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ABSTRACT presented in Spall (1992). Typically SPSA or RDKW algo-
rithms randomlyperturbs all parameter componentstwo

We study the convergence and asymptotic normality of a parallel simulations at each iteration for gmy dimensional
generalized form of stochastic approximation algorithm with  problem. An SPSA requiring onlgne simulation at each
deterministic perturbation sequences. Both one-simulation iteration has also been proposed in Spall (1997). These
and two-simulation methods are considered. Assuming a algorithms all rely on proper randomization to avoid the
special structure of deterministic sequence, we establish large number simulations required in each iteration, and at
sufficient condition on the noise sequence for a.s. con- the same time move along the gradient descent direction on
vergence of the algorithm. Construction of such a special the average. Similar in spirit to the use of low-discrepancy
structure of deterministic sequence follows the discussion sequences in quasi Monte Carlo integration (Niederreiter
of asymptotic normality. Finally we discuss ideas on fur- 1992), applications ofleterministicsequences in random-
ther research in analysis and design of the deterministic ized direction SA have been investigated recently with some
perturbation sequences. success, including Sandilya and Kulkarni (1997) for a two-
simulation RDKW algorithms and Bhatnagar et al. (2002)
for two-timescale SPSA algorithms. The numerical sim-
ulations results reported in Bhatnagar et al. (2002) are
particularly encouraging in that significant performance ad-
vantages over the random Bernoulli perturbation sequences
were consistently observed. In this paper, we present a
generalized form of the stochastic approximation algorithm
of which SPSA and RDKW are just special cases. Both
simulations at each iteration fora— dimension objective one-simulation (1D) and two-simulation (2D) forms are
function. This requirement can incur prohibitively high considered. In Section 2, with the deterministic sequence
computational costs in the case where the dimension of the assuming a specified structure, we give sufficient conditions
problem is high and expensive simulations are necessary to for a.s. convergence of both 1D and 2D. In the same section
obtain each measurement. To circumvent the problem, two asymptotic normality of both algorithms are also discussed
classes of randomized-direction stochastic approximation where the structure of deterministic sequence is a little more
algorithms have been proposed: ttadomized direction specified. In Section 3, we discuss how to construct such a
Kiefer-Wolfowitz(RDKW) algorithms (Kushner and Clark  specified deterministic perturbation sequence and the princi-
1978, Styblinski and Tang 1990), and tkéenultaneous ple of defining parameters for practical simulation. Finally,
perturbation stochastic approximatiofsPSA) algorithms

1 INTRODUCTION

The multivariate version of Kiefer and Wolfowitz's algo-
rithm introduced in Blum (1954) has been a popular ap-
proach to solving a high dimensional optimization prob-
lem where no estimator of the gradient of the criterion
function is available. However this algorithm requires 2
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Section 4 offers some concluding remarks. All the proofs
will be provided in the Appendix.

2 A.S. CONVERGENCE AND
ASYMPTOTIC NORMALITY

Throughout the paper, we will consider the problem of
locating minimum of a functior. : R” — R. We assume
that L satisfies the following conditions.

(Al) The gradient ofL, denoted byg = VL, exists
and is uniformly continuous.
(A2) There exist?* € R? such that

e f(*=0;and

o for all § > 0O, there existdis; > 0 such that
|6 —6%|| > & implies
F@T©® —0%) = hsllo — 6%

We rely mainly on the following convergence theorem from
Wang et al. (1996), Wang et al. (1997) and lemma 2.2 to

derive sufficient conditions on the perturbations and noise.

Theorem 2.1: Consider the stochastic approximation algo-
rithm

Ony1=0p — ang(On) + aney + anby, (1)

where{6,}, {e,}, and{b,} are sequences dk”, g: R? —
R? satisfies Assumption (A2)q,} is a sequence of positive
o0

real numbers satisfying lip,oa, =0, Y a, = oo, and

n=1
lim,—~ b, = 0. Suppose that the sequengg®,)} is
bounded. Then, for ang; in R?, {6,} converges t@* if
and only if{e,} satisfies any of the following conditions:

)zo

maxk :

(B1)

k
2 aie

i=n

lim sup
n—00 n<k<mn,T)

for someT > 0, wherem(n,T)

ap+---+ap <T}.
(B2)
lim L im sup[ sup Z 0
J— a; é; = u.
=0T n-oo n<k<m@n,T) o

(B3) For any«, 8 > 0, and any infinite sequence of
non-overlapping interval$l;} on N there exists
K € N such that for allk > K,

Zanen <a2an+ﬂ.

nely nely
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(B4) There exist sequencdg,} and {g,} with ¢, =
fn + gn for all n such that

n
> " ax fi converges, and _limg, = 0.
k—l n—>oo

(B5) The weighted averagg,} of the sequencée,}
defined by

12
ep = — Z Vk€k,
Bn

converges to 0, where

g = 1 n=1,
" |ITiza & otherwise
Yn = anﬁn-

Proof. See Wang et al. (1996) for a proof for conditions (B1—
4) and Wang et al. (1997) for a proof for condition (B5).]

Lemma 2.2: Let {a,}, {b,} and {e,} be sequences iR
and{r,} in R? such that:

lim % =0, Zan_oo,

n—o0 ‘n

(C1) lim a, =0,
n—0oo

n=1
(C2) So =sup Z ri|| < 00, Eo = suplle,|l < oo;
nm ||i=n n
an an 1 1 _ a1 _ -
(C3) Z |~ dntl | < 00 Or nll)moo = —anC:H =0;
(C4) {”‘" e”“”} satisfies condition (B1-5).
Then {2} satisfies condition (B1).
Proof. See appendix. O

Lemma 2.2 still holds ifr,} and{e,} are inR”*? and
RP?, respectively. Itis trivial to show that the first alternative
of (C3) can be achieved by assumlf-’ifg¢ 0.

We describe a generalized form of the stochastic ap-
proximation algorithm. Letd,} and{r,} are deterministic
sequences ofk” and we denote théth component of7,
andr, asd,; andr,;, respectively . The recursive formulae
of one-simulation and two-simulation forms are:

(1D)
y+
Opt1 =0, — anirn, (2)
n
(2D)
+ _ —_
Opt1=10 n Jn 2 n 'n (3)
Cn
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wherey ™ andy, are noisy samples obtained from simu-
lations of the functionL at perturbed points, defined by

,j = L0y + cudy) + 62», Yo = L (6, — cndy) + €, s
with additive noisee;" ande; , respectively.

Obviously if{d,} and{r,} coincide, the two-simulation
algorithm defined by (3) would reduce to the RDKW al-
gorithms. SPSA is defined whdd,,} and{r,} are related
by d, P ]T

Our main results can be presented as four propositions.
The first two discuss a.s. convergence {6f} defined
by (2) and (3), respectively. The next two propositions
give asymptotic normality of6,} of both cases. Note we

always assume limy, =0, lim ¢, =0, lim % =0 and
n— 00 n—oo n—oo “n
Zn ap = 00.

Proposition 2.3 (convergence of one-simulation algo-
rithm): Suppose that the Assumptions (A1-2) hold, and

+
ey n

— an —
(D1) nglla,, ani1] < oo or nILmOO =1
(D2) Z |4 — 21| < 0o or lim L_ e _

n—oo ¢n anCn+1

(D3) L(O ) and g(6,) are bounded,;

(D4) both{d,} and{r,} are periodical with period M,
% rn=0 and% % r,,dnT = pl, wherep > 0;
n=1 n=1

(D5) {%} satisfies condition (B1-5), both%} and

{%} satisfy condition (B1-5) a.s.
Then, {6,} defined by (2) converges @* a.s.
Proof. See appendix. O

The boundedness of and g are not very strong.
Practically we often restrid, } to a compact set by doing
projection. Then uniform continuity and boundedness are

Proof.
in the proof of Proposition 2.3.

Thennf/?(0, —
X;; = a2 262[PT QPY;; 0 +2; — ) L with By = B <
2min;A; if @ =1 andB; =0 if @ < 1,and

{g(6,)} is bounded, limc, = 0;
n—o0

M

{d,}is periodical with period M, ang‘z > r,,dnT =
n=1

ol, wherep > 0.

Then,{6,} defined by (3) converges &' a.s if and only if

satisfies (B1-5)a.s.

Proof completes by following the same arguments
O

We denote the Hessian matrix anth derivative of

L(9) as H(9) and L® (9) respectively.

Proposition 2.5 (asymptotic normality of one-simulation
algorithm):
and {6,} is defined by (2), and

Suppose that the Assumptions (A1-2) hold

(E1) a, = a/n* andc, = ¢/n¥ wherea, ¢, a, y > 0;

E2)a<1l,=a—-2y >0,3y—a/2>0,1+2y <
20,

(E3) both{d,} and{r,} are periodical with period/,

M M M
Yra=0; Y rn®d,®dy =0; & Y r,dl =
n=1 n=1 n=1
ol, wherep > 0,

M
(E4) 0 =M1 Y r,rl and orthogonal matri®p sat-

n=1
isfies PTH(0*)P = (ap)~t diagh1, -+, Ap);
(E5) L, g, H andL® are all continuous and bounded;

(E6) lim n—Pet 0, E(ef|Fn) 0 as. and

n—0oo
E((eD?Fy) — o2 as., Vn,
{60, 01, - -+, On};

(E7) there exist§ > 0 such that sypE|e; |+ < oo.

where F,

dist

0*) = N(u, PXPT), asn — oo, where

M i —
implied by continuity. The assumptiory r,d] = pl T 0 1 1 .'f 3y —a/2>0,
n=1 (apH©O*) — 5841 T if3y —a/2=0,
M M
implies thatp = Rank(Z radl) < Z Rank(r,dl) =
=1 .
M. Actually we can see ' from proof that,,} and{d, } does where the/th element off" is
not have to be periodical, all we need is that
. . (©)
+ the partial sum ofr,} is bounded; Lm © )Zdnlr”l
» there exists a positive constapt such that the
partial sum of{r,d! — pI} is bounded. M
" 13 Z L2 6% Zd,%dn[rn[
i=1,i#l =
Proposition 2.4 (convergence of two-simulation algo- l 17;
rithm): Suppose that the Assumptions (A1-2,D1) hold,
and ) PP P ( ) +6 Z L](?,)(Q )Zdnldmdn]rnl]«
i, j=Li Al n=1
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Proof. See appendix. O For example, arO A(8, 4, 2, 3) is given below

Proposition 2.6 (asymptotic Normality of two-simulation
algorithms): Suppose that the Assumptions (A1-2, E1-3)
hold and{6,} is defined by (3), and

* both{d,} and{r,} are periodical with period M, )

M

let L 3" r,dl = pI, wherep > 0, and let or-
n=1

thogonal matrixP such that” H(6*)P = (ap)~?! L i

« g andH bounded,L® is continuous ap*;

PRPRPRPPOOOO
PRPOORROO
PORPORORO
POORORRO

To construct a desired sequengg} in R? from an

e E(er—e|F)) =0as. andE((er —e)2|F,) — OA(N,k,2,t) with k > p, we take the following simple
n n = n n .
402 a.s.,Vn, whereF, = {6, 61, - - - , O,); steps:
. - () 2425
there exists > 0 such that sypEle, |~ < oo. 1. Take anyp columns from the orthogonal array to

formaN x p array H.
2. Change all the zero entries Hi into —1.
Proof.  Proof completes by following the same arguments 3. Use all the row vectors off as one period for
in the proof of Proposition 2.5. O {ra}.

Then we have the same conclusion as Proposition 2.5.

Remark: If we let each component of, andd,, assume For example, a desired sequeneg} in R* can be con-
+1, then we get exactly the same result as Proposition 2 structed from the orthogonal array (4) as
in Spall (1992).

The four propositions above show that deterministic rn = [-1,-1, -1, -1,
perturbation can do at least as well as randomized pertur- _ T
. . r2 - [_15 _1’ 17 1] )
bation asymptotically. T
r3 = [_15 17 _13 l] )
3 CONSTRUCTION OF DETERMINISTIC ra = [-1,11-1",
SEQUENCES rs = [1,-1,-1,17,
. . . re = [1,-11,-1",
In this section, we present a general mechanism for con- T
struction of deterministic sequencgs} and{d,} that sat- reo = [LL-1-17,

isfies conditions required for convergence of algorithms. rg = [1L111].

Since stronger conditions required for convergence of one-

simulation algorithms, we focus on constructions of se- Orthogonal arrays have been applied in many areas includ-
guences that satisfy the conditions stated in Proposition ing experiment designs, coding theory, and cryptography. A
2.3. The constructed sequences can be applied to two- large body of literature exists on construction of orthogonal
simulation algorithms as well. We focus on sequences for arrays. Hence the proposed construction provides a large set
RDKW and SPSA algorithms and consider the case where of deterministic sequences for use in stochastic approxima-

components of,, andd, take value from{#-1}. Note that tion algorithms for optimization. A particular construction
in this case, the two classes of algorithms are identical. It based on Hadamard matrices (Seberry and Yamada 1992)
is also clear that we only need to construct eithei or is presented in Bhatnagar et al. (2002).

{d,} since they are identical as well.
Our constructions are based on the notion of orthogonal 4 CONCLUSION
arrays (Hedayat et al. 1999). We claim that a desirable
deterministic sequence in dimensipncan be constructed  In this paper, we present a generalized form of the stochas-
from any binary (two-level)N x k orthogonal array with tic approximation algorithm of which SPSA and RDKW
k > p. We first give the definition of orthogonal arrays: are special cases. We establish sufficient conditions on de-

Definition (Hedayat et al. 1999) AWV x k array A with terministic sequences for convergence of these algorithms.
entries fromS = {0, 1, ..., s} is said to be an orthogonal ~ Asymptotic Normality are present to show that determin-

array withs levels, strengthr and index if every N x ¢ istic sequences can at least achieve the same asymptotic
subarray ofA contains each-tuple based onS exactly performance with the random sequences. It remains to be
A times as a row. We use the notati@dhA(N, k, s, ¢) to shown that appropriately designed deterministic sequences

denote such an array.
288
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can yield faster convergence than the random sequencesWe are done since each term on RHS of (5) converges to
even though encouraging simulation results are available. 0 whenn — oo. O

APPENDIX Proof of Proposition 2.3:

Proof. By the mean value theorem, we can rewrite (2)
Proof of Lemma 2.2

i Opt1 = 6On — pang(6n) — anrndnr [g(On + Ancndy)
Proof. LetS; = g:n rj,Vi >n—1andS,_1 =0. Then —g(0n)] — anlrad, — pI1g(6)
+
foralln <k <m(,T), —@L(On)rn B a,,eirn, 6)
Cn Cn

k

a;
= D =S —Sicve
o

. L
1=n

where 0< A, < 1.

k—1 1. Since I|limg®6, + Aycndy) — g(6,) = 0 by
ag aj ai+1 11—00 L .
= —Skek+ZSi(f€i — —eit1) the uniform continuity ofg and lim ¢, = O,
Ck imn Ci Ci+1 n— 00
1 {(rad! [8(6n + Ancndy) — g(6,)]} satisfies condition
ak a; (B4). Also, we know{g (6, + 1, cnd,)} is bounded.
< |=s Si—(ei —ei -
S P +l;: i (e = eiv1) 2. Combining boundedness of bat¥\6, + Ancnd,)}
i1 h and {L(6,)} with assumption (D5), we can check
a a;
"'Z & l+1)Siei+l (6) and show
ol cita _
lim 6, — 6,41 =0 a.s.
@, o il — ey e
< SoEol—|+S0) ———— . . :
Ck r— Ci Thus I|r(r>1<> g(6,) — g(6,+1) = 0 by uniform conti-
n—
Lt sl nuity of g. {[r.d] — pI1g(6,)} satisfies condition
+SOEOZ Ic—i - Ci—+1|~ ) (B1) by letting{c,}, {r,} and{e,} in Lemma 2.2
=n

be {1}, {r,d] — pI} and{g(6,)}, respectively.

3. Applying mean value theorem tb, we have
1. The first term converges to O by assumption (C1). PPYINg

2. Since{w} satisfies condition (B4), we have

_ _ T
(£, and {g,} such that ”e"_ci""'lll I [L(6y) — L(Ons1)| = 18" [6n + n X

ot (On — On+1)1(6n — Ony1)|
Zla,,fn < o0 andnirgo gn = 0, then we have here O L
n= where 0< pu, < 1.
nli—>moog[0n + tn(On — Ou11)] — g(6,) = 0 implies
’S ai lle; — eivD)ll ki:lwf . ki%wg- boundedness dfg[6,, + wn (6, — 6,+1)]1]l. Hence,
- - i1Ji 1581
— Ci — —
=" 1 = =" |L(6n) — L(On+1)] < Mollé’n — Onyall
C, C,
<Y aifi+Tsuplgl — 0 " a " a
i=n izn < Mo(M1— + M2—2|€;:_|)
CI’Z Cn
k—1a; ai+1 i o) an
3. Yo lg — gl — 0 assuming =, |3 — where the second inequality is obtained by apply-
?Z—EI < oo; assuming lim_, Ci - aaC_le =0, ing (6) to6, — 6,41 and using some boundedness
we have condition; M’s are positive constants. Since, by
assumption (D5), the RHS of above formula sat-
P a aia 1 gy 22 isfies condition (B1), it is trivial to prove the LHS
— ———| =sup|— — | Zai also satisfies condition (B1). Hence we canigt
— Ci Ci+1 i>n Ci aiCi+1 . L(0p)ry
i=n n in Lemma 2.2 be{L(6,)} and conclude=7}
1 . . g . n
<supl L - di+1 |5 0. sgtlsﬁes c?or'1d|t|on (It%'l). .
izn Ci  QiCiy1 4. {Zr,} satisfies condition (B1) by assumption (D5).
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The proof completes by combining above arguments with

Theorem 2.1. O

Proof of Proposition 2.5:

Proof. It is easy to show both Z dnetr, and
i=

noo2

Z ;’5 ef| — E(lef )| F,) are martingales with finite.?

n

norm. HenceZ Zeyra < oo and - ‘C%'?|ej[| < o0 as.

n=1 i=1"
by L? convergence theorem for martingale. Then Proposi-
tion 2.2 guarantees the a.s. convergence,ofo 6*. To
show the asymptotic normality, we will check if conditions
(2.2.1-3) of Fabian (1968) hold. We will use notation of
Fabian (1968) as well. Let & A,,n, < 1. Use mean
value Theorem and rewrite (2):

a
Outt = On— anrnd; g(O0) = —L(O)rs )
n
+ 1
_aneirn - _ancnrndnTH(en)dn
Cn 2

120
6ancnrnL 6, + Ayendy)d, @ d, @ d,,.
Use this formulaM times, we have

- n_arn)(QnM - 9*)
+n—(a+ﬂ)/2q>n v,

Onm+m — 0™

An PR 4 1P 4 T 4 1),
where
nM+M-1 i
Co=a Y C)7rid] HOuw + O —6")
i=nM
L aMYpH (6%)
&, =1
a nM+M-1 i
Va=— Y (OVefn
C R n
i=nM
nM+M-1 i
T = —anf? % 7 nd[ 1860) — gGun)]
i=nM
a nM+M-1 ;
2 25— —
TP = —gn M T T LG
i=nM
1 nM+M-1 i
T = —Eacn"‘/z_zy 2;4 (;)_“_Vrid,-TH(Oi)di
1=n

290

a/2-3y
6

Tn(4) aC n

nM+M-1 .

x 3 ORI+ ad) - d @ d; @ d;.
i=nM n

L2
To proveT,? = 0, we have

nM+M-1 ;
TP =Kon®/? 3 () = DL
i=nM
nM+M-1
+Kon®? " L@Ori
i=nM
nM+M-1
= 0%+ Kon®? " (L) — LOum))ri
i=nM
nM+M-1
= o)+ Kon™? " (0 — )" 8O0
i=nM
=o(1) +n*?0(n™*"7)
=o(D).
The second equality is b + 2)~**¥ — 1= 0(1/n) and
nM+M-1
> r; = 0; the third is by taking Taylor expansion and

i=nM
6) s is on the line segment betweénandé, ; the fourth
is by applying (7) to9; — 6,,),. Of course boundedness of
functions are required when necessary. Alse) and O (-)
are in terms ofL2 norm andKj is a constant.

2
We have shown thaf(z) Lo, Actually similar argu-
ment can be used to show thaf? = —> 0 and7,® % Lo if

3y —«a/2 > 0, we can also show(4) —> 0. If3y—a/2=0,
it is easy to show thar,¥ %3 pi-e—p/2T

2
It is easy to show thaEx, V, =0 andEx, V,V,[ LN
%Ml‘z‘”zy Q. To show

. 2
NME Gy, 2 1 Vall?) = 0,97 > 0

we have
E(Xyy, 2opme 1Vall®) < PAIV,I1Z = rn®)> 1A+
K (E”V || )5/(1+3)
- rn%
< Kgn_‘)“S 1A+ 50

where K1 and K> are constants and 8 §' < §.
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Since all the conditions (2.1.1-3) in Fabian (1968) are
verified, we have

dist

P20 — 0% S NM PP, M—PPXP).

That is,

dist

nM)P2(Op1 — 6%) B N(u, PXP).

For all 0< i < M, we can similarly prove

(M + Y2 Oprsi — 6% B N(u, PXP).

REFERENCES

Bhatnagar, S., M. C. Fu, S. I. Marcus, and I-J. Wang. 2002.
Two-timescale simultaneous perturbation stochastic ap-
proximation using deterministic perturbation sequences.
Submitted t)ACM Transactions on Modeling and Com-
puter Simulation

Blum, J. R. 1954. Multidimensional stochastic approxima-
tion methods.Ann. Math. Stats25: 737-744.

Fabian, V. 1968. On asymptotic normality in stochastic
approximation.The Annals of Mathematical Statistics
39(4): 1327-1332.

Hedayat, A. S., N. J. A. Sloane, and J. Stufken. 1999.
Orthogonal Arrays: Theory and ApplicationSpringer
Verlag, New York, NY.

Kushner, H.J. and D. S. Clark. 197&ochastic Approx-
imation Methods for Constrained and Unconstrained
SystemsSpringer Verlag, New York.

Niederreiter, H. 1992.Random Number Generation and
Quasi-Monte Carlo MethodsSIAM, Philadelphia.

Sandilya, S., and S. R. Kulkarni. 1997. Deterministic
sufficient conditions for convergence of simultaneous
perturbation stochastic approximation algorithriibe
9th INFORMS Applied Probability Conferendgoston,
MA.

Seberry, J. and M. Yamada. 1992. Hadamard matrices,
sequences, and block designs Clontemporary Design
Theory — A Collection of Surveygds. D.J. Stinson
and J. Dintiz), pp. 431-560, John Wiley and Sons.

Spall, J.C. 1992. Multivariate stochastic approximation us-
ing a simultaneous perturbation gradient approximation.
IEEE Transactions on Automatic Contyd7(3):332-
341.

Spall, J.C. 1997. A one-measurement form of simultane-
ous perturbation stochastic approximatidmutomatica
33:109-112.

Styblinski, M. A., T-S. Tang. 1990. Experiments in non-
convex optimization. Stochastic approximation with

291

function smoothing and simulated annealingeural
Networks 3(4):467-483.

Wang, 1-J., E. K. P. Chong, and S. R. Kulkarni. 1996.
Equivalent necessary and sufficient conditions on noise
sequences for stochastic approximation algorithAcs.
vances in Applied Probability28:784-801.

Wang, I-J., E. K. P. Chong, and S. R. Kulkarni. 1997.
Weighted averaging and stochastic approximation.
Mathematics of Control, Signals, and Systeit3(1):
41-60.

Wang, I-J. and E.K.P. Chong. 1998. A deterministic analysis
of stochastic approximation with randomized directions.
IEEE Transactions on Automatic Contrdi3(12):1745—
1749.

AUTHOR BIOGRAPHIES

XIAOPING XIONG is a Ph.D. candidate with The Robert
H. Smith School of Business, University of Maryland, Col-
lege Park, MD. His e-mail addressigxiong@rhsmith.
umd.edu> .

I-JENG WANG is a senior research scientist with the Johns
Hopkins University Applied Physics Laboratory, Laurel,
MD. He received a M.S. degree from Penn State Univer-
sity and a Ph.D. from Purdue University, both in Electrical
Engineering. His research interests include stochastic ap-
proximation, wireless networking, and bioinformatics. He
is a member of INFORMS, ACM, and IEEE. His e-mail
address is<i-jeng.wang@jhuapl.edu>

MICHAEL C. FU is a Professor in the Robert H. Smith
School of Business, with a joint appointment in the Institute
for Systems Research and an affiliate faculty position in
the Department of Electrical and Computer Engineering,
all at the University of Maryland. He received degrees
in mathematics and EE/CS from MIT, and a Ph.D. in ap-
plied mathematics from Harvard University. His research
interests include simulation and applied probability mod-
eling, particularly with applications towards manufacturing
systems and financial engineering. He is co-author of the
book, Conditional Monte Carlo: Gradient Estimation and
Optimization Applicationswhich received the INFORMS
College on Simulation Outstanding Publication Award in
1998. He is currently the Simulation Area Editor ©per-
ations Research



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 285
	02: 286
	03: 287
	04: 288
	05: 289
	06: 290
	07: 291


