technologies with commercial potential 22(2), 101. Peregrino LA
Evaluating and implementing commercial processes for producing reliable, cost-effective miniaturized space electronics 22(2), 144–154. Ling SX, Le BQ, and Lew AL
Field programmable analog array architecture 22(2), 101–104. Edwards RT
Guest editors’ introduction 22(2), 98. Reed CLB, and Suter JJ
Ka-band hybrid inflatable dish antenna 22(2), 110–112. Willey CE, Bokulic RS, Skullney WE, and Schulze RC
Ka-band MMIC phased array components 22(2), 112–114. Penn JE
Micro digital solar attitude detector 22(2), 104–106. Strohbehn K, Martin MN, and Jaskulek SE
Microsatellites: An enabling technology for government and commercial aerospace applications 22(2), 124–134. Lew AL, Le BQ, Schwartz PD, Fraeman ME, Conde RF, and Mosher LE
Miniature mechanisms tool kit for micro spacecraft 22(2), 115–119. Willey CE, Haertl B, Dowen D, and Hill SW
Spacecraft modeling and simulation standards 22(2), 121–124. Goldfinger AD
Syntonics LLC: APL-developed technology makes its commercial debut 22(2), 168–175. Suter JJ
Transferring APL technology to industry 22(2), 162–167. Gray KM
Unattended satellite contacts 22(2), 155–161. Baer GE, and Gemeny SE

TRANSPORTATION