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Adaptive Stochastic Approximation by the
Simultaneous Perturbation Method

James C. SpalSenior Member, IEEE

Abstract—Stochastic approximation (SA) has long been ap- SA settings. The essential idea is to use the “simultaneous per-
plied for problems of minimizing loss functions or root finding  turbation” concept to efficiently and easily estimate the Hessian
with noisy input information. As with all stochastic search algo- matrix of the loss function to be optimized (or, equivalently
rithms, there are adjustable algorithm coefficients that must be . . - . " Y
specified, and that can have a profound effect on algorithm per- the JaCOb'?” matrix for root_ f|nd|ng): This HeSS|a_n matrix Is
formance. It is known that choosing these coefficients according then used in an SA recursion that is a stochastic analog of
to an SA analog of the deterministic Newton—Raphson algorithm the well-known Newton—Raphson algorithm of deterministic
provides an optimal or near-optimal form of the algorithm. How-  gptimization to accelerate convergence.
ever, directly determining the required Hessian matrix (or Ja-  The problem of minimizing a (scalar) differentiable loss func-
cobian matrix for root finding) to achieve this algorithm form tion L(6), whered € RP,p > 1 is considered. A typical ex-

has often been difficult or impossible in practice. This paper le of | p
presents a general adaptive SA algorithm that is based on a simple ample of L(#) would be some measure of mean-square error

method for estimating the Hessian matrix, while concurrently esti-  for the output of a process as a function of some design param-
mating the primary parameters of interest. The approach applies etersd. For many cases of practical interest, this is equivalent to
in both the gradient-free optimization (Kiefer—Wolfowitz) and  finding the unique minimizing* such that

root-finding/stochastic gradient-based (Robbins—Monro) settings,

and is based on the “simultaneous perturbation (SP)” idea intro- _ 0L
duced previously. The algorithm requires only a small number 9(6) = 90 =
of loss function or gradient measurements per iteration—inde-

pendent of the problem dimension—to adaptively estimate the For the gradient-free setting, it is assumed that measurements

Hessian and parameters of primary interest. Aside from intro- of L(#), sayy(6), are available at various values &f These
ducing the adaptive SP approach, this paper presents practical measurements may or may not include random noise. No di-
imp'.e”]e”tafij’e;igﬁidzlnscoe'inislﬂ:jnepéoitsicgh;:%Si?gnaa”n%mrm’riﬁ;ﬂgél rect measurements (either with or without noisey(@) are as-
merical eva . . . . . . P
analysis comparing the adaptive SP approach with the iterate-av- sumed ava|lablg In this setting. In the gradlent'-based case, itis
eraging approach to accelerated SA. assumed that direct measurementg(@f are available, usually
) o L in the presence of added noise. The basic problem is to take the
Index Terms—Adaptive estimation, optimization, parameter . »ijah|e information (measurementsie®) and/org(6)), and
estimation, root-finding, simultaneous perturbation stochastic . . . .
approximation (SPSA), stochastic approximation. attempt to estimaté*. This is essentially a local unconstrained
optimization problem (although this is also the form when dif-
ferentiable penalty functions are used for constrained optimiza-
. INTRODUCTION tion). Although there are extensions of SA to finding the global
TOCHASTIC approximation (SA) represents an importargptimum in the presence of multiple local minima and for opti-
lass of stochastic search algorithms. Many well-knowmizing in the presence of constraints (see, e.g., Styblinski and
technigues are special cases of SA, including neural-netwdrkng [39], Chin [5], Kushner and Yin [15, pp. 77-79, 100-101,
backpropagation, perturbation analysis for discrete-evestt.], and Sadegh [29])—and it is expected that the approach
systems, recursive least squares and least mean squaresharelwould apply in the context of these extensions—we will
some forms of simulated annealing. Therefore, progress rint focus on those generalizations in this paper.
general SA methodology can have a potential bearing on alhe adaptive simultaneous perturbation (ASP) approach here
wide range of practical implementations. This paper preseiggoased on the simple idea of creating two parallel recursions,
an approach for accelerating the convergence of SA algorithrage for estimating and the other for estimating the Hessian
The results app|y in both the gradient-free (Kiefer_W0|fowitzmatriX H(Q) The first recursion is a stochastic analog of the

and stochastic gradient-based (Robbins—Monro root-findinjgwton—Raphson algorithm, and the second recursion yields
the sample mean of per-iteration Hessian estimates. The second

recursion provides the Hessian estimate for use in the first re-
cursion. The simultaneous perturbation idea of varying all of the
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used to form the per-iteration Hessian estimates in the secondtrean be shown that the asymptotic mean-square error for the
cursion. This leads to an efficient means for achieving a secoraderaged iterations is identical to that which would be obtained
order adaptive algorithm. In particular, in the gradient-free cad®y using the true Hessian in a stochastic Newton—Raphson-like
only four function measurementg(-) are needed at each it-algorithm, i.e., the iterate averaging method achieves the
eration to estimate both the gradient and Hessian for any diinimum possible mean-square ervathoutrequiring knowl-
mensionp. In the gradient-based cadhreegradient measure- edge—or even an estimate—of the Hessian matrix. For the
ments are needed at each iteration, again forjaryn prac- gradient-free case, the iterate averaging solutiomesrly
tical implementations, one or more additiondl) values may asymptotically optimal in a precise sense defined by Dippon
be useful as a check on algorithm behavior as discussed in S&ed Renz [7]. Some numerical studies provide support for the
tion II-D below.) Although ASP is aelatively simple adaptive benefits of iterate averaging (e.g., Yin and Zhu [45], Kushner
approach, care is required in implementation just as in any othgrd Yin [15, ch. 11]). However, finite-sample analysis by this
second-order-type approach (deterministic or stochastic); thigthor and others (e.g., Maryak [21], Spall and Cristion [38],
includes the choice of initial condition and choice of “step sizeind, Section V here) has shown that the asymptotic promise
coefficients to avoid divergence. (However, simply choosing ths iterate averaging may be difficult to realize in practice.
step sizen), = 1/k in the notation below provideasymptoti- This is not surprising upon reflection. For iterate averaging
cally optimal or near-optimal performance.) These issues atebe successful, it is necessary that a large proportion of the
discussed in the sections to follow. individual iterates hover approximately uniformly arouidin
Although theconceptof adaptive SA has been known forg?, leading to the average of the iterates producing a mean that
sometime (e.g., Venter [41], Nevel'son and Has'minskii [23, clis nearer9* than the bulk of the individual iterates. However,
7]), theimplementatiomas been far less successful: no adaptince a well-designed (“stable”) algorithm will not be jumping
method appears to have been proposed that is practically impigproximately uniformly around* when the iterates are far
mentable in a wide range of general multivariate problems (e.fiem the solution (or else it is likely to diverge), the only way
“.. .the optimal choice [of gain sequence] involves the Hessiggy the bulk of the iterates to be distributed uniformly around
of the risk [loss] function, which is typically unknown and harghe solution is for the individual iterates to be near the solution.
to estimate,” from Yakowitet al.[44]). Let us summarize some |n most practical settings with a well-designed algorithm, one
of the existing approaches to illustrate the difficulties. Fabiashserves that the componentstofove in aroughly (subject
[10] forms estimates of the gradient and Hessian for an adagthe inherent stochastic variability) monotonic manner toward
tive SA algorithm by using, respectively, a finite-difference aghe solution, and that the user will terminate the algorithm when
proximation and a set of differences of finite-difference approxsither the “budget” of iterations has been exceeded or when the
imations. This leads t&(p*) measurementg(-) per update of jierates begin to move very slowly near (one hopés!)But
the ¢ estimate, which is extremely costly whens large. Kao tne |atter situation is precisely when iterate averaging starts
et al. [13] present a heuristic approach based on analogieséowork well (in fact, while the algorithm is in its monotonic
guasi-Newton methods of deterministic optimization; at ea?fhase, iterate averaging will tendhart the accuracy of those
iteration, this approach us€¥(p) function measurementg-)  components iré that have not yet settled ne@t!). This sug-
plus some additional measurements for a separate line seagehits that, despite the simplicity and asymptotic justification,
For the gradient-based case, Ruppert [27] forms a Hessian %ol of iterate averaging in practical finite-sample problems
timate by taking finite differences of gradient measuremem;;ray not be in achieving true second-order efficiency (one role
In a similar spirit, Wei [43] presents a multivariate extensioH1ay be in enhancing algorithm stability by feeding back the

of the Venter [41] and Nevel'son and Has'minskii [23, ch. 7L eraged solution into the iteration process as in Kushner and
approaches for adaptive Robbins—Monro algorithms. Both th&, [15, ch. 11])?

Ruppert and Wei approaches requikp) measurements of gection |1 describes the general ASP approach, and summa-
g(-) for each iteration. These approaches differ from the ASE ¢ the essential methodology related to the simultaneous per-
approach in the potentially large number of function or graghation form of the basic first-order SA algorithm (i.e., the
dient measurements required per iteration. Relatepl to ?he abaysga algorithm). This section also summarizes some of the
there are also numerous means for adaptively estimating a Hgssctical guidelines the user should consider in a real imple-
sian matrix in special SA estimation settings where one has dgantation. Section Il and the associated Appendixes A and B
tailed knowledge of the underlying model (see, e.g., Macchi apg,ige part of the theoretical justification for ASP, establishing
Eweda [19], Benvenistet al.[1, ch. 3-4], Ljung [17], and Yin ¢qnqitions for the almost sure (a.s.) convergence of both ihe

and Zhu [45]); while these are more practically implementablga e and the Hessian estimate. Section IV and Appendix A then
than the general adaptive approaches mentioned above, theygigy on this convergence to establish the asymptotic normality

restricted in their range of application. _ of ASP in both the gradient-based and gradient-free case. Most
The concept of iterate averaging, as reported in Ruppert [3§]

i - EPortantly, Section IV uses the asymptotic normality to ana-
and Polyak and Juditsky [25] for the gradient-based case g0gs the statistical estimation error of the ASP iterates, showing

Dippon and Renz [7] for the gradient-free case, also providggyt the errors are either asymptotically optimal or nearly op-
a form of second-order (optimal or near-optimal) convergence
for SA. This appealingly simple idea is based on using asam |éNote the contrast of iterate averaging with a “true” second-order algorithm,

f the | . f “basic” first-order S here knowledge of the Hessian, even at iterations not fieamay enhance
mean of the iterates coming from a “basic” first-order onvergence by improving the search direction and scaling for potentially large

recursion as the final estimate &fFor the gradient-based casedifferences in the magnitudes of theslements.
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timal. Section V performs a numerical analysis of ASP, and Seaf-the denominator column vector. Applying the vector-divide

tion VI offers some concluding remarks. operator, the formula for estimating the Hessian at each itera-
tion is
II. THE ADAPTIVE SIMULTANEOUS PERTURBATION APPROACH " T
METHODOLOGY AND IMPLEMENTATION |SSUES o= 0G| < oG}, ) ] 2.2)

A. Basic Form of Algorithm 2 [ 2entn 26 B

The second-order ASP approach is composed of two parallgiere
recursions: one fof and one for the Hessian éf(#). The two
core recursions are, respectively, 5Gy, = G (B, + arA) — GV (B, — cxry)

Our1 =00 — aH'Gr(6h), Hy=fi(Hx) (213) andG{P(-) may or may not equaky(-), depending on the set-

S - A 1 i, ting.5 In particular, for 2SPSA, there are advantages to using
k+1 E+177" aone-sidedgradient approximation in order to reduce the total

k=0,1,2,--- (2.1b) number of function evaluations [versus the two-sided form usu-
) ally recommended fof,(-)], while for 2SG, usuaII)GS)(-) =

whereay, is a nonnegative scalar gain coefficie@,(0x) isthe  ,(.). The term “simultaneous perturbation” in ASP comes

input information related tg(¢x) (i.e., the gradient approxima- from the fact that all elements @, are varied simultaneously

tion fromy(-) measurements in the gradient-free case or the ¢imd randomly) in formingd,., as opposed to the finite-differ-

rect observation as in the Robbins—Monro gradient-based cageke forms in, e.g., Fabian [10] and Ruppert [27], where the

fr: RPP — {positive definite p x p matrices} is a map- elements of) are changed deterministically one at a time.

ping designed to cope with possible nonpositive definiteness of

H,,, andH,, is a per-iteration estimate of the Hessian discussgg Specific Gradient Forms

below? Equation (2.1a) is a stochastic analog of the well-known _, = . . .

Newton—Raphson algorithm of deterministic search and opti—WhIIe the ASP structure in (2.12), (2.1b), and (2.2) is gen-

o : o . : ral, we will largely restrict ourselves in our choice Gf,(-)
mization. Equation (2.1b) is simply a recursive calculation ) . ) . L
. 4 . . . (and G}’ (+)) in the remainder of the discussion in order to
the sample mean of the per-iteration Hessian estintatas. : .
L . S . . Bresent concrete theoretical and numerical results. For 2SPSA,
tialization of the two recursions is discussed in Section II-

. A we will consider the simultaneous perturbation approach for
below. SinceG, (k) has a known form, the parallel recur- i 3 and@® () while for 2SG il
sions in (2.1a), (2.1b) can be implemented ottfg is spec- ghenera mgﬁk(()l)an Ok ()’bV.V |ed (cj)r » We Wil stppose
ified. The remainder of this paper will focus on two specifié_ atGi() = G, (") is an unbiased direct measuremeny0f

_ DN i ;
implementations of the ASP approach above: 2SPSA (secoﬂoe--leg‘(') = Gk_ ()= 9(')_+ mean-zero noigeThe ra_t|onale
order SPSA) for applications in the gradient-free case, and 2&% basic SPSA in the gradient-free case has been discussed ex-

(second-order stochastic gradient) for applications in the RENSIVely elsewhere (e.g., Spall [33], Chin [6], Dippon and Renz
bins—Monro gradient-based case. [7], and Gerencsér [12]), and hence will not be discussed in de-

We now present the per-iteration Hessian estinfiie As tail here. (In summary, it tends to lead to more efficient opti-
with the “basic” first-order SPSA algorithm, lef, be a pos- mization than the classical finite-difference Kiefer—Wolfowitz
itive scalar (decaying to O for formal convergence; conditionnsmthoOI while being no more difficult to implement, the rel-

given below), and le\, € R” be a user-generated mean-zergtlve efficiency grows with the problem dimensipr) In the

o . . o . radient-based case, SG methods include as special cases the
random vector satisfying certain regularity conditions discuss . L .
. . : I o ell-known approaches mentioned at the beginning of Section
in Section Il below. (Typical conditions are that the individua,

. backpropagation, etc.). SG methods are themselves special
compqnepts&ki be mutually_quependent, bounded, Symmet”é:flses (F))f tEeggeneraI Rc))bbins—Monro root-finding framev?/ork
cally dlstrlbpted, and have _flnmelversemoments Of ordek-2, and, in fact, most of the results here can apply in this root-finding
e.g., A being a vector of independent Bernouttil random setting as well.
variables satisfies these conditions, but a vector of uniformly or - 2SPSA, the core gradient approximat(é;c@k) requires
normally distributed random variables does not.) It will provg, , easurements ), y(Br + cur) andy(Br — i),
convenient to work with a “vector-divide” operation where th‘?epresenting measurements at design lefelscy, A, andé,, —
i7th element of the resulting matrix corresponds to the ratio g{Ak, wherec;, andA,, are as defined above fdf), (see Spall
the jth element of the numerator row vector to thie element [32], [33]). These two measurements will be used to generate

G1(6;,) in the conventional SPSA manner, in addition to being
employed toward generating the one-sided gradient approxima-
3In the general Robbins—Monro root-finding case, the mapjingould be tionSGS) (ékiCkAk) usedin formingflk- Two additional mea-
into the set of nonsingular (but not necessarily symmetric) matrices.

4t is also possible to use a weighted average or “sliding window” method 5The symmetrizing operation in (2.2) is convenient in the optimization case
(where only the most receitf,. values are used in the recursion) to determindeing emphasized here to maintain a symmetric Hessian estimate in finite sam-
H . Formal convergence @1, (ala Theorems 2a, b) may still hold under suctples. In the general root-finding case, whé&féd) represents a Jacobian matrix,
weighting provided that the analog to expressions (A10) and (A13) in the prabe symmetrizing operation should not be used since the Jacobian is not neces-
of Theorem 2a holds. sarily symmetric.

Hy
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surementa;/(ék + e Ay + ékAk) are used in generating theD. Implementation Aspects
one-sided approximations as follows:
The two recursions in (2.1a), (2.1b) are the foundation for

M s
G (On £ crdi) . the ASP approach. However, as is typical in all stochastic algo-
Akl rithms, the specific implementation details are important. Equa-
H = X A AL tions (2.1a), (2.1b) do not fully define these details. The five
b1 £ ey + & Ar) — y(Or £ ) | Ak
= e & e Beln) — (6 & ) 7&2 points below have been found important in making ASP per-

* . form well in practice.
A,jpl 1) 6 and H Initialization: Typically, (2.1a) is initialized at
(2.3) somed, believed to be neaf*. One may wish to run stan-
o < = T i dard first-order SA (i.e., (2.1a) withoﬁ;l) or some other
With A = (A1, Aga, -, Dup)” generated in the same Sta'“rough” optimization approach for some period to move the

tistical manner ag\, but independently ofy;, (in particular,
choosingAki as independent Bernoulli:1 random variables
is a valid—but not necessary—choice), and withsatisfying
conditions similar tay, (although the numerical value &f may
be best chosen larger thag; see Section 11-D}.

initial # for ASP closer to6*. Although, with the indexing
shown in (2.1b), no initialization of théf; recursion is re-
quired sinceH, is computed directly fron¥l,, the recursion
may be trivially modified to allow for an initialization if one
has useful prior information. If this is done, then the recursion

C. Motivation for Form of Hessian Recursion may be initialized at (say) scalel,x,, scale> 0, or some

To illuminate the underlying simplicity of ASP, let us nOWother positive semidefinite matrix reflecting available prior in-

provide some informal motivation for thi, form in (2.2). The formation (e.g., if one knows that tifeelements will have very

arguments below are formalized in the theorems of Sectionsﬁil'ﬁerent magnitudes, then the initialization may be chosen to

and IV, LetH (6) represent the true Hessian matrix, and Suppog@proximately scale for the differences). It is also possible to

thatg(6) is three-times continuously differentiable in a neigh™n (2.1b) in paraliel with the rough search methods that might

borhood ofd;,. Then, simple Taylor series arguments show thRe used for initializingd; the resulting Hessian estimate can be
used to initialize (2.1b) when the full ASP method (2SPSA or

E(6Gk|0r, Ar) = 9(0k + crDr) — g(Br — cxAy) + O(c}) 2SG) is used. Sincél;, has (at most) rank 2 (and may not be

=6gr +0(c2) (O(c3) =0inthe SG casp positive semidefinite), having a pgsitive-definite initialization
helps provide for the invertibility off ;,, especially for smalk

where this result is immediate in the SG case, and follows easfiy ;. is positive definite.f;,(-) in (2.1a) may be taken as the

(as in Spall [33, Lemma 1]) by a Taylor series argument in thgentity transformation).

SPS2A case (Wher_e the(c3) term is the diffe_rence of th? two 2) Numerical Issues in Choice df;, and Hy: Generating

O(ck;) bias terms in the one-sided SP g.radlent approximatiogs, ejlements of\;, according to a Bernoullit1 distribution

andéx = O(cx)). Hence, by an expansion of each@ii + s easy and theoretically valid (and was shown to be asymp-

cxAy), we have for any, j totically optimal in Sadegh and Spall [30] for basic SPSA; its
E< 6Ghi N ) poten_tial optimality for the gdaptive approa_lch here is an open
20, A k) Bk quefstlon). In some appllcatlon§, howgver, |.t may be worth ex-

Sari | - ) ploring other valid choices of distributions since the generation

= E< 2enDps Or; Ak) + O(c) of A, represents a trivial part of the cost of optimization, and a

R ’ A different choice may yield improved finite-sample performance

=H;;(6r) + Z Hyi(Or) A—M +0(c}) (this was done, e.g., in Maeda and De Figueiredo [20] in “basic”

£ ki SPSA). BecausH ;, may not be positive definite, especially for

small% (even if H, is initialized based on prior information to
Pe positive definite), it is recommended ths. in (2.1b) not
generally be used directly in (2.1a). Hence, as shown in (2.1a),
it is recommended thafl ;, be replaced by another matri;

that is closely related téf;.. One useful form whep is not too
large has been to také, = (H Hy)'/? + 6,1, where the in-
implying that the Hessian estimate is “nearly unbiased,” Wilrﬁicated square root is the (unique) positive semidefinite square

the bias disappearing at raf¥c?). The addition operation in "0t ands;. > 0is some small number. For largea more effi-
(2.2) simply forces the per-iteration estimate to be symmetricient method is to simply séf . = Hy. + 6,1, butthis is likely
to require a largef;, to ensure positive definiteness Bf,. For

6An alternative SPSA gradient approximation not explored here is the one-, . =7 .
measurement form in Spall [34]. Here, omgefunction evaluation is required r\?ery largep, it may be advantageous to hakig. be only a diag-

to getarD(c3) “almost unbiased” approximation of-). Although this willin-  onal matrix based on the diagonal element#qf+ 6,1. This
crease the variability ol , it may be beneficial in nonstationary settings wherds a way of capturing large scaling differences in frelements

the underlying true gradient and Hessian are changing in time since the redU(:ed ilable to first-ord | ith hile eliminatina th
number of measurements will reduce the potential bias that may otherwise\bd1available to first-order algorithms) while eliminating the po-

introduced. tentially onerous computations associated with the inverse op-

where theO(c}) term in the second line absorbs higher ord
terms in the expansion dfg,. Then, sinceE(Ag/Ay;) =
0 Vj # £ by the assumptions fak,, we have

0G i
E
< ZCkAkj

e) = Hyy(B) + O(S)
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eration in (2.1a). Note that;, should only be used in (2.1a), aswell-behaving algorithm should be moving toward the solution
(2.1b) should remain in terms @, to ensure a.s. consistencyin a smooth manner, and very large steps are indicative of po-
(see Theorems 2a, b in Section I1l). By Theorems 2a, b, one dantial divergence. The second potential method, 5b), is based
setH, = H, for sufficiently largek. Also, for general non- on blocking the step i/(0r41) > y(fx) — tolerance, where
diagonalH , it is numerically advantageous to avoid a diredolerance > 0 might be set at about one or two times the ap-
inversion ofH , in (2.1a), preferring a method such as Gaussidtioximate standard deviation of the noise in f{¢) measure-
elimination (which, e.g., is directly available as the MATLABMeNtS. In a setting where the noise in the loss measurements
“\" operator). tends to be large (say, much larger than the allowable differ-

3) Gradient/Hessian AveragingAt each iteration, it may be €nce betweerL(6*) and L(Bna)), it may be undesirable to
desirable to Compute and average SevH@ande(ek) values use 5b) due to the d|ff|CU|ty In Obtaining meaningful informa-
despite the additional cost. This may be especially true in a higih about the relative old and new loss values. For any nonzero
noise environment. Also see item 5) for additional potentialfjoise levels, it may be beneficial to average sevgfgl mea-
useful averaging. surements in making the decision about whether to block the

4) Gain Selection: The principles outlined in Brennan andStep; this may be done even if the averaging mentioned in guide-
Rogers [3] and Spall [36] are useful here as well for practichfe 3) is not used (then the standard deviation for choosing
selection of the gain sequencgs,}, {cx}, and in the 2SPSA tolerance should be normalized by the amount of averaging).
case,{é,}. For 2SPSA and 2SG, the critical gai can be Having tolerance > 0 as specified above when there is noise
simply chosen as/k, k > 1 to achieve asymptotic near opti- in they(-)'s builds some conservativeness into the algorithm by
mality or optimality, respectively (see Section IV-B), a|th0ugﬁl”OWIng a new step only if there is relatively strong statistical
this may not be ideal in practical finite-sample problems. For tigvidence of an improved loss value.
remainder, let us focus on the 2SPSA case; similar ideas apply-et Us close this subsection with a few summary comments
for 2SG case, but the problem is slightly easier since there is@@out the implementation aspects above. Without the second
{&} sequence. We can choosg = a/(k + A)*, ¢, = c¢/k7, blocking procedure 5b) in use, 2SPSA requifesr measure-
andé, = ¢/k7,a,¢,é,a,y > 0,A > 0fork > 1.In fi- mentsy(-) per iterationyegardlessof the dimensiorp (two for
nite-sample practice, it may be better to choasand~ lower the standardz,(-) estimate and two new values for the one-
than their asymptotically optimal values af= 1 andy = 1/6 Sided SP gradienis’(-)). For 2SG threegradient measure-
(see Section IV-B), and, in particular,= 0.602 andy = 0.101 MentsGy(-) are needed, again independenpoff the second
are practically effective and approximately the lowest theorefilocking procedure 5b) is used, one or more additigitgimea-
cally valid values allowed (see Theorems 1a, 2a, and 3a in Sédrements are needed for both 2SPSA and 2SG. The use of gra-
tions 11l and IV). Choosingz;, so that the typical change @, dient/Hessian averaging 3) would increase the number of loss or
to 65, 41 is of “reasonable” magnitude, especially in the criticayradient evaluations, of course. The standard deviation for the
early iterations, has proven effective. Settingapproximately measurement noise (used in items 4) and 5b)) can be estimated
equal to 5-10% of the total expected number of iterations e collecting severaj(-) values a® = fo; neither 4) nor 5a)
hances practical convergence by allowing for a largehan requires this estimate to be precise (so relativelygéwvalues
possible with the more typical = 0. However, in slight contrast are needed). In general, 5a) can be used anytime, while 5b) is
to Spall [36] for the first-order algorithm, we recommend that more appropriate in a low- or no-noise setting. Note that 5a)
have a magnitude greater (by rough|y a factor of 2_10) than th@'ps to prevent divergence, but lacks direct InS|ght into whether
typical (“one-sigma”) noise level inthﬁ.) measurements. Fur- the loss function is improving, while 5b) does provide that in-
ther, setting® > ¢ has been effective. These recommendatio§éght, but requires additiong(-) measurements, the number of
for largerc (and¢) values than given in Spall [36] are made du#hich might grow prohibitively in a high-noise setting.
to the greater inherent sensitivity of a second-order algorithm to
noise effects. [ll. STRONG CONVERGENCE

5) Blocking: At each iteration, block “bad” steps if the new

es'Fimate ford fails a certain criterion (i.e., sé1 = 04 in vergence of9k — 6" andH, — H(6*) (all limits are as
going fromk to k + 1). Hy should typically continue to be up- ;" " niess otherwise noted). This section establishes sep-
dated even if).., is blocked. The most obvious blocking ap arate results for 2SPSA and for 2SG. One of the challenges, of
plies wher? must satisfy constraints; an updated value may Rg e, in establishing convergence is the coupling between the
blocked or modified if a constraint is violated. There are tWFécursmns ford, and Hy. We present a martingale approach
ways [5a) and 5b)] that one might implement blocking wheghat seems to provide a relatively simple solution with reason-
constraints are not the limiting factor, with 5a) basedprand  gple regularity conditions. Alternative conditions for conver-
fx41 directly, and 5b) based on loss measurements. Both of S@hce might be available using the ordinary differential equa-
and 5b) may be implemented in a given application. In 5ajon approach of Metivier and Priouret [22] and Benveniste
one simply blocks the step frof), to 8y if [|fi1 — 6x] > al. [1, ch. I1.1], which includes a certain Markov dependence
tolerance, where the norm is any convenient distance megrat would, in principle, accommodate the recursion coupling.
sure and tolerange> 0 is some “reasonable” maximum dis-However, this approach was not pursued here due to the diffi-
tance to cover in one step. The rationale behind 5a) is thatwalty of checking certain regularity conditions associated with

This section presents results related to the strong (a.s.) con-
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the Markov dependence (e.g., those related to the solution of th€.6: ﬁ;l exists a.s¥v k,ciﬁgl — 0 a.s., and for some

“Poisson equation”). Sp > 07E(||ﬁ;1||2+6) < p.
The results below are in two parts, with the first part (Theo- C.7: Foranyr > 0and nonempty C {1,2,---,p}, there
rems la, b) establishing conditions for the convergencﬁ% of exists ap’(7,.5) > 7 such that
and the second part (Theorems 2a, b) doing the sam& for
The proofs of the theorems are in Appendix A. We|let| de- Z (6 — 67, (6)
note the standard Euclidean vector norm or compatible matrix _ s
spectral norm (as appropriaté)*); and (6 — 6*); represent lim sup - <1 as.
the<th components of the indicated vectors (notation chosen to hoee Z (6= 6%)ig1:(9)
avoid confusion with the iteration subscrip}, i.0. represent ies
infinitely often, andg,, (6x) = H;lg(ek). Below are some reg- forall |(6 — 6*);] < 7 wheni ¢ S and|(6 — 6*);| >
ularity conditions that will be used in Theorem l1a for 2SPSA ¢'(,5) wheni € S (see lemma for sufficient condi-

and, in part, in the succeeding theorems. Some comments on tions).

the practical implications of the conditions are given immedi- comments on Conditions C.0-C.T.0 and C.1 are common
ately following their statement. Appendix B provides some aghartingale-difference noise and gain sequence conditions. C.2
ditional comments on the relationship of the conditions here ggovides a structure to ensure that the gradient approximations
the conditions of other adaptive approaches mentioned in Sgg-) and G(l)( ) are well behaved. The conditions dx, are
tion 1. very close to those for “basic” SPSA, and would usuaky

Note that some conditions show a dependencéomnd clude A, from being uniformly or normally distributed due
H,, the very quantities for which we are showing convergencg their violation of the implied finite inverse moments condi-
Although such “circularity” is generally undesirable, it is fairlytion in E(Iy(9k + CkAk)/AkZ|2+6) < p (note that Holder’s
common is the SA field (e.g., Kushner and Yin [15, Theorefequality makes the finite inverse moment condition explicit
5.2.1], Benvenisteet al. [1, p. 238]). Appendix B elaboratessjnce the expectatlon of interest exist&ify(fx crAp)|2+)
on the circularity issue relative to conditions in other adaptivgnd E(|1/A.|2+*") are uniformly bounded foé’,§” > §).
algorithms. The Appendix points out that adaptive algorithmsn independent Bernoulli-1 distribution is frequently used
without circularity conditions havether conditions that are for the elements of\, as discussed in Section 1I-D. C.3 and
difficult to check and/or eaSily violated. The inherent dlﬁlCUltyC4 provide basic assumptions about the smoothness and steep-
in establishing theoretical properties of adaptive approachgsss ofL(#). C.3 holds, of course, if(6) is twice continu-
comes from the need to couple the estimates for the parametgjsly differentiable with a bounded second derivativesh
of interest and for the Hessian (Jacobian) matrix. Note that thes is a modest condition that says tHatcannot be bouncing
bulk of the conditions here showing dependencé,oandH}.  around in a manner that causes the signs of the normalized gra-
are conditions on the measurement noise and smoothnesgight elements to be changing an infinite number of timds if
the loss function (C.0, C.2, and C.3 below; €.G.2, C.3, s uniformly bounded away frori* (see the sufficient condi-
C.8, and C.8in later theorems); the explicit dependencedpn tions below). C.6 provides some conditions on the surrogate for
can be removed by assuming that the relevant condition hoilg Hessian estimate that appears in (2.1). Since the user has
uniformly for all “reasonable’d. The dependence in C.5 isfy|| control over the definition o1, these conditions should

handled in the Iemma below. be relatively easy to satisfy. Note that the middle part of C.6
C.0: E(s,(f) - )|9k,Ak,Hk) = 0as.vk, Wheres(i) (H ' = o(c; %) a.s.) allows foH ;! to “occasionally” be large
is the effect|ve SA measurement noise, m{.,) = provided that the boundedness of moments in the last part of the
y(ék + e Ag) — L(ék + e Ag). condition is satisfied. The example f&f;, given in Section I1-D
Cl: awce > 0 Vkiap — 0,0 — 0ask — oo; [guideline 2)] would satisfy this potential growth condition, for
> heo Gk = 00, Ek O(Qk/cky < oo, instance, if5, = ¢;,0 < p < 2. Finally, C.7 ensures that, for

C.2: For someé,p > 0 and Vk,/ E(|y(9k + ksufficiently large, each element gf (¢) tends to make a non-
ckAk)/AM|2+5) < oAk < p, Au is symmet- negligible contribution to products of the forfl — 6*)g,.(6)
rically distributed about 0, andAy,} are mutually (see C.4). Asufficient condition for C.7 is that, for edch,; ()
independent. be uniformly (ink) bounded> 0 and< oo when|(6 — 9*)j| is

C.3: Forsome > 0 and almost alby, the functiong(-) bounded away from O for aff, C.7 is unnecessary wheh is
is continuously twice differentiable with a uniformly bounded as stated in the lemma below. Note that, although no
(in k) bounded second derivative for #lsuch that explicit conditions are shown of¥; }, there are implicit condi-
16x — 0] < p. tions in C.4-C.7 give®,’s effect onH,, (via Hy). In Theorem

C.4. Foreach: > 1 and allé, there exists @ > 0 not 2a on the convergence &f;, there are explicit conditions on
dependent ok and @, such that(§ — 6*)7g,(9) > {é}-
pll6 — 6%]|. Conditions C.5 and C.7 are relatively unfamiliar. So, before

C.5: For eacht = 1,2,---,p and anyp > 0, showing the main theorems on convergence for 2SPSA and
PU{g.(6) > 0i0} n {g.0) < 0 2SG, we give sufficient conditions for these two conditions
L0 M{|6xi — (6%):] > p Yk}) = 0 (see lemma in the lemma below. The main sufficient condition is the
for sufficient conditions). well-known boundedness condition on the SA iterate (e.g.,
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Kushner and Yin [15, Theorem 5.2.1], Benvenisteal. [1,

Theorem 11.15]). Although some authors have relaxed this
boundedness condition (e.g., Gerencsér [12]), the conditionC.9:
imposes nopractical limitation. This boundedness condition

also formally eliminates the need for the explicit dependence

of other conditions (C.2 and C.3 above; €.G.2, C.3, C.8,

and C.8 below) onék since the conditions can be restated to

hold for all 6 in the bounded set containirﬁg. Note also that

1845

CrAr)-

Ay satisfies the assumptions fak; in C.2 (i.e.,
Yk, £,|Are| < pandAy, is symmetrically distributed
about 0{ A} are mutually independent);, andA,,

are independent® (A7) < p, BE(AL?) < p Yk, !

and some > 0.

Theorem 2a—2SPSA:et conditions C.0, C/1, C.2, C.3,

the conditionay/c2 — 0 holds automatically for gains in the gnd C.4—C.9 hold. Thed], — H(6*) a.s.
standard form discussed in Section IV. One example of whenQur final strong convergence result is for the Hessian esti-

the remaining condition of the lemma, (3.1), is trivially satisfiegnate in 2SG. As above, we introduce some additional modified
is when H;, is chosen as a diagonal matrix, as suggested donditions.

guideline 2) of Section II-D.

Lemma—Sufficient Conditions for C.5 and C Assume that
C.1-C.4 and C.6 hold, arttnsup,_._ [|éx]| < oo a.s. Then
condition C.7 is not needed. Further, {gt/c; — 0, and sup-
pose that, for any > 0,

P(sign ?m(ék)

# signg(6y) i.0. [ — (67)i| 2 p) =0 Vi. (3.2)

Then C.5 is automatically satisfied.
Theorem 1a—2SPSAConsider the SPSA estimate Gy, (-)

vyith GS)(-) given by (2.4). Let conditions C.0—C.7 hold. Then C9:

0, — 6 — 0a.s.

Theorem 1b below on the 2SG approach is a straightforward

C.2”: The conditions of C/1hold plusc; > 0, ¢, — 0, and
S ok 4+ 12 % < o0
C.8: Forsomep > 0and allk, ¢,
E(|lg(Br £ cxdi)/ Arell?)
E(ll(egt = &7)/ Al P)

0

<
<p

and
E((esT — 7Y/ Awelfi) =0

Whereeéi) = Gk(ék + CkAk) — g(ék + CkAk)

For somep > 0and allk, ¢, |Ae| < p, Age IS SYym-
metrically distributed about A} are mutually in-
dependent, an&(A7) < p.

modification of Theorem 1a on 2SPSA. We replace C.0, C.1,Comments on C'1, C.8, C.9: Unlike this theorem’s com-
and C.2 with the following SG analogs. Equalities hold a.fanion resultfor 2SG (Theorem 1b), explicit conditions are nec-

where needed.

C.0: E(6k|ék, Ak,ﬁk) =0 Whereek = Gk(ék) — g(ék)

Cl:ar > 0Vkiar — 03D popar = 00,9 peo@h <

0.

C.2: Forsomes,p > 0, E(||Gr(6)]|>H) < p Vk.

Comments on C'0C.2: Note (analogous tgéx} in The-
orem la) that there are no explicit conditions ps.} here.
These conditions are implicit via the conditionsEr, and will
be made explicit when we consider the convergenc# pfin
Theorem 2b.

Theorem 1b—2SGConsider the setting wher@,(-) is a
direct measurement of the gradient. Suppose thd+C.@ and
C.3-C.7 hold. The#;, — 6* — 0 a.s.

essary on{¢;} to control the convergence of the Hessian it-
eration. Note that due to the simpler structure of 2SG (versus
2SPSA), the conditions in C.@re a subset of the conditions in
C.9 for Theorem 2a.

Theorem 2b—2SGSuppose that C/pC.17”, C.2, C.3,
C.4-C.7,C.8§ and C.9hold. ThenH; — H(#*) a.s.

IV. ASYMPTOTIC DISTRIBUTIONS AND EFFICIENCY ANALYSIS
A. Asymptotic Distributions of ASP lIterate

This subsection builds on the convergence results in the
previous section, establishing the asymptotic normality of the
2SPSA and 2SG formulations of ASP. The asymptotic nor-
mality is then used in Section IV-B to analyze the asymptotic

Theorem 2a below treats the ConvergenCEinn the SPSA efﬁciency of the a|gorithms_ Proofs are in Appendix A.
case. We introduce several new conditions as follows, which areySpsa SettingAs before, we consider 2SPSA before 2SG.

largely self-explanatory:
C.1”: The conditions of C.1 hold plus} ;- (k +
1)72(Ck6k)72 < oo With ¢, = O(Ck)
C.3:
differentiable” with all else unchanged.

C.8: Forsome > Oandallk,?,m,

Ely(0y £ cxdp + & Ar)?/(AreArm)?] < p

and
Ely(6x  c1A1)?/(AreApn)?] < p;
E(f::ii) — E,(;I:)|9Ak; Ak,ﬁk) =0

and

— NV /(A D) < p

Asymptotic normality or the related issue of convergence
of moments in basic first-order SPSA has been established
under slightly differing conditions by Spall [33], Chest

Change “thrice differentiable” in C.3 to “four-timesal. [4], Dippon and Renz [7], Kushner and Yin [15, ch. 10],

and Gerencsér [12]. We consider gains of the typical form
ay = af(k+A)* andcy, = ¢/k7,a,¢c,a,v > 0, A >0,k > 1,
and take3 = o — 2v, p? = E(A?), €2 = E(A2,) Yk, i. The
asymptotic mean below relies on the third derivativel.¢f);
we IetLS?,)C(G*) represent the third derivative d@fwith respect
to elements, j, k of § evaluated af*. The following regularity
conditions will be used in the asymptotic normality result.
C.10: E(e\P) — {7126, H,) — 02 a.s. for some? > 0.
For almost alby, {E((c\") — e07)2|0k, e Ar = n)}
is an equicontinuous sequenceyat 0, and is contin-
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uous inn on some compact, connected set containir. Efficiency Analysis

the actual (observed) value afA; a.s. Using the distribution results in Section IV-A, we now ana-

C.11: In addition to implicit conditions an andy via C.’, | ,¢ the asymptotic efficiency of the second-order approaches.
3y —«a/2>0andj > 0. Further, wherw = 1,0 > For convenience here and in Section V, let 1SPSA and 1SG de-
B/2. Let fi(-) in (2.1a) be chosen such that, — note the standard first-order SPSA and SG algorithms (to con-
Hy — Oas. trast with 2SPSA and 2SG).

Comments on C.10 and C.1Although, in some applica- 2SPSA SettingFrom Theorem 3a, the root-mean-squared

tions, the *=" for the noise second moments in C.10 may b@ms) error from the asymptotic distribution of the normalized
replaced by “=,” the limiting operation allows for a more generrorkﬁﬂ(ék —6*)is
eral setting, and is relevant in the example of Section V. Since

the user has full control ovefy(-), it is not difficult to guar- rMsyspsa (@, a, ¢, v) = [u? p + tracd Q)]/2 (4.4)
antee in C.11 thall;, — H;, — 0 a.s.; most examples in Section
11-D2) satisfy this condition. where the arguments emphasize the dependence on the gain

Theorem 3a—2SPSASuppose that C.0, C/1C.2, C.3,and Sequence coefficients (coefficiedt of course, does not affect
C.4—C.9 hold (implying convergence 8 andH,). Then, if the asymptotic distribution). (Under some additional condi-

C.10 and C.11 hold an# (#*)~! exists, tions—e.g., Gerencsér [12]—the asymptotic distribution-based
rms error in (4.4) is equal tOE(||k%/2(6, — 69)]|*)]/2.)
k%12 (6, — 6%) dist N(p, Q) (4.1) To analyze the asymptotic efficiency, we compare Jnsa

with a corresponding quantity based on standard 1SPSA. Let
wherep = {0if 3y — /2 > 0, H0*)"*T/(a — 34/2) if rmsspsa(a,a,c,v) denote the rms error from the asymptotic
3y — a/2 = 0}, thejth element ofl" is distribution for 1SPSA, as given, e.g., in Spall [33, Prop. 2].
Dippon and Renz [7] pursue a line of reasoning close to that
above in comparing the iterate averaging version of SPSA with
_éac2£2 Lg 6*) 43 Z LS’J) 6*) (4.2) optimal versions of 1SPSA. In particular, the rms error in (4.4)
witha = « = 1,v = 1/6 is identical to the rms error for iterate

= averaging (note that = 1,7 = 1/6 is asymptotically optimal
Q = a?c 2022 H(6%)~2/(8a — 484), andBy = Bif o = 1 for both 1ISPSA and 2SPSA since they maximize the rate of con-
andg, = 0if o < 1. vergence:~#/2 under the constraints @n., cx). Then, based on

'2SG Setting:We now consider the 2SG setting of direcPiPpon and Renz [7, expressions (5.2) and (5.3)] and assuming
references on the asymptotic dlstrlbutlon and/or moments Rfve
second-order SG algorithms when the Hessian is estimated

rm A (1,1,¢ &
adaptively in particular ways (e.g., Nevel'son and Has’minskii ssrsa (1,16 )

<2 Ve >0

[23, ch. 7], Fabian [11], Ruppert [27], Wei [43], Benveniste B0 i rMsispsa (.1, ¢, 5)

et al. [1, pp. 115-116], Ljung [17], and Walk [42]). These (4.5a)

references show that the asymptotic properties—such as distri- min rmSZSPSA(l 1et )

bution—of the adaptive algorithms are identical to those that >0 <2 (4.5b)

would result from using the true (unknown) Hessian. We will min  min rmS15PSA(1, 1,¢e, )

do likewise for 2SG implementation. As above, consider gains 2a>1/Amin €0

of the typical forma,, = a/(k + A)~. wherel,,;, is the minimum eigenvalue df (6*). The interpre-
Before introducing the asymptotic normality result, we introgtion of (4.5a), (4.5b) is as follows. From (4.5a), we know that,

duce an additional regularity condition. for any common value of, the asymptotic rms error of 2SPSA

C.12: E(egel |0, Hi) — ¥ a.s. for some positive semidef-is less than twice that of 1SPSA with an optimajeven when
inite matrixX,a > 1/2if o =1, andfi(-) is chosen ¢is chosen optimally for LISPSA). Expression (4.5b) states that,
such thatH,, — H;, — 0 a.s. if we optimize onlyc for 2SPSA, while optimizing both and

Comments on C.12As with C.10, frequently, *” can be ¢ for 1SPSA, we are still guaranteed that the asymptotic rms

replaced with “=" in the limiting covariance expression. Likeerror for 2SPSA is no more than twice the optimized rms error
wise, see the comments following C.11 regarding the conditié®r 1SPSA. Another interesting aspect of 2SPSA is the relative
H,— H, — 0as. robustness apparent in (4.5a), (4.5b) given that the optimal
Theorem 3b—2SGSuppose that C/0 C.1”, C.2, C.3, for 1SPSA will not typically be known in practice. For certain
C.4-C.7,C.8 and C.9hold (implying convergence qﬁ‘,“ﬁk) suboptimal values of in 1SPSA, the rms error can get very

and that C.12 holds witl#f (§*)~! existing. Then, large whereas simply choosing= 1 for 2SPSA provides the
factor-of-2 guarantee mentioned above.
ka/2(9 —6*) = dist, N(0,) (4.3) Although (4.5a), (4.5b) suggest that the 2SPSA approach

yields a solution that is quite good, one might wonder if a
whereQ) = a*?H(60*) 'S H(6*)"'/(2a — B4) with 3, = 1if true optimal solution is possible. Dippon and Renz [7, pp.
a=1landg;y =0if « < 1. 1817-1818] pursue this issue, and provide an alternative to
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H(6*)~1 as the limiting weighting matrix for use in an SA

form such as (2.1a). Unfortunately, this limiting matrix has no

closed-form solution, and depends on the third derivatives of

TABLE |
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NORMALIZED LOSSVALUES FOR1SPSAAND 2SPSAWITH ¢ = 0.001;
90% GONFIDENCE INTERVAL SHOWN N [+]

L(6) at 6*, and furthermore, it is not apparent how one woul ~Ng, of loss 1SPSA 1SPSA with iterate 2SPSA
construct an adaptive matrix (analogous Aig;) that would measurements averaging
i i Pt i 1 ikewi ; 2000 0.0046 0.0047 0.0023
converge to thls opt_|mal I|m|t|ng_ matr|>_<. leew_lse, the opt|ma [0.0040, 0.0052] (0.0040, 0.0054] 0,001, 00025
c for 2SPSA is typically unavailable in practice since it als
depends on the third derivatives bf#). 10,000 0.0023 0.0023 8.6x10™
[0.0021, 0.0025] {0.0021, 0.0025] | [7.6x10™* 9.6x107"

Expressions (4.5a), (4.5b) are based on an assumption 1
1SPSA and 2SPSA have used the same number of iterations.

This is a reasonable basis for a core comparison since the “cqgiper bounds to the ratio would be equaj2p+ 1)*/2, bounds

of solving for the optimal 1SPSA gains is unknown. Howevefpat unlike the bounds for 2SG (i.e., which are equal/R),
a more conservative representation of relative efficiency is pqgerease with problem dimension.

sible by considering only the direct number of loss measure-
ments, ignoring the extra cost for optimal gains in 1SPSA. In
particular, 1SPSA uses two loss measurements per iteration and . ) .
2SPSA uses four measurements per iteration. Hence, with botf] NiS Section compares 2SPSA and 2SG with their cor-
algorithms using the same number of loss measurements, fePonding first-order “standard” forms (1SPSA and 1SG).
corresponding upper bounds to the ratios in (4.5a), (4.5b) (Ilggmerlcal studies on other functions are given in Spal_l [35],
flecting the ratio of rms errors as the common number of lo5&iman [18], and Vande Wouwet al. [40]. The loss function
measurements gets large) would Bé32~ 2.52, an increase considered here is a fourth-order polynomial witk 10, sig-

from the bound of 2 under a common number of iterations. Tr&%cant variable interaction, and highly skewed level surfaces
a

bound'’s likely excessive conservativeness follows from the f € raFlo of maximum ‘o_m'”'”?”m_ eigenvalue &f(6") is
g{jproxmately 65). Gaussian noise is added toltf or g(-)

that the cost of solving for the optimal gains in 1SPSA is bein . )
ignored. Note that, for other adaptive approaches that are asgluatlons as appropriate. MATLAB software was used to

asymptotically normally distributed, the same relative cost an?’
ysis can be used. Hence, for example, with the Fabian [10] ap- P P
proach using)(p?) measurements per iteration to generate theL(f) = 7 A7 A6 + 0.1 Z (A8)? +0.01 Z (AB)} (5.1)
Hessian estimate, the corresponding upper bounds would be of i=1 i=1
magnitudeO(p?/3), bounds that, unlike the bounds for 2SPS
increase with problem dimension.

2SG Setting:The SG case is more straightforward thal
the above. By minimizing the asymptotic rms error, it i
well known that the optimal gain i$1(6*)~*/k (e.g., Wei

V. NUMERICAL STUDIES

ry out this study. The loss function is

A\Nhere(-)i represents théh component of the argument vector
éﬁs in Section Ill) and4 is such thap A is an upper triangular
atrix of ones. The minimum occurséit = 0 with L(6*) = 0.
$he noise in the loss function measurements at any val@ésof
_ given by[67, 1]z wherez ~ N(0,02111x11) is independently
[43], Ruppert [28], and KUSh/ner and Yin [15, p. 2&f’g])genera\ted at eadh This is a relatively simple noise structure
Then rmf—’SG(“7 a) = ) t2race{(2 )_/ = a[trace{_H(e*)— representing the usual scenario where the noise valugé)in
LH(67)™")/(2a — B1)] / , as derived from (4.3) in Theorem yonend org (and are therefore dependent over iterations): the
3b. Settinga = o = 1 yields an rms error for the adaptive, ' term provides some degree of independence at each noise
algorithm (2.1a), (2.1b) that is identical to that obtained byntribution, and ensures that) always contains noise of vari-
using the idealized optimal gaif/(6*)~!/k. In particular, ance at least? (even ifg = 0). Guidelines 1), 2), 4), and 5) from
Mms;sc(1,1) = [tracgH(¢*) 'SH(¢*) 1)]'/*. Hence, s gection I1-D were applied here.
ratios for SG analogous to (4.5a), (4.5b) (rms for 2SG over thea fundamental philosophy in the comparisons below is that
optimal RMS for 1SG) have the value 1. As in 2SPSA aboVghe |oss function and gradient measurements are the dominant
this ratio is for a common number of iterations. If this ratio i%ost in the Optimization process; the other calculations in the
expressed based on a common number of gradient measgfgorithms are considered relatively unimportant. This philos-
ments (reflecting the fact that three gradient measurements gghy is consistent with most complex stochastic optimization
iteration are used for 2SG versus one gradient measurementieblems where the loss function or gradient measurement may
iteration for 1SG), then the ratio of asymptotic rms errors fgepresent a large-scale simulation or a physical experiment. The
2SG over 1SG is/3 ~ 1.73. Although this ratio is likely to be relatively simple loss function here, of course, is merely a proxy
overly conservative since it ignores the cost of solving for ther the more complex functions encountered in practice.
optimal gains in 1SG, it is enlightening relative to fundamental 2SPSA Versus 1SPSA Resul@pall [37] provides a thor-
limits. Also, in parallel with the analysis for 2SPSA, the rati@ugh numerical study based on the loss function (5.1). Three
based on using one of the previous adaptive approaches (egise levels were considered:= 0.10, 0.001, and 0. The re-
Wei [43] or Ruppert [27]) instead of 2SG shows the detrimentslilts here are a condensed study based on the same loss func-
effects of increasing. In particular, with the Wei or Ruppert tion. Table | shows results for the low-noiée = 0.001) case.
adaptive approaches usinZp gradient measurements pefThe table shows the mean terminal loss value after 50 indepen-
iteration to generate the Hessian estimate, the correspondiengt experiments, where the values are normalized (divided) by
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TABLE I
NORMALIZED LOSSVALUES AND 90% CGONFIDENCE INTERVALS FOR1SGAND 2SGWITH ¢ = 0.10
1SG 1SG with iterate 2SG: “High cost” loss | 2SG: “Low cost” loss
averaging measurements measurements
1.1x107 L1x 107 7.4 %107 22x107°
[LOx 107 1.2x 107 | [1.0x1071.2x107* | [6.3x1078.5x107%] | (1.7x107,2.7x10]

L(éo). Approximate 90% confidence intervals are shown belo®SG, on the other hand, were approximately optimized numeri-
each mean loss value. Relative to guideline 4), the gaing,, cally as inthe 2SPSA versus 1SPSA study, and used the slower
and¢, decayed at the ratagk0-602 1 /k9-101 ‘and1/k%191 re- decay forma/(k + A)°-°°1]. Hence, the results presented here
spectively. These decay rates are approximately the sloweststleuld be considered a conservative representation of possible
lowed by the theory and are slower than the asymptotically operformance for 2SGAside from this asymptotically optimal
timal values discussed in Section IV (which do not tend to worthoice of gain, the same experimental setup reported in Spall
as well in finite-sample practice). Three separate algorithms §8%] was used. The comparison between algorithms in the SG
shown: basic 1SPSA with the coefficients of the slowly desase is complicated by the mix of both loss and gradient mea-
caying gains mentioned above chosen empirically accordingsiorements used in the algorithms, and the need to compare ac-
Spall [36], the same 1SPSA algorithm but with final estimateuracy for the same overall “cost” of the optimization (as men-
taken as the iterate average of the last 200 iterations, and 2SPt8%ed above, only the loss and gradient measurements are con-
Additional study details are as in Spall [37]. sidered relevant to the cost here).

We see that 2SPSA provides a considerable reduction inWe report results in Table Il for the high-noige = 0.10)
the loss function value for the same number of measuremeoése. 1SG (unaveraged and averaged) used only gradient mea-
used in 1SPSA. Based on the numbers in the table togetheurements, while 2SG used gradient measurements and [for
with supplementary studies, we find that 1SPSA needs ape blocking step 5b)] loss measurements. All results are based
proximately five—ten times the number of function evaluatioren 5000 “gradient equivalents” for the algorithm budgets (so
used by 2SPSA to reach the levels of accuracy shown. Tt 5000 iterations of 1SG is the same number of iterations as
behavior of iterate averaging was consistent with the discussibBPSA with 10 000 loss measurements). A gradient equivalent
in Section | in which the 1SPSA iterates had not yet settled intepresents either a gradient measurement or some number of
bouncing roughly uniformly around the solution. Numericdbss measurements. We consider two cases, one where the cost
studies in Spall [37] show that 2SPSA outperforms 1SPS# a loss measurement is so high that it is undesirable to invoke
even more strongly in the noise-frée = 0) case for this loss blocking step 5b) due to the relatively high noise levels, and
function, but that it is inferior to 1SPSA in the high-nois&e another case where the cost is negligible compared to a gradient
= 0.10) case. However, Spall [37] presents a study basedmpasurement. In the former (“high-cost”) setting, 2SG used
a larger number of loss measurements (i.e., more asymptotlmee gradient measurements and no loss measurements at each
where 2SPSA outperforms 1SPSA in the high-noise caderation. In the latter (“low-cost”) setting, it was assumed that
In addition, studies by other authors (e.g., simulation-basede could obtain enough loss measurements so that, at a cost
optimization in Luman [18], or neural network-based trainingquivalent to one gradient measurement, one could effectively
in Vande Wouveket al.[40]) show that, for other loss functions,average out the noise in the loss values used in the blocking
2SPSA can outperform 1SPSA in high-noise settings wiliep 5b). The 2SG approach is inferior when the loss measure-
only a moderate number of loss measurements. The Lumaents are costly, and superior when the loss measurements are
[18] study is one where the transform invariance property sfgnificantly cheaper than the gradient measurements.
second-order algorithms is particularly useful given the large Other studies have been conducted with 2SG. For example,
scaling differences among the element# of Vande Wouveret al. [40] show an approximate order of

2SG Versus 1SG Resultsve also examined the ASP ap-magnitude reduction (relative to 1SG/backpropagation) in loss
proach as it applies in the SG setting with loss function (5.4alue in a neural-network training problem. For loss function
and the noise model above. Given this model, the noise in tf%1), the performance of 2SG relative to 1SG improves when
gradient measurements is independemlf0, 02 ;9x10) dis- & gets smaller. In fact, in the no-noige = 0) setting (such
tributed. Consistent with the theory in Section 1V, this studgs in system identification applications where one has exact
uses the asymptotically optima}, = 1/k form for the gain information about the gradient of the loss function) with only
(and from Theorem 2b, we chosgto correspondingly have the 500 gradient equivalents (versus 5000 above), 2SG produces
form ¢/k°-*?). Although this eases the implementation of thioss values of order I¥, about two orders of magnitude lower
algorithm (since the critical gain sequenge, } no longer has than those resulting from 1SG; the relative disparity between
to be empirically determined), it likely limits the performancSG and 1SG grows even larger as the number of gradient
of the algorithm for the finite samples of interest [the gains faquivalents gets larger.

It was also found that, if the iterates were constrained to lie in some hy- V1. CONCLUDING REMARKS

percube ground* (as required_, e.g., in genetic algorithms), th_en all values ir_1 This paper has presented a general adaptive second-order
Table | will be reduced, sometimes by several orders of magnitude. Such prior pap p g p

information can be valuable at speeding convergence. SA approach that has a simple structure and is efficient in
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high-dimensional problems. The approach applies in eith@r la Newton—Raphson) and stochastic. Nevertheless, with the
the gradient-free (Kiefer—Wolfowitz) setting where only noisappropriate care, the adaptive approach is relatively easy to
loss function evaluations are available or the stochastic gimplement, and can offer impressive gains in efficiency.
dient-based/root-finding (Robbins—Monro) setting where noisy

gradient evaluations are available. This adaptive simultaneous APPENDIX A

perturbation algorithm is based on the principle of changing PROOFS OFCONVERGENCERESULTS IN SECTION IIl AND

of all the parameters in the problem simultaneously in con- ASYMPTOTIC DISTRIBUTION RESULTS IN SECTION IV

structing gradient and Hessian estimates. In high-dimensiorﬁ%of of Lemma (Sufficient Conditions for C.5 and C.7)
problems of practical interest, such simultaneous changes admit

an efficient implementation by greatly reducing the number C.7is usedinthe proofs of Theorems 1a and 1b only to ensure

of loss function evaluations or gradient evaluations requiré’iﬁptﬁ?msupg?oo ”be’“” = 00) = 0.f(|3|ven tge bomande%ngs?h
to carry out the optimization process relative to conventional “# IS condition becomes Supertiuous. Regarding L., the

o : >
“one-at-a-time” changes. The ASP algorithm is compos é)undedness condition together with the facts thafi; —

2771 ;
of two parallel recursions: one a direct SA analog of th and_ck}{k - 9 (C.6) imply that', for somd < p' <
Newton—Raphson algorithm of deterministic optimization, anét @9k ()| < " a.s. for allk sufficiently large. From the
the other a sample mean calculation of per-iteration HessiAASIC recursionfuri = 6; — aigy;(6r) — axcwi, where
estimates formed using the simultaneous perturbation principfé. = Gr(0k) = Gyi(0x). Butarey, — 0 a.s. by the martingale
The simple form for the Hessian estimate seems to obvidgvergence theorem (see (8) and (9) in Spall and Cristion [38]).
. / i .= i .

the claims of Schwefel [31, p. 76], Polyak and Tsypkin [26]7Q‘|'|nkce|91,_?jZ |. Ztlp I> P we Ikpowﬂt}h:;\t .s|gn9,g _S'gne’“*lé” for

or Yakowitz et al. [44] that few practical algorithms exist for &' & SUMlICIENtY 1arge, Implying tha sigg; (6) —3|gng7;.( .k+1)
estimating the Hessian in recursive optimization, a.s. Assumption (3.1) completes the proof of sufficiency for

C.5. Q.E.D.
We establish conditions for the a.s. convergence oftaed

Hessian estimates from the parallel recursions. This allows Pgof of Theorem 1a (2SPSA)
to establish the asymptotic normality of theestimate in both The proof will proceed in three parts. Some of the proof

the gradient-free and stochastic gradient-based settings. In tWigge\y follows that of the proposition in Spall and Cristion [38],
the asymptotic normality provides the mechanism for analyzigg,hich case the details will be omitted here, and the reader will
the efficiency of the ASP approach. Itis shown that the ASP gl girected to that reference. However, some of the proof differs
gorithm has the same limiting efficiency that an SA algorithiy nontrivial ways due to, among other factors, the need to ex-
would have if the true Hessian were known; this is a nearly Opicitly treat the bias in the gradient estimatg(-). First, we
timal algorithm in the gradient-free case, and an optimal alg@ji|| show thaté,, = 4, — 6* does not diverge in magnitude to
rithm in the gradient-based case. Some numerical analysis illus-on any set of nonzero measure. Second, we will showdghat
trates the efficiency improvement possible in finite samples reJonverges a.s. to some random vector, and third, we will show
ative to conventional first-order approaches, with the advantaggt this random vector is the constant 0, as desired. Equalities
in the example here being larger in lower noise environmentsld a.s. where relevant.

(These numerical studies also illustrate some limitations of it- Part 1: First, from C.0, C.2, and C.3, it can be shown in the
erate averaging as a means for obtaining efficient algorithmsriranner of Spall [33, Lemma 1] that, for allsufficiently large,
finite-sample practice.) Numerical studies of ASP by others on o .

different problems have validated the efficiency of the approach E(Gr(01))6k) = 9(6r) + by (A1)

for practical low- and high-noise settings.

The ASP method illustrates both the benefits and potentiéiherec; ||t || is uniformly bounded a.s. Using C.6, we know
dangers of second-order approaches. Although ASPrédaa thatﬁ,j1 exists a.s., and hence we writ§, = akﬁgl(g(ék)+
tively simple adaptive approach, and the theory and numeriéal). Then, as in the proposition of Spall and Cristion [38], C.1,
experience point to the improvements possible, one should®¢e, and C.6, and Holder’s inequality imply, via the martingale
careful in implementation, and beware of potential divergenceonvergence theorem,

Most of the care in implementation is devoted to choosing the
important algorithm coefficients; there are generally more co-
efficients to choose than in the first-order algorithms (although
fewer than certain other stochastic optimization methods
such as the various genetic algorithms; further, the effort c@fhere X is some integrable random vector.

be reduced by simply using the asymptotically optimal or | etus now show thaP (limsup,, .. ||6x|| = o) = 0. Since
near-optimale, = 1/k for the important “gain” sequence if the arguments below apply along any subsequence, we will,
the initial condition is sufficiently close to the optimum). Infor ease of notation and without loss of generality, consider the
addition, it is important to monitor the algorithm or implemengvent{||6,|| — oo }. We will show that this event has probability
the “blocking” procedures described in Section II-D to guard in a modification to the arguments in [38, proposition] (which
against wild steps during the iteration process. This probléma multivariate extension to scalar arguments in Blum [2], and
seems inherent in second-order approaches, both determiniEtrans and Weber [8]). Furthermore, suppose that the limiting

k
b1 + > M; 25 X (A2)
=0
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quantity of the unbounded elements+isc (trivial modifica- Suppose that the event in the probability of (A7) is true, and let
tions cover a limiting quantity including-oo limits). Then, as I C {1,2,---,p} represent those indexésuch thathy; - 0
shown in [38, proposition], the event of intere{ﬂ@kﬂ — oo} ask — oo. Then, by the convergence in Part 2, there exists (for
has probability O if almost any sample point in the underlying sample space) some
" . 0<d <l < ocandK(d,b) < oo (dependent on sample
{{eki <P, S) Vi€ S, 0 <TVIE S, k> K(7,5)} point) such thav k > K,0 < o < |f| < ¥ < oo when

i € I(I # @) and|6;| < o wheni € I¢. From C.4, it follows
N limsup{M;; < 0Vi e S}} (A3a) that
k—oo
and Z ak Z OriGai(Br) = d'p Z a. (A8)
~ k=K+1 iCl k=K+1
{{% —ooVie s N liminf{My < 0¥i€ S}C}

A3b But since C.5 implies that,,; (6. ) can change sign only a finite
(A3b) number of times (except possibly on a set of sample points of

both have probabilities O for alt, S, and (7, S) as defined Measure 0); and sin¢éy.;| < v, we know from (A8) that, for

in C.7, whereK(r, §) < oo and the superscrigtdenotes set at leastone € I,

complement. n
For event (A3a), we know that there exists a subsequence pa Z ay,
{/{}0,]{}1,/{}2,"'},/{}0 ZK(T,S)Suchthal{iji Zp/(T,S) Vie . k=K+1
S} N {My,;; < 0Vig S}istrue. Then, from C.6 and (Al), hfisolip n . < %0 (A9)
5 ~ Z arGri(O)
> Or,i(Gh,i(Br,) +0(1)) < 0 as. (A4) h=K+1
ies

. R . . Recall thatakyk(ék) = M; —_akﬁ;lbk andb, = O(C%)
for all ;. By C.4,67 Gy (6x,) > pllf4, || a.s. which, by C.7, a5 Hence, from C.6, we havég ‘b, = o(1). Then by (A9),

implies, for allj sufficiently large, |35 jcur M| = . Since, for the’ < ¥ above, there ex-
Z G, .7 (é ) ists such aK™ for each sample point in a set of measure one
—~ kii9k;i\Tk; (recalling thatf;, converges a.s. by Part 2), we know from the

o p . ) T above discussion that there also exists an/ (¢ possibly de-
> 5 6w, 1l = (5) dim(S)p'(r,5) 2 - as. (A5) pendent on the sample point) such thag;? ., M| = oc.
_ _ Since! has a finite number of elementsy ", , M;;| = oo
sincey/(r,5) = 7 and din(S) > 1. Taken together, (A4) and \yith probability >0 for at least oné. However, this is inconsis-
(AS) imply that, for each sample point (except possibly on @nt with the event in (A7), showing that the event does, in fact,

set of measure 0), the event in (A3a) has probability 0. Noygye probability 0. This completes Part 3, which completes the
consider the second event (A3b). From (A2), we know that, f%rroof. Q.E.D.

almost all sample pointgf’zo My; — —oco Vi € S must be
true. But this implies from C.5 and the above-mentioned urfProof of Theorem 1b (2SG)
formly bounded decaying bids;) thatfor noi € 5 canM; > The initial martingale convergence arguments establishing

rocur 1-0. IC—:O\;vtek:/er, a.t eadgglr(lg)evim{Mki < 0\%hi ef Sgc h the 2SG analog to (A2) are based on’€@.2 and C.6. Al-
Ihs ccj)\?poieo f telunlcln 0 ; S—Th_ever:c S, €ach orwhic though there is no bias in the gradient measurement, C.4 and C.7
asiy; =z Uloratleastone € 5. ThiS, OF COUTSE, TeqUITES op i together to guarantee that the elements potentially di-

thatMy; > 01.0. for at least one € 5, which creates a Comra'.verging [in the arguments analogous to those surrounding (A3a),

diction. Hence, the probability of the event in (A3b) is 0. Thi A3b toticallv dominate th ddE 7. (6. ) ASi
completes Part 1 of the proof. ? )] asymptotically dominate the pro lﬁgjg"‘j( ;). Asin

Part 2: To sh hatd . fini the Proof of Theorem 1a, this sets up a contradiction. The re-
i _tart ' ho str?v‘; thatf;, converges a.s. to a unique ( Inlte)mainder of the proof follows exactly as in Parts 2 and 3 of the
Imit, we show tha Proof of Theorem 1a, with some of the arguments made easier

sinceb;, = 0. .E.D
) =0 Vi * Q

(A6) Proof of Theorem 2a (2SPSA)

foranya’ < ¥'. This result follows exactly as in the proof of  First, note that the conditions subsume those of Theorem
Part 2 of the proposition in Spall and Cristion [38]. 1a; hence, we have a.s. convergenc#,ofBy C.8, we have
Part 3: Let us now show that the unique finite limit from g((¢,.¢,)2||H||2) uniformly boundedV k. Hence, by the
Part 2 is 0. From (A2) and the conclusion of Part 1, we hagditional assumption introduced in ¢.(beyond that in C.1),
lim sup [3°72, Mii| < oo a@s.Vi. Then the result to be the martingale convergence result in, say, Laha and Rohatgi

P<likminf O, < d <V < limsup by,

k—oo

shown follows if [16, p. 397], yields
. B oo 1 n R o
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asn — oo. By (2.4), conditions C/3 C.8, and C.9 imply/ £  Then, by (A12), the continuity off neard,, and the fact that
(A11) shown at the bottom of the page, whe[ﬁé) represents 6, — 0* a.s. (Theorem 1a), the principle of Cesaro summability
the third derivative of w.r.t. thehth, ith, andjth elements of; implies
9jE are points on the line segments betwég,ﬁt ey + e Ay

andek =+ ¢ Ay; and we used the fact thﬂ(AszkJ/Au) 1

1 E(Hy|6x)
0 Vi,4,k, and/ (implied by C.9 and the Cauchy—-Schwarz in- "+

bl
— ||M:
=)

equality). " R )
Let = > (H(by) +0(ch)) — H(") as.  (A13)
k=0
, , Given thatH, = (n+ 1)1 ') Hy., (A.10) and (A13) then
By = A« (L@ — L2 @) yield the result to be proved. Q.E.D.
h,t,j

Proof of Theorem 2b (2SG)

Since the conditions subsume those of Theorem 1b, we have
6, — 6* a.s. Analogous to (A10), C/1and C.8yield a martin-
gale convergence result for the sample meaH of E(Hk |6%)-
Then, given the boundedness of the third derivative (@)
By C.3 (bounding the difference 'ﬂgi) terms) and C.9in con- nearé, for all &, the Cauchy—Schwarz inequality and G ®.9

: AleAkiAkj O, A

junction with the Cauchy—Schwarz mequahtyA and’C(t. = imply that E(Hy|8:) = H(6;) + O(c3). By 0, — 6% a.s., the
O(cr)), we haveBy /c;. uniformly bounded (ir¢,., A ) forall - Cesaro summability arguments in (A13) yield the result to be
k sufficiently large. Hence, from (A11) thenth element oft;,  proved. Q.E.D.
satisfies
Proof of Theorem 3a (2SPSA)
B om0) Beginning with the expansiali(Gy (6x)6x) = H (81.) (6 —
m 0*) + by, whered, is on the line segment betweép and 6"

—E G&)(ék + i) — Géle)(ék — k)
B 2CkAkrn

b, and the biag;, is defined in (A1), the estimation error can be
represented in the notation of [9] (also [28]) as

_E 9O + crdr) — ge(Br — crAy) + ¢ Bre b, Orp1 — 0° =(I — E~T3) (0 — 6%)
2¢1 Apm 1 (D28, v, ka—,ﬁ/2ﬁ’:1Tk
= 2c1[0g¢/ 96" |y, Ak + O(ct) 0, where
2CkAkrn = .
N Iy =aH; "H(0;
= Hu(Br) + O(2) (A12) k= ally H)

(I)k = —aﬁ;l

where theO(c}) term in the third line of (A12) encompasses Vi = E71G(0) = B(Gr(00)[601)]

both & By, and the uniformly bounded contributions due t@nd7}, = —ak?®/2b,,. The proof follows that of Spall [33, Prop.
9%g¢/067 96" in the remainder terms of the expansion o] closely, which shows that the three sufficient conditions for
9e(Or + i) — ge(fr — cxAy) (50 0(c2)/c} is uniformly  asymptotic normality, in Fabian [9, (2.2.1)—(2.2.3)], hold. By the
bounded, allowing the use of C.9 and the Cauchy—Schwamanvergence of,, itis straightforward to show a.s. convergence
inequality in producing theD(cZ) term in the last line of of 7, t0o 0if 3y — /2 > Oorto 7 in (4.2) if 3y — a/2 =
(A12)). 0. The mean expressiom then follows directly from Fabian

E[G&)(ék + CkAk)|ék, Ak]
© (OE)AnAri Ay,

ckg(ﬁk + CkAk)TAk + = k ATH(Hk + CkAk)Ak + —= k Z Lhz;
h,i,j

CAwe

A 1. .
= giBr £ cxldi) + G GE | A L

hij

(OF) AwnAri Ay | b1, Ay, (A11)

hi,jg
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[9] and the convergence df; (and hencﬁk—‘]L by C.11 and general setting for ASP that encompasses both gradient-free and
the existence o (6*)~1). Further, as in Spall [33, Prop. 2], SG/root finding. The approach is basedZprmeasurements of
E(ViVT|6x) is a.s. convergent by C.2 and C.10, leading to thg?) at each iteration to estimate the Jacobian (Hessian) matrix.
covariance matrif. This shows Fabian [9, (2.2.1) and (2.2.2)]Some of the conditions in Wei [43] are similar to conditions
The final condition [9, (2.2.3)] follows as in Spall [33, Prop. 2for ASP (e.g., decaying gain sequences and smoothness of the
since the definition of/, is identical in both standard SPSA andunctions involved), while other conditions are more stringent

2SPSA. Q.E.D. (the restriction to only the root-finding setting and the require-
ment for i.i.d. measurement noise). There are also conditions in
Proof of Theorem 3b (2SG) ASP that are not required in Wei [43], principally those asso-

L ciated with “nice” behavior of the user-specifiéfy, (bounded
Analogous to the Proof of Theorem 3a, the estimation errﬁ{oments, etc.), the steepness conditions C.4 and C.7 (similar
can be represented as I, ; .
to standard conditions in some other adaptive approaches, e.g.,
R R Ruppert [27]), and limits on the amount of bouncing in “big
Ort1 — 0" = (I — k7 T0)(0h — 0°) + k™ Drey steps” around”* (the i.0. condition C.5). An additional key as-
o o sumption in Wei [43] is the symmetric function condition on the
whereT, = aH;'H(6;) and®, = —aH;*. Conditions Jacobian (or Hessian) matrix:
(2.2.1) and (2.2.2) of Fabian [9] follow immediately by the
smoothness of.(#) (from C.3), the convergence of; and HOH@O) + HO)H(O)T >0  Vo,0. (B1)
H,,, and C.12. Condition (2.2.3) of Fabian follows by Holder’s
inequality and C.2 C.3. Q.E.D. This, unfortunately, is a stringent condition that may be easily
violated. In the optimization case (whefeis a Hessian), this
condition may fail even for benign (e.g., convex) loss functions.
Consider, for example, a case with= (z, ) and a simple
convex loss functio.(6) = x* + 22 + y? + zy. Lettingd =
This Appendix provides comments on some of the conditiof8, 0)* and¢’ = (2,0)*, we have
of ASP relative to other adaptive SA approaches. In the confines
of a short discussion, it is obviously not possible to provide a H(OH(O)T + HOH(O)T = [
detailed discussion of all conditions of all known adaptive ap-

proaches. Nevertheles_s_, we hope to convey a flavor of the re\/IVEHich is not positive definite, violating condition (B1). Aside
tive nature of the conditions.

from the fact that this condition may be easily violated, it is also

As discussed in Section lll, some of the conditions of ASP de- . : . . ] )
generally impossible to check in practice because it requires

pend orvy itself, crgatmg atype ofC|rcuIar!ty (!.e., dlr'ect Condl'knowledge of the trudi(#) over the whole domain; this, of
tions on the quantity being analyzed). This circularity has been

discussed elsewhere (see Section Ill and Kushner and Clark Qurse, s the very quantity thaF Is being estimat_ed! The requi_re—
op. 40-41]) since other SA algorithms also héyedependent ént for such prior knowledge is also apparent in other adaptive

conditions. Some of the ASP conditions can be eliminated aPproa_ches dlscussed_m_Secnon X e.g.,_Ruppert [27] and_Fablan
S . : . 0]. Given the above, it is clear that neither ASP nor Wei [43]
simplified if the conditions of the lemma in Section Il hold.

The foremost lemma condition is tht be uniformly bounded (nor others) have uniformly “easier” conditions for their respec-
| tive approaches.

Of course, this uniformly bounded condition is itself a circular The inherent difficulty in establishing theoretical broperties
condition, but it helps to simplify the other conditions of the y 9 prop

theorems that are dependentérsince thed;, dependence can qf adaptive approaches comes from the need to couple _the es
. o timates for the parameters of interest and for the Hessian/Ja-
be replaced by an assumption that these other conditions hold'. . . . .
. . .. Ccobian matrix. This tends to lead to nontrivial regularity con-
uniformly over allg in the bounded set guaranteed to conéain

. . . ditions, as seen in th&.-dependent conditions of ASP and in
(e.g., the current assumption C.3 thét) be twice continuously ; I ; .
X i . . L the stringent conditions that have appeared in the literature for
differentiable in neighborhoods of estimatgscan be replaced

by an assumption tha{8) is twice continuously differentiable othgr qpprqaches. There appear to be' no easy conditions for es-
A tablishing rigorous properties of adaptive algorithms. However,

on some bounded set known to COﬂtﬂ)J)A. If the lemma ap- iven that all of these approaches have a strong intuitive appeal

plies, condition C.5 (on the i.0. behavior &f) is unnecessary. 9 PP 9 PP

: . : : ?sed on analogies to deterministic optimization, the needs of
In showing convergence and asymptotic normality, one mig

; . : ractical users will focus less on the nuances of the regularity
wonder whether other adaptive algorithms could avoid condi- " . . .
. N . . . conditions and more on the cost of implementation (e.g., the
tions that depend ofl;, and avoid alternative conditions that . :

. . . number of function measurements needed), the ease of imple-
are similarly undesirable. Based on currently available adap- . .
. R . entation, and the practical performance.
tive approaches, the answer appears to be “no.” As an illustra-

tion, let us analyze one of the more powerful results on adap-
tive algorithms, the result in Wei [43]. Wei's results are mul-
tivariate generalizations of results in Nevel'son and Has'min- The author appreciates the insightful comments of Dr. J.
skii [23, ch. 7] and Venter [41]. The Wei [43] approach is reMaryak on a draft version of the paper, and the suggestions of
stricted to the SG/root-finding setting as opposed to the mdee. I.-J. Wang on the proof of the lemma in Section IlI.

APPENDIX B
INTERPRETATION OFREGULARITY CONDITIONS
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