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INTRODUCTION
The overall performance of a guided missile system 

depends on the performance of its guidance and control 
(G&C) algorithms. These algorithms perform several 
important functions. Guidance algorithms use sensor 
data to guide the missile to a successful intercept. Flight-
control algorithms provide stable yet agile flight within 
the capabilities of the airframe while managing the con-
trol energy expended to prevent hardware failure and 
maximize kinematic range. For a guided missile system 

equipped with a warhead, G&C algorithms also contrib-
ute to lethality by encouraging favorable missile/target 
geometries in the endgame.

In this context, the role of G&C algorithms is to 
orchestrate the various missile subsystems to ensure that 
all applicable requirements are met and to consistently 
maximize missile lethality. For example, a guidance 
law takes target sensor data and integrates them with 
knowledge of the missile state to generate acceleration 

uidance and control (G&C) algorithms play an important  
role in maximizing the lethality of a guided missile system. 

While G&C algorithms are diverse in type and complexity, they 
all have adjustable parameters that affect their operation and, 

consequently, overall missile performance. The selection, or “tuning,” 
process, whereby the optimum values for the adjustable parameters 

are obtained, is a critical challenge in G&C algorithm design. Analytical 
techniques often are unavailable, and manual analyze-and-iterate methods are 

time-consuming and suboptimal. In this article, we discuss an automated, simulation- 
based approach to G&C algorithm optimization that uses the simultaneous pertur-
bation stochastic approximation (SPSA) algorithm. The practical challenges of G&C  
algorithm tuning, as well as effective solutions to these challenges, are presented in 
detail, and an example is provided.
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commands to put the missile on a collision course with 
the target. The design of such a guidance law clearly 
plays a significant role in determining the final separa-
tion of the missile and target and therefore is a major 
contributor to the lethality of the overall system.

As threats evolve and increasingly stringent per-
formance requirements are levied on guided missile 
designs, corresponding advances in missile G&C syn-
thesis techniques and algorithms are required. Many of 
these advanced algorithms are multivariable techniques 
and employ high-order models. Furthermore, additional 
sensors may be required to support algorithm perfor-
mance over a wide range of operating conditions. These 
factors increase the complexity and diversity of the algo-
rithms and present additional design challenges. In the 
Integrated Guidance and Control (IGC) algorithm, for 
example, the guidance filter, guidance law, and autopilot 
are combined into a single, integrated G&C algorithm.1 
Plant order and overall IGC algorithm complexity lead 
to a large number of interdependent design parameters 
whose connections to the hardware subsystems are 
not intuitively obvious. This interdependency makes  
analytical designs difficult, if not impossible, and ad hoc 
manual design techniques cumbersome at best.

The Design Problem and Its Challenges
Algorithms in general, and G&C algorithms in par-

ticular, contain adjustable design parameters that con-
trol their operation and ultimate performance. The 
time constant of a two-state guidance Kalman filter, the 
navigation ratio of a proportional navigation guidance 
law, and the gains in a three-loop autopilot are examples 
of adjustable parameters that are typical first-order per-
formance drivers. Almost every aspect of a G&C algo-
rithm has some adjustable parameter associated with it 
that affects the behavior of the algorithm and, therefore, 
affects the guided missile system. Once the structure 
of a G&C algorithm is established, the design of the 
algorithm then consists entirely of selecting appropriate 
values for the adjustable parameters.

Choosing optimum values for the algorithm param-
eters is a challenging design problem. Most G&C 
algorithms contain a large number of interdependent 
parameters, often with nonlinear and nonintuitive influ-
ences on system performance. Analytical techniques, 
when available, usually apply within a restricted domain. 
Often, the designer has a limited understanding of the 
relative impact of each parameter in a multivariable set-
ting, having a better understanding of single-parameter 
effects. The designer also may have a limited under-
standing of parameter interactions with the diversity of 
flight scenarios that must be considered (e.g., environ-
mental conditions, threats, intercept ranges). In addi-
tion, there can be constraints on parameters, both real 
and imposed, that complicate the designer’s job.

G&C algorithm parameters must be designed to oper-
ate over a wide variety of flight conditions and scenarios. 
Factors such as the suite of targets, flight conditions, 
and phase of missile flight (e.g., boost, midcourse, ter-
minal) must be considered in the design process. There 
may be multiple and sometimes competing performance 
objectives, such as final miss distance, airframe stability, 
conservation of control energy, and warhead effective-
ness. When these types of performance objectives are 
addressed directly in the design process, a missile simu-
lation of sufficient fidelity to accurately calculate them 
is required. Sometimes these performance measures are 
difficult and costly to compute via simulations—which 
often are highly nonlinear with complex, noisy inputs 
and model characteristics—thus complicating the 
design task.

Design Techniques
The techniques used to optimize G&C algorithm 

parameters vary widely. Analytical techniques are avail-
able for some algorithms. For example, the gains in 
conventional three-loop autopilots can be calculated 
analytically using linear techniques that satisfy time-
constant, airframe stability, and robustness criteria.2 
These gains often are valid over a limited set of flight 
conditions, and independent gain sets must be generated 
over a wide range of conditions and scheduled for use in 
flight. Conventional guidance filter and law design tech-
niques, on the other hand, are usually ad hoc because 
few analytical design methods are available. The trial-
and-error design process involves manual adjustments 
of the design parameters based on qualitative and  
quantitative performance measures, sometimes obtained 
from guided missile simulation outputs. Occasionally, 
some rigor is added to the manual process by evaluat-
ing the design parameters over a range of values. For 
example, one algorithm gain is parametrically stepped 
through a range of values while holding all others 
constant, and the value that yields the best system  
performance is chosen. This process is repeated for 
each design parameter. Grid-search techniques such as 
this are tedious and time-consuming, and the resulting 
designs are arguably suboptimal.

These challenges demand a more rigorous and 
structured approach to G&C algorithm gain optimiza-
tion. Problems of complexity and scale, the diversity of 
algorithms, and the fact that simulations are increas-
ingly being used in the design process motivate the use 
of a computer to iteratively seek the optimal values.  
Such simulation-based optimization techniques use 
noisy simulation outputs to drive the relevant design 
parameters to their optimal values. The optimization 
process is automatic in that the parameters are adjusted 
by a numerical minimization algorithm rather than by a 
human (Fig. 1).
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Automated approaches have been applied to tuning 
G&C algorithms. Reference 2 contains a description 
of applying an automated simulation-based technique 
to the optimization of an IGC algorithm. Reference 3 
discusses the results of automatically tuning an opti-
mal guidance system and dynamic inversion autopilot, 
as well as an IGC algorithm. Automated tunings of 
Kalman filters using genetic algorithms, the downhill 
simplex method, and simulated annealing are discussed 
in Refs. 4, 5, and 6, respectively, with applications in the 
G&C domain.

An automated simulation-based approach offers 
many benefits compared to manual approaches. Auto-
mated techniques can be much more efficient than 
manual tunings for large-scale problems because they 
optimize many tuning parameters, whereas manual, 
human-based approaches typically can handle, at most, 
a few at a time. Similarly, automated techniques that 
adjust all parameters can exploit parameter interde-
pendencies to produce optimal solutions. Furthermore,  
multiple G&C algorithms (e.g., the guidance filter, law, 
and autopilot gains) can be optimized concurrently 
using automated techniques, whereas they usually are 
optimized separately with conventional approaches.

Automated approaches to tuning G&C algorithms 
introduce new challenges not associated with manual 
techniques. Optimization algorithms include their 
own adjustable parameters, the values of which greatly 
impact the efficacy of the tuning process. The qual-
ity of the optimized gains produced by an automated  
simulation-based technique depends heavily on the 
fidelity and accuracy of the simulation used. Choosing 
an appropriate cost function that captures and balances 
all desired performance objectives also is critical to the 
success of an automated technique.

Selection of the optimization 
algorithm is a challenge as well. 
Some optimization algorithms 
are computationally expensive, 
while others are less suited to 
handling the noisy cost mea-
surements that are the typical 
outputs of guided missile simu-
lations. Others struggle with 
finding a global minimum to a 
cost function and are prone to 
generating only locally opti-
mum solutions. Some have 
better convergence properties 
than others.

Well-known deterministic 
algorithms, such as steepest 
descent and Newton–Raphson,  
assume the performance metric  
to be optimized as a determinis-

tic function of the tuning parameters; this is not the case 
for most guided missile systems. Stochastic algorithms 
such as the Robbins–Monro stochastic approxima-
tion (SA)7 and infinitesimal perturbation analysis can 
process the noisy outputs produced by guided mis-
sile simulations, but they are difficult to apply to G&C 
algorithm tuning because they require direct measure-
ments of the gradient of the cost function with respect 
to the parameters being optimized. Another class of 
SA algorithms does not rely on direct measurements 
of the cost gradient but rather estimates it using only 
measurements of the cost function. The cost-function 
gradient then is approximated in some intelligent 
manner and used to drive the optimization. There-
fore, these SA algorithms are particularly well suited 
for tuning G&C algorithms. (Gradient-free algorithms 
that apply in a stochastic setting, such as genetic algo-
rithms, simulated annealing, and evolutionary pro-
gramming, are additional options that have not been 
explored by the authors and are discussed briefly later in  
this article.)

Finite difference stochastic approximation (FDSA) 
was developed by Kiefer and Wolfowitz8 as an extension 
of the Robbins–Monro SA and requires one (or two) 
cost-function measurements per design parameter per 
iteration. With FDSA, systems having a large number 
of design parameters often require substantial comput-
ing resources. An alternative approach that avoids this 
drawback is the simultaneous perturbation stochastic 
approximation (SPSA) algorithm.9 The SPSA algorithm 
requires only two cost-function measurements per itera-
tion, regardless of the number of parameters to be tuned. 
When appropriately implemented, SPSA converges to 
the solution in roughly the same number of iterations as 
with finite-difference algorithms, offering overall time 
savings.

Figure 1.  Manual tuning techniques (a) require a human to adjust the algorithm parameters, 
assess the impact, and readjust the parameters until the desired performance is achieved. 
Automated-tuning techniques (b), on the other hand, use a numerical optimization algorithm 
to adjust the parameters to minimize a user-defined performance metric. 
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The SPSA algorithm has 
proven effective in addressing the 
challenges posed by the G&C 
problem domain as well as the chal-
lenges associated with automated 
approaches. SPSA is an iterative 
algorithm that uses simulation- 
generated, noisy cost-function mea-
surements to approximate the gradi-
ent (derivative) of the cost function 
with respect to the design param-
eters. The gradient approximation 
then is used to drive the parameters 
toward their optimum values. SPSA 
handles noisy cost measurements 
well and is efficient compared to 
other similar algorithms in terms 
of the number of simulation runs 
required per optimization iteration, 
even for applications with large 
numbers of tuning parameters.

The purpose of this article is 
to describe the automated tuning 
of missile G&C algorithms using 
SPSA, focusing on the implementa-
tion challenges and solutions that 
have been identified. The chal-
lenges presented by the G&C prob-
lem domain pertaining to algorithm 
optimization are discussed, followed 
by a description of various perfor-
mance metrics, or cost functions, 
that are useful for automatically 
tuning G&C algorithms. Then, the 
SPSA algorithm is presented, with 
a focus on implementation tech-
niques that apply to G&C algorithm 
optimization. Finally, an example is 
provided that illustrates the chal-
lenges and efficacy of an automated 
approach.

G&C ALGORITHM 
CONSIDERATIONS

Many issues arise when apply-
ing automated-tuning algorithms, 
such as SPSA, to optimize G&C 
parameters in guided missile sys-
tems. Optimal tuning parameters 
may have complex dependencies 
on the engagement conditions. 
The problem of convergence to the  
optimal values may be sensitive 
to the choice of initial parameter 

values. In addition, bounds on the parameter search space may be required 
to ensure that missile stability is maintained and simulation numerical issues 
are avoided. The following sections discuss these issues in more depth.

Parameter Scheduling
As noted above, well-designed missile G&C algorithms should oper-

ate over a wide range of engagement scenarios. This requirement compli-
cates the design task because the optimal algorithm parameter values rarely 
remain constant over the entirety of the scenario and flight-condition space. 
For instance, the engagements may occur at different speeds and altitudes, 
variables that affect the maneuverability of the missile by constraining the 
aerodynamic forces and moments the missile can generate. The inertial 
properties of the missile also vary throughout flight. As the motor burns—
altering the mass, rotational inertia, and center of gravity—the lateral and 
angular acceleration capabilities of the missile change. These changing aero-
dynamic and inertial properties strongly affect optimal control parameter 
values. Thus, the output of an automated tuning may not be a single value 
for a given parameter but rather a number of values, each of which is optimal 
for a given scenario or flight condition and must be interpolated for use in 
real time during flight. This process of interpolating a set of parameter values 
is known as parameter scheduling and often is motivated by the use of linear 
design techniques.

A good example of the need for parameter scheduling to accommodate 
parameter dependence on missile and engagement properties is the autopi-
lot time constant. Ideally, the controller should have the smallest time con-
stant possible so that it can generate commands at the highest frequency 
and amplitude to which the missile system can respond. Because the missile 
system response time depends strongly on the dynamic pressure experienced 
through flight, it is customary to vary controller parameters as functions of 
dynamic pressure, q. Since SPSA and other automated optimization algo-
rithms only tune a finite number of constant-valued parameters simultane-
ously, each parameter pn (n = 1, … , N) is expressed as a function fn of q and a 
fixed number of constants cn,m (m = 1, … , M):

	 p f q c cn n n,M= ( , ) .n,1,K, 	 (1)

There are many potential forms for fn , and analytical results often suggest 
a particular form. For example, we may know that pn varies proportionally to 
q, and thus fn can be written as
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and SPSA can tune directly for the single constant cn,1. Often, the form of 
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when qn,m21  q  qn,m and assuming qn,1  q  qn,M. In 
the case of Eqs. 3 and 4, the problem of tuning pn is cast 
in terms of tuning the M constant-valued parameters 
cn,m. Figure 2 illustrates how the autopilot time constant 
may be scheduled with dynamic pressure.

Using an approximate form for fn poses some addi-
tional difficulties within the tuning process. First, the 
form of f̂n must be chosen to approximate fn with suffi-
cient accuracy. Specifically, there must be an optimal set 
of cn,m such that the performance degradation of using  
f̂n versus fn, in terms of changes in the performance 
measure, is acceptable. It is not known a priori whether 
the choice of f̂n is sufficient. Therefore, the number of 
coefficients, M, used to parameterize the approximation 
f̂n may be large.

In addition, the increase in the number of parameters 
to be identified is a problem that must be addressed. Each 
additional parameter creates an additional dimension 
in the search space and may require more optimization 
iterations to converge to the optimal solution, result-
ing in increased computation time. The computational 
requirements of the search algorithm can, however, be 
reduced if tuning parameters are known to be or can rea-
sonably be assumed to be decoupled. Often, the designer 
can structure the optimization problem in a manner that 
intentionally decouples various tuning parameters. For 
example, in the case of tuning terminal homing mis-
sile engagements, the designer has the freedom to design 
f̂n such that each cn,m only affects the value of f̂n for 
a limited range of dynamic pressures. Thus, each cn,m 
can be tuned independently through the simulation of 
engagements, which exercise only the targeted dynamic 
pressure ranges.

Initial Conditions
Iterative optimization algorithms like SPSA require a 

set of initial values for the parameters to be optimized. 
Determining appropriate initial values can be diffi-
cult for certain G&C algorithms. Although analytical 
results may provide nearly optimal starting values for 
certain parameters, this is rarely the case. As previously 
noted, one of the motivations for an automated numeri-
cal search is that the designer’s understanding of the 
performance sensitivities of certain parameters can be 
quite poor. Algorithms such as IGC are complex and 
contain a large number of tunable parameters that affect  
performance in nonintuitive ways, making the choice 
of initial values difficult.

Requirements for initial parameter values are strict. 
For complex and highly nonlinear systems, a successful 
automated search cannot begin from any arbitrary set 
of parameter values. First, such an arbitrary set of values 
may yield such suboptimal performance that the results 
are essentially meaningless. For instance, if the missile 
spins out of control, any change in the locally com-
puted gradient of performance with respect to param-
eter change contains no useful information. Therefore, 
an initial parameter set must, at a minimum, enable the 
missile to fly stably and to home in on the target.

A stable missile, however, is not sufficient. The 
tuning parameters also must be initialized to values that 
are sufficiently near their optimal values. If the missile 
is stable but the tuning parameters are initialized with 
values much different from the optimal values, then 
the optimization algorithm may converge to a locally 
optimal value set that is substantially different from the 
globally optimal set. Thus, without an appropriate initial 
parameter set, an automated search may not converge to 
the parameter values that achieve the desired maximum 
performance.

Because of the stated requirements for initial con-
ditions of the automated search and the difficulties in 
meeting these requirements, many tuning problems may 
require a manual search (e.g., a coarse-grid search) to 
establish acceptable initial conditions because the auto-
mated search is expected to fine-tune the parameters to 
an optimal set of values. The search, however, should 
not be blind. A coarse-grid search over the parameter 
space should begin the process of finding initial values 
for the automated search. Parameter sets that yield the 
best results then must be evaluated to eliminate sets 
that may be unacceptable for secondary reasons. At this 
point, the designer must essentially guess which of the 
remaining initial condition candidates is believed to be 
closest to the globally optimal set. Scrutiny of internal 
simulation states can eliminate parameter values that 
yield bizarre or unexpected results. For example, if a set 
of parameters yields poor internal estimates of the line 
of sight between the missile and target (a key guidance 
quantity), the parameter set is rejected. It ultimately may 
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Figure 2.  Example of parameter scheduling. The autopilot time 
constant is a function of dynamic pressure. Optimum values are 
designed at certain dynamic pressure points, and intermediate 
values are calculated via interpolation during flight. The red curve 
represents scheduled parameter values, and the blue dots repre-
sent analytically derived, or tuned, parameter values.
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be necessary to attempt automated tuning with various 
sets of initial conditions.

Parameter Search Space
Another difficulty associated with the automated 

tuning of G&C algorithms is that many parameter 
values have limited ranges. For example, because the 
autopilot time constant is, by definition, limited to the 
positive real axis, the tuning algorithm should never 
produce a negative value. However, this bound may 
not be sufficient. The autopilot time constant may 
have a lower bound greater than zero, which is neces-
sary to ensure the numerical stability of the autopilot. 
These types of bounds are common in G&C algorithms.  
Guidance filters, for instance, also may become numeri-
cally unstable with certain parameter choices. It is 
important to define acceptable ranges for each tuning 
parameter over which the missile-engagement scenarios 
are being optimized for performance.

Choosing acceptable boundaries does not usually 
pose undue difficulty. The most challenging boundaries 
to select are not immediately apparent through analysis, 
such as those preventing numerical instability. These 
bounds can be found through a manual search. The 
exact boundary often is not necessary; it is usually suffi-
cient to bound each parameter within a range that con-
tains the optimal parameter value. A simple grid search 
may identify extreme parameter values for which perfor-
mance is poor but with which the G&C algorithms can 
function without any numerical issue.

Once identified, the parameter bounds are easily 
accommodated in the implementation of SPSA used 
here. The mechanics of how these constraints are 
incorporated into SPSA are discussed in Parameter 
Constraints, later in this article.

PERFORMANCE METRICS
The SPSA optimization algorithm is driven by a 

single, scalar-valued cost function. For the optimization 
to work well, this cost function must capture the design-
er’s view of the optimal performance of the algorithm. 
Ideally, a cost function captures all of the important 
system characteristics to be optimized and no others. In 
addition, the choice of a cost function must take smooth-
ness and ill conditioning into account. Overly noisy or 
discontinuous cost functions impede the convergence of 
the SPSA algorithm to viable optimums because of the 
erratic parameter perturbations they induce.

For our problem domain, the capacity to negate a 
threat under widely varying engagement conditions 
defines the efficacy of the missile with a particular G&C 
configuration. With this basic goal in mind, any tuning 
of the G&C algorithm must seek to increase the prob-
ability that the guided missile destroys a given threat.

Three statistics that are used to quantify the con-
cept of successful intercept are probability of hit (PH), 
probability of damage (PD), and adjusted probability of 
damage (APD). (A successful intercept for missiles that 
use kinetic warheads, i.e., hit-to-kill missiles, generally  
is characterized by the “miss” distance to a selected aim-
point on the target.) Estimates of these quantities are 
statistically derived from the simulation-based Monte 
Carlo analysis of particular intercept scenarios. The sim-
plest of the three quantities, PH, refers to the probability 
that the closest point of approach (CPA) of the missile 
to the target (i.e., miss distance) falls within the lethal 
radius of the warhead. PH is calculated as the percent-
age of runs in a Monte Carlo set with the CPA less than 
the warhead lethal radius. PH provides a good measure 
of guidance performance but falls short of capturing the 
essence of a successful intercept because a CPA within 
the lethal warhead radius does not guarantee target 
destruction or even damage.

A separate endgame simulation is required to gen-
erate PD statistics using outputs generated by the pri-
mary missile simulation. Depending on a variety of 
factors and more complicated than PH, PD provides 
an accurate measure of fragmenting warhead lethality. 
Assuming that the G&C system successfully guides the 
missile close to the target, the warhead fuze generally 
detects the target and initiates the warhead detonation 
sequence. At the time of fuzing, endgame characteris-
tics—such as instantaneous missile and target veloci-
ties and positions, missile body rates, relative angles 
between the missile and target, and missile and target 
angles of attack (AOAs)—influence the amount and 
type of damage sustained by a target. In addition to 
these engagement-specific characteristics, the type of 
target and warhead employed in the missile also affect 
the target damage. High-fidelity endgame simulations 
model the warhead/target interaction at intercept based 
on complex mathematical codes and warhead test data. 
Based on these considerations, the endgame simulation 
predicts the probability of target damage for an individ-
ual engagement to yield a PD value, which is averaged 
over a Monte Carlo set to obtain an estimate of the PD 
for the chosen intercept point.

APD is derived from PD. APD is simply the statis-
tical PD value adjusted to discount engagements that 
have exceeded the maximum acceleration limit of the 
missile airframe. In reality, physical airframe properties 
dictate a maximum acceleration achievable by a mis-
sile, but missile simulations do not typically terminate 
intercept scenarios on the basis of maximum calculated 
accelerations. By erroneously counting PD values for 
engagements that would result in missile structural fail-
ure, PD averages can be optimistic. The calculation of 
APD treats all engagements in a Monte Carlo set that 
exceed the acceleration limit as having PD values of 
zero. After this adjustment, the PD is averaged over the 
entire Monte Carlo set to yield the APD of the set.
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Miss distance and the related PH statistic are the sim-
plest cost functions used to express missile performance. 
However, they can be misleading for at least two reasons. 
First, the ultimate objective is for the warhead to be able 
to destroy the target, and this lethality depends on sec-
ondary factors as well as on miss distance. Thus, smaller 
miss distances do not always translate into a higher PD. 
In addition, miss-based cost functions do not take into 
account stability, limits on the expenditure of control 
energy, or the structural integrity of the airframe during 
flight.

The APD statistic described above appears reason-
able in the context of the previous factors because it 
penalizes overly aggressive G&C designs that tax the 
structural integrity of the airframe. However, because 
the APD statistic is discontinuous and can exhibit ill 
conditioning, it is difficult to use as a cost function for 
automated tunings. APD statistics are bimodal by defi-
nition, since simulation runs that do not meet accel-
eration limiting requirements have zero performance, 
while simulation runs meeting the requirements retain 
their PD value, which usually is either one or zero. 
Unless large numbers of simulation performance statis-
tics are averaged to estimate mean APD, a cost function 
composed exclusively of APD is extremely discontinu-
ous between tuning iterations, making SPSA gradient 
approximations difficult. One method of circumventing 
this problem is to scale the raw PD measure functionally 
using information on the magnitude of the maximum 
achieved acceleration during an engagement, produc-
ing a “pseudo-APD” measure. With this technique, 
the scaling function reduces the PD value exponen-
tially, and continuously, as the maximum acceleration 
approaches the missile acceleration limit.

Other system characteristics must be considered in 
the tuning process. For example, a tuning that is driven 
solely by miss distance or lethality can require an unreal-
istically high expenditure of control energy. In addition, 
nonlinear effects such as fin rate limiting, fin position 
limiting, and acceleration limiting break the control 
loop of a system, leading to unpredictable sensitivities to 
tuning adjustments. The addition of augmenting cost-
function components that penalize nonlinear or overly 
aggressive system behaviors can yield designs more rea-
sonable than those based on miss distance or lethality 
alone. Typically, these secondary cost components are 
scaled and combined with miss distance to form a com-
posite cost function. Some examples of useful secondary 
cost components are summarized below.

•	 Maximum acceleration cost: The maximum accel-
eration cost is computed as a function of the maxi-
mum lateral acceleration achieved during missile 
flight. Appropriate scaling of this cost component 
can encourage more stable missile behavior by 
penalizing large achieved accelerations, thereby 
minimizing the nonlinear and saturation effects 

of excessive acceleration limiting. Care must be 
taken, however, to avoid overly penalizing missile 
acceleration, because doing so adversely affects miss  
distance.

•	 Maximum fin rate cost: This cost component is a 
function of the maximum achieved fin rate of the 
missile. Typically, maximum fin rates above a critical 
value specified in the tuning setup are increasingly 
penalized according to a second-order polynomial. 
Judicious adjustment of the cost-function shape 
and weighting relative to the primary miss-based  
cost component forces the tuning to progress in a 
direction that avoids fin rates that exceed the maxi-
mum achievable hardware rates.

•	 Fin activity cost: Related to the maximum fin rate 
cost concept, the fin activity cost component is 
the integral of the squares of the achieved fin rates 
throughout the engagement. As a “roll-up” measure, 
the fin activity cost of an engagement provides infor-
mation on the total fin energy expended during an 
engagement but can mask any indication of the mag-
nitude or duration of fin position or rate saturation.

•	 Fin command error cost: Also a cumulative mea-
sure, this cost component consists of the error 
between controller commanded and achieved fin 
positions integrated over time. Engagements result-
ing in saturated fin rates and positions cause larger 
fin command error and, thus, large roll command 
error cost. As with a fin activity cost component, 
the integral form of this type of cost component 
obfuscates the distinction between small but persis-
tent errors and large, transient errors.

Many practical issues arise when considering the 
implementation of a cost function in automated tuning. 
Chiefly, these issues pertain to the proper conditioning 
of the cost and sufficient sampling of the cost space as 
well as to computational limitations and considerations. 
Engagements with excessive misses or large secondary 
cost statistics tend to disproportionately drive the evolu-
tion of an optimization through excessive contribution 
to the tuning cost, leading to poor overall system perfor-
mance. To avoid this problem, it is common to truncate 
cost statistics to a maximum value. This cost-function 
limiting helps to ensure that only relatively well-behaved 
simulation results drive a tuning. Computer system fail-
ure during the course of a tuning can produce erroneous 
cost measurements that skew tuning results in a similar 
fashion to ill-behaved engagements. To address this dif-
ficulty, automated optimization algorithms implemented 
here employ fault-handling logic to identify and dis-
regard failed cost-function evaluations attributable to 
computer system collapses, calculating cost based only 
on successful simulation runs.
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A tuned G&C controller should perform near opti-
mally for a large variety of engagement scenarios and 
noise conditions, necessitating the simultaneous tuning 
of many different simulated intercept scenarios. To this 
end, a single SPSA cost measurement often involves 
the averaging of several individual costs calculated for a 
group of simulated engagements. The selected group of 
tuning engagements can either be static over the course 
of a tuning or be randomly drawn from a pool of can-
didates at each tuning iteration. Thus, calculating the 
average cost of multiple engagements for each tuning 
iteration may require several individual simulation runs 
and extensive computational resources. Another possi-
bility in combining cost statistics for multiple engage-
ments is to use a chosen percentile of the statistics as the 
overall cost. For example, a tuning of the median cost of 
a group of engagements would use the 50th percentile 
cost value of the group at each iteration as the tuning 
cost. This approach partially ameliorates problems asso-
ciated with the undue influence of outliers on the mean 
cost of a group of engagements.

SPSA OPTIMIZATION ALGORITHM
For a given G&C algorithm and an appropriately 

designed cost function, the automated-tuning task 
largely becomes a matter of properly setting up and 
executing the optimization algorithm, in this case the 
SPSA. The basic form of the SPSA obtains two mea-
surements of the cost function by randomly perturbing 
the tuning parameters and uses the cost measurements 
to approximate the gradient of the cost function with 
respect to the tuning parameters. The SPSA gradient 
approximation then is used to update the parameters 
in the direction of the gradient. This basic form of the 
algorithm works well for relatively simple applications, 
but for the tuning of missile G&C algorithms, several 
practical issues present themselves. A description of the 
basic form of SPSA, along with several implementation 
issues and the solutions that work well for the missile 
G&C problem domain, are discussed below.

Basic SPSA Algorithm
To frame the problem, let us define  to be a vector 

of p real parameters to be optimized, L() to be the real-
valued, scalar cost function of the parameters, i.e.,

	 L p( ) ,� �→� 	 (5)

and g() to be the gradient of the cost function:

	 g( ) ( )/ .= ∂ ∂L� � � 	 (6)

The goal of the optimization problem is to determine 
the set of parameters * that minimizes the cost func-

tion L(). Assuming that the cost function is sufficiently 
smooth and that only a global minimum exists, the 
mathematical objective of the optimization problem is 
to find the * that satisfies a zero-derivative condition 
for the cost function:

	 g( )
( )

| .*
*

=
∂

∂
=

L
0�

�

� �
	 (7)

Thus, for the single global minimum problem, the 
gradient of the cost function assessed for the optimal 
vector of tuning parameters * is zero-valued. Because 
we do not have direct access to the cost function, only 
noisy cost-function measurements of the form

	 y L= +( ) ( ) noise� � 	 (8)

are available, and the gradient in Eq. 7 must be approxi-
mated as a function of the measurements y.

What differentiates SPSA from the more tradi-
tional finite-difference counterparts is the way these 
gradient approximations are made. A two-sided finite-
difference algorithm perturbs each of the p parameters 
one at a time, both positively and negatively, and forms 
the gradient approximation component-wise by divid-
ing the change in the cost function at the perturbed 
parameters by the perturbation amount, thus requiring 
2p cost-function measurements. SPSA, however, forms 
the gradient approximation with only two cost-function 
measurements, regardless of the number of parameters. 
This economy is accomplished by randomly but simulta-
neously perturbing each parameter twice to obtain two 
measurements of the cost function. Each parameter is 
perturbed independently by a random amount chosen 
from a zero-mean probability distribution that satisfies 
certain conditions.9 A simple and typical choice for the 
probability distribution is the equally weighted ±1 Ber-
noulli probability density function (PDF). Note that 
the common uniform and normal PDFs do not satisfy 
the conditions specified in Ref. 9 and cause the algo-
rithm to fail. The ith component of the SPSA gradient 
approximation at the kth optimization iteration is thus 
formed as

	 gki k
k k k k k k

k ki

y c y c

c
( )

( ) ( )
,=

+ − −
2

�
� � ��

�
	 (9)

where Dk is the p-dimensional random perturbation 
vector described above. After having obtained the gra-
dient approximation at the kth optimization iteration, 
the estimate of the optimum parameter vector is updated 
using the standard recursive SA update equation,

	 ( )= −k k k k ka+1 g ,��� 	 (10)
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where ak is a positive scalar gain sequence chosen to 
ensure convergence of the algorithm (see SPSA Conver-
gence). Equation 10 is iterated until the termination cri-
teria are met. Termination criteria are usually heuristic; 
typically, the algorithm is terminated if there has been 
little change in the cost function (or in k) over sev-
eral successive iterations or if a prespecified maximum 
number of iterations has been reached.

Gradient Averaging
When the noise levels in the cost-function measure-

ments are high, which is usually the case for medium- 
to high-fidelity guided missile simulations, the gradient 
approximations formed using SPSA are potentially of 
poorer quality compared to those formed with finite- 
difference algorithms and can cause unstable optimiza-
tion performance. This difficulty is overcome by using a 
level of gradient averaging, at the expense of additional 
cost-function measurements.10 Gradient averaging is 
accomplished by making several successive approxima-
tions given by Eq. 9 (with independent values of the 
random perturbation amount k for each approxima-
tion) and averaging the resulting gradient estimates 
component-wise. In this case, the gradient approxima-
tion becomes

	 g gk k
i

kq( ) ( ),( )= −

=
∑1

1
k
i

� � 	 (11)

where ( )g k
i ( , , )i q=1 L  are the q gradient estimates formed 

as in Eq. 9. Thus, for an averaged gradient approxima-
tion consisting of q gradient estimates, 2q cost-function 
measurements are required per optimization iteration. 
Empirical evidence suggests that a small number of 
gradient estimates, q = 3, for example, are sufficient to 
reduce the effective noise contribution and yield sat-
isfactory optimization performance. Even with these 
additional cost-function measurements (now 2q = 6 
per optimization iteration), the SPSA algorithm still 
affords significant time savings compared to the 2p cost-
function measurements required by finite-difference 
algorithms for the potentially large p associated with 
G&C algorithms.

Normalization via Parameter Scaling
Because the SPSA algorithm forms the gradient 

approximation by perturbing all of the parameters 
simultaneously by the same amount, difficulties arise 
when parameters have widely different magnitudes. 
The perturbation amount, critical to the performance 
of the optimization algorithm, must be large enough so  
the gradient approximations are not driven solely by 
measurement noise but small enough to ensure good-
quality gradient approximations.

This concern is addressed by applying a matrix scal-
ing to the parameter vector to map the parameters to 
values with similar magnitudes. The optimization algo-
rithm operates on the normalized values, which then are 
transformed back into the real parameter space before 
being sent to the simulation to obtain the cost-function 
measurements. One simple choice for the scaling is a 
matrix whose ith diagonal entry equals the reciprocal of 
the initial value of the ith parameter:

	 S =
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This scaling matrix yields normalized parameters, all 
with unity initial values. Using this matrix as a starting 
point, the individual diagonal entries then can be fine-
tuned to allow a more or less aggressive search of the 
parameter space as desired by the user.

SPSA Convergence
Formal convergence of the SPSA is shown in Ref. 9 

to be conditioned on the two gain sequences ak and ck in 
Eqs. 9 and 10. Typically, these gain sequences take the 
following forms:

	
( )

a a
A k

c c
k

k �

�k

=
+

=
( )

.
	 (13)

For these sequences, a = 1 and  = 1/6 are asymptoti-
cally optimal values, but implementation and numeri-
cal evidence show that choosing smaller values usually 
yields better performance by generating larger param-
eter step sizes. In Ref. 10, a = 0.602 and  = 0.101 are 
reported to be the lowest theoretically valid values and 
work well in practice. For tuning missile G&C algo-
rithms, it has been found that reducing the value of a 
even lower can often help the tuning process continue 
to move parameters to more favorable values before the 
ak sequence overly decays.

The perturbation gain c should be proportional to the 
level of the measurement noise in y(). A noisier cost 
function requires a larger value for c so that the per-
turbations are large enough to generate gradients that 
are not driven by noise alone. One benefit of applying 
the unity-magnitude scaling described above, where all 
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scaled parameters have unity initial values, is that the 
value of c corresponds to a percentage value for the ini-
tial perturbation. A value of c = 0.1, for example, results 
in a ±10% initial perturbation for each parameter. Prac-
tice has shown that small perturbations (5% or less) are 
sufficient for cost functions with relatively low noise 
levels. Particularly ill-behaved cost functions, however, 
may require perturbations on the order of 30–50%.

The parameter update gain a and the optimization 
stability parameter A in the ak sequence also can be 
chosen in a semiautomatic fashion.10 The parameter 
A should be chosen so that it is equal to no more than 
10% of the expected number of optimization iterations. 
Then, the parameter a should be chosen so that a0 times 
the initial gradient magnitude, g0 0( ˆ ) ,�  is approximately 
equal to the largest desired change in magnitude in the 
elements of  during the early iterations. The initial 
gradient magnitude is obtained by forming several gradi-
ent averages at the initial 0 (with c chosen as described 
above).

Parameter Constraints
An additional practical concern is how to impose 

parameter constraints. For G&C algorithms, minimum 
and maximum parameter values often must be enforced. 
These constraints can either be real or imposed by the 
designer. An example of a real parameter constraint 
is that an autopilot time constant cannot be negative. 
An example of an imposed constraint is if the designer 
wishes the measurement noise covariance value to 
remain within some region of the known sensor noise 
characteristics.

A simple modification to the SPSA algorithm is pre-
sented in Ref. 11, which handles this constrained opti-
mization case. The constraints are enforced both in the 
parameter update step in Eq. 10 and in the perturba-
tions that form the gradient approximation in Eq. 9. For 
the parameter update step, any parameter that breaches 
the boundary of the allowable parameter space is pro-
jected back to the closest point on the boundary (Fig. 3). 
Regarding the perturbations, if the perturbed value  

Parameter
projected back

to boundary

Parameter
update

exceeds
boundary

�1max

�1

�2

�1min

�2min

�2max

k = 5

k = 4
k = 3

k = 2

k = 1

Allowable

parameter

region

Figure 3.  Example of parameter constraint enforcement for a case 
with two tuning parameters. At iteration k = 5, the optimization 
algorithm updates the parameter to a value outside the allowable 
bounds. To enforce the parameter constraint, the parameter value 
is projected back to the closest point on the allowable parameter 
boundary. 

violates any of the constraints, the point in the param-
eter space about which the gradient approximation is 
formed is projected to a nearby point so that the con-
straints are enforced.11

EXAMPLE
The efficacy of an automated, simulation-based 

approach to G&C algorithm tuning is demonstrated by 
applying the SPSA technique to the IGC algorithm.1 
The IGC system is a good candidate for automated 
simulation-based tuning because of the lack of analyti-
cal design techniques, the large number of adjustable 
algorithm parameters, and the interdependence of these 
parameters with regard to algorithm performance.

The IGC concept considers the complete integra-
tion of the missile guidance filter, guidance law, and 
autopilot. Traditional G&C systems contain separate, 
decoupled algorithms for each of these features (Fig. 4).  

Target
sensors

Guidance
filter

Guidance
law

Airframe/
propulsion

Inertial
navigation

Autopilot

Target
motion

Target
direction

Target state
estimates

Acceleration
commands

Actuation
commands

Vehicle
motion

Figure 4.  A classical G&C architecture consists of decoupled guidance filter, guidance law, and autopilot components. 
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Figure 5.  A fully integrated G&C architecture combines the three traditionally separate guidance 
filter, guidance law, and autopilot components into a single integrated algorithm. 

An integrated architecture, on the other hand, considers all three components in 
a single, unified algorithm, thereby exploiting any functional interaction between 
the guidance and flight-control functions (Fig. 5). The IGC paradigm also provides a 
natural framework for simultaneous optimization of all three functions.

At the heart of the IGC algorithm is the integrated plant model. As a fully inte-
grated G&C algorithm, the plant model includes homing loop kinematics and target 
acceleration states (i.e., the guidance elements) as well as missile dynamics and actua-
tor states (i.e., the flight-control elements):
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Equation 14 illustrates that the IGC state vector 
x(t) captures both guidance and missile dynamics. The 
relative kinematics and target states capture the target- 
missile relative geometry and target acceleration to 
capture the guidance portion of the problem. The body 
motion and actuator states model the missile dynamic 
states related to flight control. The input vector y(t) 
contains commonly available measured or reconstructed 
quantities such as missile accelerations, body rates, and 
the missile/target relative positions. The output of the 
IGC plant u(t) consists of the pitch-yaw-roll angular 
tail position commands (traditionally generated by an 
autopilot). The performance output vector z(t) contains 
the relative kinematic, missile dynamics, and control 
signal elements needed in the design synthesis to specify 
IGC performance.

Essentially, the job of the IGC algorithm is to trans-
late the sensed inputs y(t) into tail actuation commands 
u(t). To accomplish this task, the IGC plant model is 
discretized and brought into a linear-looking, state-
dependent form at each sample instant. The resulting 
state-space formulation is

	
x A x B u D w

y C x E u

z H x G u

k k k k k k

k k k k k

k k k k k

= + +

= +

= + ..

k+1

	 (15)

A solution to a soft-constrained linear-quadratic 
dynamic game then is solved, subject to Eq. 15, to yield 
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Figure 6.  The IGC system consists of performance output, process disturbance, and measurement disturbance weights as 
well as integrated plant parameters. The parameters included in this example that are first-order performance drivers are 
shown in red.

the tail actuation commands. (The interested reader is 
directed to Ref. 1 for a full discussion.)

The key adjustable parameters in the IGC algorithm 
are entries in the state matrices in Eq. 15 and fall into 
four distinct parameter classes. The process disturbance 
weights (entries in the Dk matrix) allow some adjustment 
of the controller to help mitigate the effects of model-
ing uncertainty. Likewise, the measurement disturbance 
weights (entries in Ek) allow adjustment of the control-
ler bandwidth to mitigate the effects of sensor noise on 
the system. The performance output weights (entries 
in Gk and Hk) affect the penalization of individual 
states and control effort under the cost integral of the 
dynamic game formulation.1 Plant modeling parameters 
(entries in Ak), such as the roll control and target time 
constants, are tuned to provide acceptable performance. 
The significant tuning parameters are shown in Fig. 6, 
with those in red being the first-order performance driv-
ers that are included in this example tuning.

The IGC system is implemented in a 6-degree-of- 
freedom (6-DOF) terminal homing simulation that forms 
the basis for the tuning of these systems. This simulation 
incorporates a generic, fully coupled, nonlinear aero-
dynamics model (via table lookup), structural filtering, 
and fin command-processing delays. The inertial mea-
surement unit gyro and accelerometer models include 
second-order dynamics, additive Gaussian noise, and 
scale factor and misalignment errors. The gyro model 
also includes a drift component. Actuators are modeled 
with fin rate and position limits and assume second-order 
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dynamics. Seeker angle measurements are corrupted by 
glint noise, radome-induced boresight errors (via table 
lookup), and angle noise consistent with an active RF 
seeker. Gaussian noise is added to true range and range 
rate to form range and range rate measurements. The 
6-DOF simulation tactical ballistic missile (TBM) target 
generator models ballistic slowdown and coning maneu-
vers with variable acceleration capabilities and maneuver  
periods.

For this example tuning, a single terminal homing 
engagement is simulated. The threat is a TBM execut-
ing a coning maneuver. The initial interceptor/threat 
relative geometry is chosen to yield a realistic heading 
error. Because the IGC algorithm gains are scheduled 
with altitude, the intercept point for this example is 
chosen so that the missile flight is restricted to within 
a single altitude regime. Only the IGC gains associated 
with that altitude regime are included in the tuning.

The cost function for this example is formulated as 
a weighted sum of miss distance (or CPA), a measure of 
fin activity, and the maximum achieved lateral accelera-
tion of the missile. The fin activity component is formed 
as the sum of the integrals over time of the squared fin 
angular accelerations in the pitch, yaw, and roll chan-
nels. The maximum acceleration component is com-
puted as the maximum achieved lateral acceleration 

during flight. These figures of merit are averaged over 
25-run Monte Carlo sets for each cost-function measure-
ment. The weightings are set such that miss distance is 
the dominant component, followed by maximum accel-
eration and finally fin activity.

Each SPSA gradient is formed as the average of three 
independent gradient estimates. Because the initial 
values for the IGC tuning parameters range over 7 orders 
of magnitude, unity-magnitude scaling is employed so 
the mapped parameters all have unity initial values. 
With unity-magnitude scaling, the value for the SPSA 
gain parameter c is set to 0.05 to yield a 5% initial per-
turbation amount for each parameter. The value for a is 
automatically determined so that the most any parame-
ter can change on the first iteration does not exceed 5%. 
As is typical, the values for  and g are experimentally 
determined to yield stable algorithm behavior and good 
convergence properties.

Stochastic Optimization Toolbox version 2.0, devel-
oped at APL, is the software tool used to implement the 
SPSA algorithm for this example. The optimization was 
allowed to run for 100 iterations. The resulting com-
posite cost-function evolution is shown in Fig. 7. The  
SPSA algorithm was successful in substantially reducing 
the cost function over the 100 optimization iterations, 
yielding an approximately 20% reduction.

Figure 7.  Screenshot of Stochastic Optimization Toolbox version 2.0. The graphical user interface allows the setting of SPSA and 
simulation parameters as well as the viewing of optimization data. The composite cost-function evolution is shown. After 100 opti-
mization iterations, the cost has been reduced by approximately 20%. 
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Figure 8 illustrates the importance of the appropri-
ate selection of the cost-component weightings. The 
weightings on the miss distance and maximum accel-
eration components caused them to dominate the opti-
mization, and these two components exhibit aggressive 
downward trends over the first 20 or so iterations. The 
fin activity component was weighted to be a relatively 
minor contributor to the overall cost, and its value actu-
ally increased over the first 20 or so iterations. After 
that point, however, the fin activity cost began a modest 
reduction, and the miss distance cost actually increased 
slightly. A different set of weightings, particularly one 
where the fin activity component was weighted more 

heavily, would have yielded substantially different tuned 
parameter values.

The movement of three of the IGC gains is illustrated 
in Fig. 9. The normalized values are shown, so all three 
parameters have unity initial values. The AOA perfor-
mance weight (AOA_PERF_WEIGHT) is used in the 
IGC algorithm to penalize large missile AOAs. It is a 
significant contributor to all three cost components. 
The smaller the value, the more maneuverable the mis-
sile can be, which can improve miss distance; a smaller 
value, however, also will generally increase the fin activ-
ity and maximum acceleration cost components. This 
parameter increases smoothly by approximately 80% 
over the course of the optimization. The target process 
disturbance weight (TARG_PDIST_WEIGHT_BKP) 
affects the overall bandwidth of the IGC system and is 
also a first-order performance driver. As seen in Fig. 9, its 
value increases by about 30% over the optimization. The 
roll angle error performance weight (ROLLERR_PERF_
WEIGHT) is used to adjust the missile roll response. 
This parameter is known to contribute significantly less 
to the three cost-function components of this example. 
As long as its value is within a reasonable region, system 
performance is not very sensitive to changes in its value, 
as is evident because its value does not change much 
over the course of the optimization.

The final values for the tuning parameters generated 
above can be evaluated over a larger set of Monte Carlo 
runs for the engagement scenario used in the tuning. 
For example, Fig. 10 shows the miss distance cumulative 
probability distributions for the original and tuned IGC 
algorithms based on 100-run Monte Carlo sets. The 

Figure 8.  Evolution of the cost-function components during 
optimization. Miss distance was chosen to be the largest contribu-
tor to the cost, followed by maximum missile acceleration and fin 
activity. 

Figure 9.  Progression of three IGC parameters during optimiza-
tion. The AOA_PERF_WEIGHT and TARG_PDIST_WEIGHT_BKP 
parameters, key IGC performance drivers, moved significantly, 
whereas the ROLLERR_PERF_WEIGHT, a less critical parameter, 
moved very little. 
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tuning results in a 10% improvement in mean miss dis-
tance. In this case, additional tuning would likely yield 
additional performance improvements, perhaps with 
modified weightings on the cost component contribu-
tions to the overall cost.

CONCLUDING REMARKS
As modern guided missile systems continue to evolve 

to counter advances in next-generation threats, the 
task of optimizing the performance of the associated 
G&C algorithms becomes more challenging. Traditional 
manual and ad hoc tuning techniques are increasingly 
being rendered suboptimal or even unusable. The inher-
ent complexities and challenges associated with opti-
mizing G&C algorithms makes this problem domain 
well suited to automated, simulation-based optimization 
techniques in general and to the SPSA algorithm in  
particular.

Consideration of the broad range of complexities and 
adjustable variables involved in the problem domain 
exposes the full difficulty of achieving a viable system 
design through this method. Inherent noise in cost-
function measurements, nonlinear parameter sensitivi-
ties, multivariable dependencies, domain constraints, 
and complex and possibly conflicting tuning objectives 
all contribute to the challenge of executing a success-
ful automated tuning. Despite these obstacles, research 
and empirical studies have led to considerable progress 
in the understanding of automated G&C tuning and 
the development of systematic tuning methods. In par-
ticular, a better understanding of SPSA parameters and 
their effects as well as cost-function design, parameter 
scheduling, domain restriction, and initial tuning condi-
tions have been applied successfully to several applica-
tions in support of sponsor programs at APL.

Notwithstanding these accomplishments, substantial 
opportunities for the improvement of simulation-based 
automated G&C tuning remain. Most significantly, it is 
likely that the cost functions described herein for G&C 
applications do not have a single, global minimum, as 
assumed by the basic form of the SPSA. Methods of 
extending this basic form to promote global convergence 
have been developed12 but have not yet been applied to 
the G&C problem domain to assess their suitability.

In addition, the creation of hybrid tuning algo-
rithms to more efficiently and thoroughly explore 
large, complicated cost spaces holds promise for 
additional advances. A hybrid algorithm would con-
sist of the combination of SPSA with an alternative 
optimization algorithm potentially more adapted to 
global searches of the cost space. Such an algorithm 
would initially use the global optimization method to 
isolate a probable optimum subspace in the problem 
domain and then apply SPSA to converge to the opti-
mum tuning within the subspace. Two well-known 
potential algorithms for global search are genetic algo-
rithms and simulated annealing. Although existing 
research has applied both types of algorithm individu-
ally for purposes of G&C tuning,4–6 the synthesis of 
these algorithms with SPSA remains an unexamined  
option.
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