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ABSTRACT

We study the convergence and asymptotic normality o
generalized form of stochastic approximation algorithm w
deterministic perturbation sequences. Both one-simulat
and two-simulation methods are considered. Assumin
special structure of deterministic sequence, we estab
sufficient condition on the noise sequence for a.s. c
vergence of the algorithm. Construction of such a spec
structure of deterministic sequence follows the discuss
of asymptotic normality. Finally we discuss ideas on fu
ther research in analysis and design of the determini
perturbation sequences.

1 INTRODUCTION

The multivariate version of Kiefer and Wolfowitz’s algo
rithm introduced in Blum (1954) has been a popular a
proach to solving a high dimensional optimization pro
lem where no estimator of the gradient of the criterio
function is available. However this algorithm requires 2p

simulations at each iteration for ap− dimension objective
function. This requirement can incur prohibitively hig
computational costs in the case where the dimension of
problem is high and expensive simulations are necessar
obtain each measurement. To circumvent the problem,
classes of randomized-direction stochastic approximat
algorithms have been proposed: therandomized direction
Kiefer-Wolfowitz(RDKW) algorithms (Kushner and Clark
1978, Styblinski and Tang 1990), and thesimultaneous
perturbation stochastic approximation(SPSA) algorithms
n
a
h
-
l
n

c

e
to
o
n

presented in Spall (1992). Typically SPSA or RDKW algo
rithms randomlyperturbs all parameter components intwo
parallel simulations at each iteration for anyp− dimensional
problem. An SPSA requiring onlyone simulation at each
iteration has also been proposed in Spall (1997). The
algorithms all rely on proper randomization to avoid the
large number simulations required in each iteration, and
the same time move along the gradient descent direction
the average. Similar in spirit to the use of low-discrepanc
sequences in quasi Monte Carlo integration (Niederreit
1992), applications ofdeterministicsequences in random-
ized direction SA have been investigated recently with som
success, including Sandilya and Kulkarni (1997) for a two
simulation RDKW algorithms and Bhatnagar et al. (2002
for two-timescale SPSA algorithms. The numerical sim
ulations results reported in Bhatnagar et al. (2002) a
particularly encouraging in that significant performance ad
vantages over the random Bernoulli perturbation sequenc
were consistently observed. In this paper, we present
generalized form of the stochastic approximation algorithm
of which SPSA and RDKW are just special cases. Bot
one-simulation (1D) and two-simulation (2D) forms are
considered. In Section 2, with the deterministic sequen
assuming a specified structure, we give sufficient condition
for a.s. convergence of both 1D and 2D. In the same secti
asymptotic normality of both algorithms are also discusse
where the structure of deterministic sequence is a little mo
specified. In Section 3, we discuss how to construct such
specified deterministic perturbation sequence and the prin
ple of defining parameters for practical simulation. Finally
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Section 4 offers some concluding remarks. All the proof
will be provided in the Appendix.

2 A.S. CONVERGENCE AND
ASYMPTOTIC NORMALITY

Throughout the paper, we will consider the problem o
locating minimum of a functionL : Rp → R. We assume
thatL satisfies the following conditions.

(A1) The gradient ofL, denoted byg = ∇L, exists
and is uniformly continuous.

(A2) There existθ∗ ∈ Rp such that

• f (θ∗) = 0; and

• for all δ > 0, there existshδ > 0 such that
‖θ − θ∗‖ ≥ δ implies
f (θ)T (θ − θ∗) ≥ hδ‖θ − θ∗‖2.

We rely mainly on the following convergence theorem from
Wang et al. (1996), Wang et al. (1997) and lemma 2.2 t
derive sufficient conditions on the perturbations and nois
Theorem 2.1: Consider the stochastic approximation algo
rithm

θn+1 = θn − ang(θn)+ anen + anbn, (1)

where{θn}, {en}, and{bn} are sequences onRp, g : Rp →
Rp satisfies Assumption (A2),{an} is a sequence of positive

real numbers satisfying limn→∞ an = 0,
∞∑
n=1

an = ∞, and

limn→∞ bn = 0. Suppose that the sequence{g(θn)} is
bounded. Then, for anyθ1 in Rp, {θn} converges toθ∗ if
and only if {en} satisfies any of the following conditions:

(B1)

lim
n→∞

(
sup

n≤k≤m(n,T )

∥∥∥∥∥
k∑
i=n

aiei

∥∥∥∥∥
)
= 0

for some T > 0, wherem(n, T ) , max{k :
an + · · · + ak ≤ T }.

(B2)

lim
T→0

1

T
lim sup
n→∞

(
sup

n≤k≤m(n,T )

∥∥∥∥∥
k∑
i=n

aiei

∥∥∥∥∥
)
= 0.

(B3) For anyα, β > 0, and any infinite sequence of
non-overlapping intervals{Ik} on N there exists
K ∈ N such that for allk ≥ K,∥∥∥∥∥∥

∑
n∈Ik

anen

∥∥∥∥∥∥ < α
∑
n∈Ik

an + β.
(B4) There exist sequences{fn} and {gn} with en =
fn + gn for all n such that

n∑
k=1

akfk converges, and lim
n→∞ gn = 0.

(B5) The weighted average{ēn} of the sequence{en}
defined by

ēn = 1

βn

n∑
k=1

γkek,

converges to 0, where

βn =
{

1 n = 1,∏n
k=2

1
1−ak otherwise,

γn = anβn.

Proof. See Wang et al. (1996) for a proof for conditions (B1–
4) and Wang et al. (1997) for a proof for condition (B5).

Lemma 2.2: Let {an}, {bn} and {en} be sequences inR
and {rn} in Rp such that:

(C1) lim
n→∞ an = 0, lim

n→∞
an
cn
= 0,

∞∑
n=1

an = ∞;

(C2) S0 = sup
n,m

∥∥∥∥ m∑
i=n

ri

∥∥∥∥ <∞, E0 = sup
n
‖en‖ <∞;

(C3)
∞∑
n=1
| an
cn
− an+1

cn+1
| <∞ or lim

n→∞
1
cn
− an+1

ancn+1
= 0;

(C4) { ‖en−en+1‖
cn

} satisfies condition (B1-5).

Then { rnen
cn
} satisfies condition (B1).

Proof. See appendix.

Lemma 2.2 still holds if{rn} and{en} are inRp×p and
Rp, respectively. It is trivial to show that the first alternative
of (C3) can be achieved by assumingan

cn
↓ 0.

We describe a generalized form of the stochastic ap
proximation algorithm. Let{dn} and{rn} are deterministic
sequences onRp and we denote theith component ofdn
andrn asdni andrni , respectively . The recursive formulae
of one-simulation and two-simulation forms are:

(1D)

θn+1 = θn − an y
+
n

cn
rn, (2)

(2D)

θn+1 = θn − an y
+
n − y−n

2cn
rn (3)
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wherey+n and y−n are noisy samples obtained from simu-
lations of the functionL at perturbed points, defined by

y+n = L(θn + cndn)+ e+n , y−n = L(θn − cndn)+ e−n ,

with additive noisee+n ande−n , respectively.
Obviously if {dn} and{rn} coincide, the two-simulation

algorithm defined by (3) would reduce to the RDKW al-
gorithms. SPSA is defined when{dn} and {rn} are related
by dn = [ 1

rn1
, · · · , 1

rnp
]T .

Our main results can be presented as four proposition
The first two discuss a.s. convergence of{θn} defined
by (2) and (3), respectively. The next two propositions
give asymptotic normality of{θn} of both cases. Note we
always assume lim

n→∞ an = 0, lim
n→∞ cn = 0, lim

n→∞
an
cn
= 0 and∑

n an = ∞.

Proposition 2.3 (convergence of one-simulation algo-
rithm): Suppose that the Assumptions (A1–2) hold, and

(D1)
∞∑
n=1
|an − an+1| <∞ or lim

n→∞
an
an+1
= 1

(D2)
∞∑
n=1
| an
cn
− an+1

cn+1
| <∞ or lim

n→∞
1
cn
− an+1

ancn+1
= 0

(D3) L(θn) andg(θn) are bounded;
(D4) both{dn} and{rn} are periodical with period M,

M∑
n=1

rn = 0 and 1
M

M∑
n=1

rnd
T
n = ρI , whereρ > 0;

(D5) { an
c2
n
} satisfies condition (B1-5), both{ e+n rn

cn
} and

{ an|en|
c2
n
} satisfy condition (B1-5) a.s.

Then,{θn} defined by (2) converges toθ∗ a.s.

Proof. See appendix.

The boundedness ofL and g are not very strong.
Practically we often restrict{θn} to a compact set by doing
projection. Then uniform continuity and boundedness ar

implied by continuity. The assumption
M∑
n=1

rnd
T
n = ρI

implies thatp = Rank(
M∑
n=1

rnd
T
n ) ≤

M∑
n=1

Rank(rnd
T
n ) =

M. Actually we can see from proof that{rn} and{dn} does
not have to be periodical, all we need is that

• the partial sum of{rn} is bounded;
• there exists a positive constantρ such that the

partial sum of{rndTn − ρI } is bounded.

Proposition 2.4 (convergence of two-simulation algo-
rithm): Suppose that the Assumptions (A1–2,D1) hold
and
• {g(θn)} is bounded, lim
n→∞ cn = 0;

• {dn} is periodical with period M, and1
M

M∑
n=1

rnd
T
n =

ρI , whereρ > 0.

Then,{θn} defined by (3) converges toθ∗ a.s if and only if
e+n rn
cn

satisfies (B1-5)a.s.

Proof. Proof completes by following the same argumen
in the proof of Proposition 2.3.

We denote the Hessian matrix andsth derivative of
L(θ) asH(θ) andL(3)(θ) respectively.

Proposition 2.5 (asymptotic normality of one-simulation
algorithm): Suppose that the Assumptions (A1–2) ho
and {θn} is defined by (2), and

(E1) an = a/nα andcn = c/nγ wherea, c, α, γ > 0;
(E2) α ≤ 1, β = α−2γ > 0, 3γ −α/2 ≥ 0, 1+2γ <

2α;
(E3) both{dn} and{rn} are periodical with periodM,

M∑
n=1

rn = 0;
M∑
n=1

rn ⊗ dn ⊗ dn = 0; 1
M

M∑
n=1

rnd
T
n =

ρI , whereρ > 0,

(E4) Q ≡ M−1
M∑
n=1

rnr
T
n and orthogonal matrixP sat-

isfiesPTH(θ∗)P = (aρ)−1 diag(λ1, · · · , λp);
(E5) L, g, H andL(3) are all continuous and bounded
(E6) lim

n→∞ n
−βe+n = 0, E(e+n |Fn) = 0 a.s. and

E((e+n )2|Fn) → σ 2 a.s., ∀n, where Fn ≡
{θ0, θ1, · · · , θn};

(E7) there existsδ > 0 such that supn E|e+n |2+2δ <∞.

Thennβ/2(θn − θ∗) dist→ N(µ, PXPT ), asn→∞, where
Xij = a2c−2σ 2[PTQP ]ij (λi+λj−β+)−1 with β+ = β <
2miniλi if α = 1 andβ+ = 0 if α < 1,and

µ =
{

0 if 3γ − α/2> 0,

(aρH(θ∗)− 1
2β+I )

−1T if 3γ − α/2= 0,

where thelth element ofT is

− ac
2

6M
[L(3)lll (θ∗)

M∑
n=1

d3
nlrnl

+ 3
M∑

i=1,i 6=l
L
(3)
lii (θ

∗)
M∑
n=1

d2
nidnlrnl

+ 6
M∑

i,j=1;i 6=j 6=l 6=i
L
(3)
lij (θ

∗)
M∑
n=1

dnldnidnj rnl].
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Proof. See appendix.

Proposition 2.6 (asymptotic Normality of two-simulation
algorithms): Suppose that the Assumptions (A1–2, E1–3
hold and{θn} is defined by (3), and

• both {dn} and {rn} are periodical with period M,

let 1
M

M∑
n=1

rnd
T
n = ρI , whereρ > 0, and let or-

thogonal matrixP such thatPTH(θ∗)P = (aρ)−1

diag(λ1, · · · , λp);
• g andH bounded,L(3) is continuous atθ∗;
• E(e+n −e−n |Fn) = 0 a.s. andE((e+n −e−n )2|Fn)→

4σ 2 a.s.,∀n, whereFn ≡ {θ0, θ1, · · · , θn};
• there existsδ > 0 such that supn E|e(±)n |2+2δ <∞.

Then we have the same conclusion as Proposition 2.5.

Proof. Proof completes by following the same argumen
in the proof of Proposition 2.5.

Remark: If we let each component ofrn and dn assume
±1, then we get exactly the same result as Proposition
in Spall (1992).

The four propositions above show that determinist
perturbation can do at least as well as randomized pert
bation asymptotically.

3 CONSTRUCTION OF DETERMINISTIC
SEQUENCES

In this section, we present a general mechanism for co
struction of deterministic sequences{rn} and{dn} that sat-
isfies conditions required for convergence of algorithm
Since stronger conditions required for convergence of on
simulation algorithms, we focus on constructions of s
quences that satisfy the conditions stated in Propositi
2.3. The constructed sequences can be applied to tw
simulation algorithms as well. We focus on sequences
RDKW and SPSA algorithms and consider the case whe
components ofrn anddn take value from{±1}. Note that
in this case, the two classes of algorithms are identical.
is also clear that we only need to construct either{rn} or
{dn} since they are identical as well.

Our constructions are based on the notion of orthogon
arrays (Hedayat et al. 1999). We claim that a desirab
deterministic sequence in dimensionp can be constructed
from any binary (two-level)N × k orthogonal array with
k ≥ p. We first give the definition of orthogonal arrays
Definition (Hedayat et al. 1999) AnN × k arrayA with
entries fromS = {0,1, . . . , s} is said to be an orthogonal
array with s levels, strengtht and indexλ if every N × t
subarray ofA contains eacht-tuple based onS exactly
λ times as a row. We use the notationOA(N, k, s, t) to
denote such an array.
-

-

-

-

l

For example, anOA(8,4,2,3) is given below

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1


. (4)

To construct a desired sequence{rn} in Rp from an
OA(N, k,2, t) with k ≥ p, we take the following simple
steps:

1. Take anyp columns from the orthogonal array to
form aN × p arrayH .

2. Change all the zero entries inH into −1.
3. Use all the row vectors ofH as one period for
{rn}.

For example, a desired sequence{rn} in R4 can be con-
structed from the orthogonal array (4) as

r1 = [−1,−1,−1,−1]T ,
r2 = [−1,−1,1,1]T ,
r3 = [−1,1,−1,1]T ,
r4 = [−1,1,1,−1]T ,
r5 = [1,−1,−1,1]T ,
r6 = [1,−1,1,−1]T ,
r7 = [1,1,−1,−1]T ,
r8 = [1,1,1,1]T .

Orthogonal arrays have been applied in many areas inclu
ing experiment designs, coding theory, and cryptography.
large body of literature exists on construction of orthogona
arrays. Hence the proposed construction provides a large s
of deterministic sequences for use in stochastic approxim
tion algorithms for optimization. A particular construction
based on Hadamard matrices (Seberry and Yamada 199
is presented in Bhatnagar et al. (2002).

4 CONCLUSION

In this paper, we present a generalized form of the stocha
tic approximation algorithm of which SPSA and RDKW
are special cases. We establish sufficient conditions on d
terministic sequences for convergence of these algorithm
Asymptotic Normality are present to show that determin
istic sequences can at least achieve the same asympto
performance with the random sequences. It remains to b
shown that appropriately designed deterministic sequenc
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can yield faster convergence than the random sequenc
even though encouraging simulation results are available

APPENDIX

Proof of Lemma 2.2

Proof. Let Si ≡
i∑

j=n
rj ,∀i > n−1 andSn−1 = 0. Then

for all n ≤ k ≤ m(n, T ),∥∥∥∥∥
k∑
i=n

ai

ci
riei

∥∥∥∥∥ =
∥∥∥∥∥
k∑
i=n

ai

ci
(Si − Si−1)ei

∥∥∥∥∥
=

∥∥∥∥∥akck Skek +
k−1∑
i=n

Si(
ai

ci
ei − ai+1

ci+1
ei+1)

∥∥∥∥∥
≤

∥∥∥∥akck Skek
∥∥∥∥+ k−1∑

i=n

∥∥∥∥Si aici (ei − ei+1)

∥∥∥∥
+
k−1∑
i=n

∥∥∥∥(aici − ai+1

ci+1
)Siei+1

∥∥∥∥
≤ S0E0|ak

ck
| + S0

k−1∑
i=n

ai ‖(ei − ei+1)‖
ci

+S0E0

k−1∑
i=n
|ai
ci
− ai+1

ci+1
|. (5)

1. The first term converges to 0 by assumption (C1)
2. Since{ ‖en−en+1‖

cn
} satisfies condition (B4), we have

{fn} and {gn} such that ‖en−en+1‖
cn

= fn + gn,
∞∑
n=1

anfn <∞ and lim
n→∞ gn = 0, then we have

k−1∑
i=n

ai ‖(ei − ei+1)‖
ci

=
k−1∑
i=n

aifi +
k−1∑
i=n

aigi

≤
k−1∑
i=n

aifi + T sup
i≥n
‖gi‖ → 0

3.
∑k−1
i=n | aici −

ai+1
ci+1
| → 0 assuming

∑∞
n=1 | ancn −

an+1
cn+1
| < ∞; assuming limn→∞ 1

cn
− an+1

ancn+1
= 0,

we have

k−1∑
i=n
|ai
ci
− ai+1

ci+1
| ≤ sup

i≥n
| 1
ci
− ai+1

aici+1
|
k−1∑
n

ai

≤ sup
i≥n
| 1
ci
− ai+1

aici+1
| → 0.
sWe are done since each term on RHS of (5) converges
0 whenn→∞.

Proof of Proposition 2.3:

Proof. By the mean value theorem, we can rewrite (2

θn+1 = θn − ρang(θn)− anrndTn [g(θn + λncndn)
−g(θn)] − an[rndTn − ρI ]g(θn)
−an
cn
L(θn)rn − an e

+
n

cn
rn, (6)

where 0≤ λn ≤ 1.

1. Since lim
n→∞ g(θn + λncndn) − g(θn) = 0 by

the uniform continuity ofg and lim
n→∞ cn = 0,

{rndTn [g(θn+λncndn)−g(θn)]} satisfies condition
(B4). Also, we know{g(θn+λncndn)} is bounded.

2. Combining boundedness of both{g(θn+λncndn)}
and {L(θn)} with assumption (D5), we can check
(6) and show

lim
n→∞ θn − θn+1 = 0 a.s.

Thus lim
n→∞ g(θn)− g(θn+1) = 0 by uniform conti-

nuity of g. {[rndTn − ρI ]g(θn)} satisfies condition
(B1) by letting {cn}, {rn} and {en} in Lemma 2.2
be {1}, {rndTn − ρI } and {g(θn)}, respectively.

3. Applying mean value theorem toL, we have

|L(θn)− L(θn+1)| = |gT [θn + µn×
(θn − θn+1)](θn − θn+1)|

where 0≤ µn ≤ 1.
lim
n→∞ g[θn + µn(θn − θn+1)] − g(θn) = 0 implies

boundedness of‖g[θn + µn(θn − θn+1)]‖. Hence,

|L(θn)− L(θn+1)|
cn

≤ M0
‖θn − θn+1‖

cn

≤ M0(M1
an

c2
n

+M2
an

c2
n

|e+n |)

where the second inequality is obtained by apply
ing (6) to θn − θn+1 and using some boundedness
condition;M ′s are positive constants. Since, by
assumption (D5), the RHS of above formula sat
isfies condition (B1), it is trivial to prove the LHS
also satisfies condition (B1). Hence we can let{en}
in Lemma 2.2 be{L(θn)} and conclude{L(θn)rn

cn
}

satisfies condition (B1).

4. { e+n
cn
rn} satisfies condition (B1) by assumption (D5).
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Proof of Proposition 2.5:

Proof. It is easy to show both
n∑
i=1

an
cn
e+n rn and

n∑
i=1

a2
n

c2
n
(|e+n | − E(|e+n |)|Fn) are martingales with finiteL2

norm. Hence
∞∑
n=1

an
cn
e+n rn < ∞ and

n∑
i=1

a2
n

c2
n
|e+n | < ∞ a.s.

by L2 convergence theorem for martingale. Then Propos
tion 2.2 guarantees the a.s. convergence ofθn to θ∗. To
show the asymptotic normality, we will check if conditions
(2.2.1–3) of Fabian (1968) hold. We will use notation o
Fabian (1968) as well. Let 0≤ λn, ηn ≤ 1. Use mean
value Theorem and rewrite (2):

θn+1 = θn − anrndTn g(θn)−
an

cn
L(θn)rn (7)

−an e
+
n

cn
rn − 1

2
ancnrnd

T
n H(θn)dn

−1

6
anc

2
nrnL

(3)(θn + λncndn)dn ⊗ dn ⊗ dn.

Use this formulaM times, we have

θnM+M − θ∗ = (I − n−α0n)(θnM − θ∗)
+n−(α+β)/28nVn
+n−α−β/2(T (1)n + T (2)n + T (3)n + T (4)n ),

where

0n = a
nM+M−1∑
i=nM

(
i

n
)−αridTi H(θnM + ηn(θnM − θ∗))

a.s.−→ aM1−αρH(θ∗)
8n = I

Vn = a

c

nM+M−1∑
i=nM

(
i

n
)−α+γ e+i ri

T (1)n = −anβ/2
nM+M−1∑
i=nM

(
i

n
)−αridTi [g(θi)− g(θnM)]

T (2)n = −
a

c
nα/2M−α+γ

nM+M−1∑
i=nM

(
i

nM
)−α+γ L(θi)ri

T (3)n = −
1

2
acnα/2−2γ

nM+M−1∑
i=nM

(
i

n
)−α−γ ridTi H(θi)di
T (4)n = −
ac2nα/2−3γ

6

×
nM+M−1∑
i=nM

(
i

n
)−α−2γ riL

(3)(θi + λicidi) · di ⊗ di ⊗ di.

To proveT (2)n
L2→ 0, we have

T (2)n = K0n
α/2

nM+M−1∑
i=nM

((
i

nM
)−α+γ − 1)L(θi)ri

+K0n
α/2

nM+M−1∑
i=nM

L(θi)ri

= O(n−α/2+γ )+K0n
α/2

nM+M−1∑
i=nM

(L(θi)− L(θnM))ri

= o(1)+K0n
α/2

nM+M−1∑
i=nM

(θi − θnM)T g(θ ′nM)

= o(1)+ nα/2O(n−α+γ )
= o(1).

The second equality is by(1+ A
n
)−α+γ − 1= O(1/n) and

nM+M−1∑
i=nM

ri = 0; the third is by taking Taylor expansion and

θ ′nM is on the line segment betweenθi andθnM ; the fourth
is by applying (7) toθi − θnM . Of course boundedness of
functions are required when necessary. Also,o(·) andO(·)
are in terms ofL2 norm andK0 is a constant.

We have shown thatT (2)n
L2→ 0. Actually similar argu-

ment can be used to show thatT (1)n
L2→ 0 andT (3)n

L2→ 0. If

3γ−α/2> 0, we can also showT (4)n
L2→ 0. If 3γ−α/2= 0,

it is easy to show thatT (4)n
a.s.→ M1−α−β/2T

It is easy to show thatEFnVn = 0 andEFnVnV Tn
L2→

a2σ2

c2 M1−2α+2γQ. To show

lim
k→∞E(χ‖Vn‖2≥rnα ‖Vn‖

2) = 0,∀r > 0

we have

E(χ‖Vn‖2≥rnα ‖Vn‖2) ≤ P(‖Vn‖2 ≥ rnα)δ′/(1+δ′)
·(E ‖Vn‖2+2δ′)1/(1+δ′)

≤ K1(
E ‖Vn‖2
rnα

)δ
′/(1+δ′)

≤ K2n
−αδ′/(1+δ′)→ 0

whereK1 andK2 are constants and 0< δ′ < δ.
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Since all the conditions (2.1.1–3) in Fabian (1968) a
verified, we have

nβ/2(θnM − θ∗) dist→ N(M−β/2µ,M−βPXP).

That is,

(nM)β/2(θnM − θ∗) dist→ N(µ, PXP).

For all 0< i < M, we can similarly prove

(nM + i)β/2(θnM+i − θ∗) dist→ N(µ, PXP).
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