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Application of stochastic approximation techniques in neural

modelling and control

A. VANDE WOUWERy*, C. RENOTTEy and M. REMYy

Learning, i.e. estimation of weights and biases in neural networks, involves the minimi-
zation of an output error criterion, a problem which is usually solved using back-propa-
gation algorithms. This paper aims to assess the potential of simultaneous perturbation
stochastic approximation (SPSA) algorithms to handle this minimization problem. In
particular, a variation of the first-order SPSA algorithm that makes use of several
numerical artifices including adaptive gain sequences, gradient smoothing and a step
rejection procedure is developed. For illustration purposes, several application examples
in the identification and control of nonlinear dynamic systems are presented. This
numerical evaluation includes the development of neural network models as well as
the design of a model-based predictive neural PID controller.

1. Introduction

Over the past several years, neural networks (NNs)
have been increasingly applied to the identification and
control of nonlinear systems (e.g. Hunt et al. 1992,
Suykens et al. 1996).

A basic model structure for static nonlinearities is the
multilayer feedforward NN, in which learning, i.e. esti-
mation of weights and biases, involves the minimization
of an output error criterion J(y) using back-propagation
(BP) (Rumelhart et al. 1986), an analytical procedure in
which the error evaluated at the output layer is propa-
gated back through the hidden layers and the input
layer.

Although the BP method can be generalized for more
complex NN structures (e.g. recurrent NNs, hybrid
physical–neural models), which are useful in modelling
dynamic nonlinear systems, the resulting algorithms
are usually more complicated to implement and more
computationally demanding, e.g. dynamic back-propa-
gation (Narendra and Parthasarathy 1990, 1991) and
back-propagation through time (Werbos 1990). Hence,
it is appealing to develop a more straightforward numer-
ical procedure for computing the gradient of the output

error criterion. However, as NNs usually involve a large
number of unknown parameters, the evaluation of the
criterion gradient by varying the parameters one at a
time, as it is required in conventional finite difference
approximations, would be extremely costly.
In contrast to standard finite differences, the simulta-

neous perturbation (SP) approximation of the gradient
proposed by Spall (1992) makes use of a very efficient
technique based on a simultaneous (random) perturba-
tion in all the parameters and requires only two evalua-
tions of the criterion. This approach has first been
applied to gradient estimation in a first-order stochastic
approximation (SA) algorithm (Spall 1992), and more
recently to Hessian estimation in an accelerated second-
order SPSA algorithm (Spall 2000).
These algorithms seem particularly well suited to the

NN learning problem, and in this connection, this
study aims at assessing the potential of the above-
mentioned first- and second-order algorithms (1SPSA
and 2SPSA) based on several representative application
examples. From a practical point of view, the important
issues of convergence, accuracy, computational load,
ease of use (tuning) and simplicity of implementation
are discussed.
Efficiency, simplicity of implementation and very

modest computational costs make 1SPSA particularly
attractive, even though it suffers from the classical
drawback of first-order algorithms, i.e. a slowing down
in the convergence as an optimum is approached.
In this study, a variation of this first-order algorithm
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is considered that makes use of adaptive gain sequences,
gradient smoothing and a step rejection procedure, to
enhance convergence and stability. To demonstrate the
algorithm efficiency and versatility, attention is focused
on a realistic application example, e.g. the development
of a predictive control scheme for a two-tank cooling
system.

This predictive controller is based on three main
components:

. Process emulator in the form of a neural state space
model (Suykens et al. 1996), which generates predic-
tion of the future process outputs over a specified
horizon.

. NN controller, with a PID-like input–output
parametrization (Tan 1993).

. Optimization procedure to train the NN model
(off-line) and the NN controller (on-line), i.e. our
modified 1SPSA algorithm.

The paper is organized as follows. Section 2 introduces
the basic principle of the first- and second-order SPSA
algorithms. In Section 3, the performances of the several
algorithms are compared based on a simple application
example, i.e. the training of a series-parallel NN used
for modelling a nonlinear dynamic system. On this
basis, 1SPSA is selected for its simplicity and efficiency,
and a variation of this first-order algorithm, including
adaptive gain sequences, gradient smoothing and a step
rejection procedure, is presented in Section 4. The perfor-
mance improvement brought by the proposed numerical
artifices is illustrated with another simple example, i.e.
the training of a dynamic multilayer perceptron
(DMLP) (Ayoubi 1996) used for modelling a nonlinear
dynamic system. In Section 5, a more challenging
application, i.e. the problem of controlling the output
temperature of sulfuric acid in a two-tank cooling
system, is studied in some detail. The performance of
this control scheme in the face of non-measurable
disturbances in the acid inlet temperature and noisy
output acid temperature measurements is investigated.
Finally, Section 6 has concluding remarks.

2. SA algorithms

Consider the problem of minimizing a possibly noisy,
objective function J(y) with respect to a vector y of
unknown parameters (in this study, the weights and
biases of a NN).

min
y

1

N

XN
i¼1

�
yi � ŷyiðyÞ

�2
, ð1Þ

where yi is the real-system output and ŷyi is the output
produced by the NN depending on the parameters y.

In this work, the minimization problem (1) is handled
using several SA algorithms, which have been imple-
mented in MATLAB.m files.
The first-order 1SPSA algorithm is given by the

following core recursion for the parameter vector y
(Spall 1992):

ŷykþ1 ¼ ŷyk � ak ĝgkðŷykÞ, ð2Þ

where ak is a positive scalar gain coefficient satisfying
certain conditions and ĝgkðŷykÞ is an approximation of
the criterion gradient obtained by varying all the ele-
ments of ŷyk simultaneously, i.e.

ĝgðykÞ ¼

Jðŷyk þ ck�kÞ � Jðŷyk � ck�kÞ

2ck�k1
. . .

Jðŷyk þ ck�kÞ � Jðŷyk � ck�kÞ

2ck�kp

2
66664

3
77775, ð3Þ

where ck is a positive scalar and �k is a user-generated
zero-mean random vector satisfying certain regularity
conditions (typically, �k¼ (�k1,�k2, . . .,�kp)

T with
symmetrically Bernouilli distributed random variables
{�ki}). The above-mentioned conditions on the gain
sequence ak and on the random vector �k are imposed
to ensure asymptotic convergence of the algorithm.
These conditions are detailed in Spall (1992).
It is important to note that this gradient estimate

differs from usual finite difference approximations in
that the number of criterion evaluations is not propor-
tional to the number of unknown parameters. Instead,
only two evaluations of the criterion are required.
The recursion (2) can also be based on a smoothed

gradient approximation (Spall and Cristion 1994)

Gk ¼ rkGk�1 þ ð1� rkÞĝgkðŷykÞ, G0 ¼ 0, ð4Þ

where ĝgkðŷykÞ is the simultaneous perturbation gradient
estimate (3) and 0 � rk � 1. When the smoothed gradi-
ent approximation Gk is used in (2) instead of ĝgkðŷykÞ, the
procedure, which is analogous to the momentum
approach in BP, is denoted 1SPSA-GS (where the addi-
tional letters ‘GS’ stand for gradient smoothing).
Alternatively, if direct evaluations of the criterion gra-

dient are available (usually with some added noise),
recursion (2) defines a stochastic gradient (SG) algo-
rithm, denoted 1SGSA in the following.
The second-order algorithms 2SPSA (and 2SGSA)

are based on the following two core recursions, one
for the parameter vector y, the second for the Hessian
H(y) of the criterion (Spall 2000):

ŷykþ1 ¼ ŷyk � akH
�1

k ĝgkðŷykÞ, Hk ¼ fkðHkÞ ð5Þ
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Hk ¼
k

kþ 1
Hk�1 þ

1

kþ 1
ĤHk, ð6Þ

where ĤHk is a per-iteration estimate of the Hessian
matrix, which is computed from gradient approxima-
tions (or direct evaluations) using a simultaneous pertur-
bation approach, Hk is a simple sample mean, and fk is
a mapping designed to cope with possible non-positive
definiteness of Hk.

Again, the algorithm requires only a small number of
function evaluations—at least four criterion evaluations
to construct the gradient and Hessian estimates, or three
gradient evaluations in the SG case—independent of the
number of unknown parameters.

Important implementation issues of these SA algo-
rithms include initialization, choice of the gain sequences
{ak} and {ck} (usually these sequences are chosen in the
form ak ¼ aðAþ kþ 1Þ�a and ck ¼ cðkþ 1Þ�g), gradi-
ent/Hessian averaging and step rejection (Spall 2000).

Usually, 1SPSA appears as an efficient, robust algo-
rithm, but suffers from the classical drawback of first-
order algorithms, i.e. a slowing down in the convergence
as an optimum is approached. 2SPSA includes second-
order effects with the aim of accelerating convergence.
However, tuning of the several algorithm coefficients is
a more delicate task, particularly in noisy environment.

3. Numerical evaluation of the SA algorithms

The above-mentioned algorithms are applied toparam-
eter estimation in an NN in series-parallel mode (or
feedforward time delay NN) used as a prediction model
for a process given by (this particular example was origi-
nally considered in Narendra and Parthasarathy 1990):

yðkÞ¼
yðk�1Þyðk�2Þyðk�3Þuðk�2Þðyðk�3Þ�1Þþuðk�1Þ

1þyðk�2Þ2þyðk�3Þ2
,

ð7Þ

where u(k) and y(k) are the input and output sequences,
respectively.

Obviously, this simple example does not require any
special learning procedure since the application of BP
is straightforward. Hence, first- and second-order meth-
ods as implemented in the MATLAB NN Toolbox
could certainly be used. Our objective at this stage is
to assess the relative performance of the SA algorithms
presented in Section 2.

The training set consists of 997 data produced by (7)
using an input sine wave with increasing frequency
(0.1–10 Hz). Test sets used for model validation are pro-
duced with other input signals, e.g. a switchback signal.
Based on the assumption that the correct system orders
are known, the process is modelled using a NN with five

inputs ½yðk� 1Þ, yðk� 2Þ, yðk� 3Þ, uðk� 1Þ, uðk� 2Þ�,
one hidden layer and one output. To select the
number of nodes in the hidden layer nhl and to define
‘reference’ results, a classical Levenberg–Marquardt
(LM) algorithm (Reklaitis et al. 1983) is first used to
estimate the parameter sets corresponding to NNs
with nhl ranging from 1 to 15. As a result, it is observed
that the quadratic error criterion is monotonically
decreasing. Compromising model accuracy and over-
parametrization (a measure of this compromise is
given by Akaike’s criterion in Ljung 1987), a NN
model with nhl¼ 7 is selected.
In all these cases (nhl ranging from 1 to 15), 1SPSA,

1SPSA-GS (with gradient smoothing) and 2SPSA per-
form successfully. Generally, the SPSA algorithms can
be rated as follows with regards to speed of convergence
and accuracy: (1) 2SPSA, (2) 1SPSA-GS and (3) 1SPSA.
In the case of a NN with nhl ¼ 7 and a minimization of
the error criterion carried out with 2SPSA, direct and
cross-validation results are illustrated in figure 1.
However, as the number of nodes in the hidden layer

increases from 1 to 15, the results obtained with the three
SPSA algorithms become almost the same, i.e. the accu-
racy of the results produced by 1SPSA and 1SPSA-GS
gradually improves, the improvement being more notice-
able for 1SPSA, while the accuracy of the results pro-
duced by 2SPSA, which initially also improves, slightly
deteriorates for larger values of nhl. We can only conjec-
ture about this last observation, which could be inter-
preted as a deterioration of the Hessian estimate due
to NN over-parametrization.
Convergence and accuracy are usually better and less

sensitive to the NN structure when the gradient infor-
mation, which is readily available in this example,
is used in the stochastic gradient algorithms 1SGSA
or 2SGSA. Our numerical experiments show that
1SGSA produces results equivalent to standard BP,
while 2SGSA slightly supersedes BP with momentum
and adaptive learning rate, as implemented in the
MATLAB NN Toolbox. As compared with SP algo-
rithms, 1SGSA and 2SPSA display similar performance.
From a computational point of view, the estimation

and regularization of the Hessian estimate used in
2SPSA can become very costly for large numbers of
parameters. In our application, the CPU time required
by 2SPSA ranges from 5 to 10 times the CPU required
by 1SPSA, so that, in terms of efficiency, the use of
2SPSA might be questionable.
An attempt is therefore made to reduce the computa-

tional expense by evaluating only a diagonal estimate of
the Hessian matrix. Indeed, a reduction of about 40% in
the computation time is observed, due to savings in the
evaluation of the Hessian estimate, as well as in the
recursion on y that only requires a trivial matrix inverse.
The performance, in terms of rate of convergence
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and accuracy, remains almost unchanged, which demon-
strates that the diagonal Hessian estimate still captures
potential large scaling differences in the elements of y.
This algorithm variation is denoted 2SPSA-DH (where

‘DH’ is Diagonal Hessian Estimate). In this latter
algorithm, regularization can be achieved in a straight-
forward way, by imposing the positiveness of the diago-
nal elements of the Hessian matrix.
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Figure 1. Identification of an NN in a series-parallel mode—direct (above) and cross-validation (below) results. Solid line,

real system output; dotted line, NN output.
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Note that Zhu and Spall (2002) have recently devel-
oped a more elaborate version of 2SPSA, in which the
mapping fk in (5), which eliminates the non-positive
definiteness of the Hessian estimate, preserves key
spectral properties (the diagonal eigenvalue matrix �k

of Hk is first ‘corrected’ so as to eliminate negative
elements, resulting in a new �̂�k matrix, and the orthogo-
nal matrix Pk of eigenvectors is used to define the map-
ping fkðHkÞ ¼ Pk�̂�kP

T
k ). This latter developments are

however beyond the scope of this study, and will not
be pursued.

Table 1 compares, for 10 independent runs starting
from the same initial parameter estimates y0, the results
obtained with each algorithm in the case of a NN with
nhl¼ 7. It gives the minimum (best), maximum (worst)

and average values of the mean-square error criterion
after 3000 iterations. It is apparent that algorithms
based on an SP approximation of the gradient and/or
the Hessian produce more ‘dispersed’ results, i.e. dis-
play a larger deviation between the worst and best
cases than the SG(BP) algorithms. Figure 2 shows the
average mean-square error curves for the SP algorithms.
Note that even though the average performance of
1SPSA and 1SPSA-GS are virtually identical, the results
produced by 1SPSA are more dispersed from one run to
another (table 1).

4. Modified first-order SP algorithm

Efficiency, simplicity of implementation and very
modest computational costs make 1SPSA particularly
attractive. In this section, a variation of this first-order
algorithm is considered, which makes use of adaptive
gain sequences, gradient smoothing and a step rejection
procedure, to enhance convergence and stability.

4.1. Some numerical artifices

In its original formulation (Spall 1992), 1SPSA makes
use of decaying gain sequences {ak} and {ck} in the
form:

ak ¼
a

ðAþ kþ 1Þa
, ck ¼

c

ðkþ 1Þg
: ð8Þ
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Figure 2. Identification of an NN in a series-parallel mode—average mean-square error curves for the SP-algorithms

(NN with nhl¼ 7).

Table 1. Mean-square errors obtained after 3000 iterations (10

independent runs—NN with nhl¼ 7).

Best RMS Worst RMS Average RMS

1SPSA 0.0051 0.023 0.012

1SPSA-GS 0.011 0.019 0.013

2SPSA 0.0015 0.0030 0.0021

2SPSA-DH 0.0012 0.0067 0.0025

1SGSA 0.0016 0.0016 0.0016

2SGSA 0.000 092 0.000 30 0.000 14

BP 0.0016 0.0016 0.0016

Adaptive BP-GS 0.000 23 0.000 23 0.000 23

LM 0.000 000 24 0.000 000 24 0.000 000 24
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Although the choice of these sequences ensures
asymptotic convergence in the case of a convex optimi-
zation problem, numerical experiments show that the
algorithm can get stuck somewhere in the parameter
space if the criterion value becomes significantly worse
(due to a poor current gradient approximation, a non-
convex optimization problem as it is often the case in
NN identification problems, etc.) and the gain sequences
are then too small to recover from this situation.

To enhance convergence, the use of an adaptive gain
sequence for parameter updating is considered

ak ¼ Zak�1, Z � 1, if JðykÞ < Jðyk�1Þ

ak ¼ mak�1, m � 1, if JðykÞ � Jðyk�1Þ,

9=
; ð9Þ

where, typically, Z¼ 1.05 and m¼ 0.7.
In comparison with the original 1SPSA algorithm,

which requires two criterion evaluations Jðŷyk þ ck�kÞ

and Jðŷyk � ck�kÞ, one extra criterion evaluation JðŷykÞ
is required to implement (9). This represents a very
reasonable overhead compared with the cost of a con-
ventional finite difference approximation of the gradi-
ent, where all the parameters have to be varied one
at a time. If computational expense is critical, a one-
sided approximation of the gradient could be computed
based on JðŷykÞ and Jðŷyk þ ck�kÞ (or Jðŷyk � ck�kÞ) rather
than a two-sided (centered) approximation as in (3).
However, this approximation would be less accurate,
and when computation time allows it, three criterion
evaluations are recommended to evaluate (3) and (9)
independently.

In addition to gain attenuation, when the value of
the criterion becomes worse, ‘blocking’ mechanisms
are also applied, i.e. if JðykÞ � Jðyk�1Þ:

. Current step is rejected, i.e. yk is disregarded.

. Updating gain is reduced according to (9).

. New step is accomplished starting from the pre-
vious parameter estimate yk�1 (i.e. the parameter
estimate obtained at the previous optimization
step is stored in an intermediate workspace for
further use).

. New criterion value is checked and the procedure is
repeated if required.

A constant gain sequence ck¼ c is used for gradient
approximation, the value of c being selected so as to
overcome the influence of (numerical or experimental)
noise. Indeed, it is necessary to select a sufficiently
large perturbation ck�k of the parameter estimate yk
in order to effect a significant change in the criterion,
from JðŷykÞ to Jðŷyk þ ck�kÞ (or Jðŷyk � ck�kÞ). Otherwise,
the computed differences could be just numerical noise,
so as the search direction of the algorithm.

Finally, a gradient smoothing (GS) procedure is
implemented, i.e. gradient approximations are averaged
across iterations in the following way

Gk ¼ rkGk�1 þ ð1� rkÞĝgkðŷyk�1Þ, 0� rk � 1, G0 ¼ 0,

ð10Þ

where, starting with a typical r¼ 0.95, rk is decreased
in a way similar to (9) when step rejection occurs (i.e.
rk ¼ mrk�1 with m � 1) and is reset to its initial value
after a successful step.
As the following simple numerical example illus-

trates, the use of these numerical artifices, i.e. adaptive
gain sequences, step rejection procedure and gradient
smoothing, significantly improves the effective practical
performance of the algorithm (which, in the following,
is denoted ‘adaptive 1SP-GS’).

4.2. Preliminary test

Consider the problem of modelling a nonlinear pro-
cess given by:

yðkÞ ¼
0:875yðk� 1Þ þ uðk� 1Þ

1þ y2ðk� 1Þ
ð11Þ

using a dynamic multilayer perceptron (DMLP)
(Ayoubi 1996) with one input, four nodes in the
hidden layer and one output. DMLPs incorporate
dynamic linear elements within each elementary proces-
sing units and so allow nonlinear dynamic systems to
be modelled without the need for global recursion. As
the number of unknown parameters grows rapidly
with the NN input dimension (and so, in a feedforward
time delay NN, with the number of delayed inputs),
DMLPs will be particularly advantageous in reducing
the size of the unknown parameter set. In this applica-
tion example, the hidden and output nodes are asso-
ciated with second-order dynamic elements, so that
there are np ¼ 33 unknown parameters to estimate.
Table 2 compares, in terms of number of iterations,

computational load (normalized CPU with the CPU
required by 1SPSA as reference) and mean square
error (RMS), the performance of the following:

. Original 1SPSA algorithm (equations (2) and (3) with
a step rejection procedure).

. Adaptive 1SP-GS (equations (2), (3), and (8)–(10)).

Table 2. Computational statistics.

Iterations CPU RMS

1SPSA 8000 1 0.003 26–0.004 31

Adaptive 1SP-GS 8000 1.3 0.003 09

Adaptive 1GBP-GS 600 7.2 0.003 10
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. Adaptive 1GBP-GS (the same as above with a gradi-
ent evaluated analytically using generalized back-
propagation).

Clearly, generalized back-propagation (GBP) is very
efficient in terms of the number of iterations required
to achieved a certain level of accuracy, but it is com-
putationally expensive as it requires the solution of
dynamic sensitivity equations at each iteration. On the
other hand, 1SPSA has very modest computational
requirements, but produces relatively dispersed results
(0.00326–0.00431 represents the range of values obtai-
ned from 10 independent runs starting from the same
initial parameter estimates). The main advantage of
our algorithm is that it retains the very modest compu-
tational requirement of 1SPSA and usually provides less
dispersed, more accurate results.

5. More realistic application

In the remainder of this study, the usefulness of the
adaptive 1SP-GS algorithm is illustrated with a more
realistic application, i.e. neural modelling and control
of a two-tank system used to cool sulfuric acid with a
countercurrent water stream (Jenson and Jeffreys 1977)
(figure 3).

A nonlinear mathematical model of the cooling
system is used for producing simulated data. This
model can be derived by expressing the energy balance
on each tank, i.e.

MT,1Cpa
_TTa,1 ¼ _MMwCpwðTw,2�Tw,1Þþ _MMaCpaðTa, in�Ta,1Þ

MT,2Cpa
_TTa,2 ¼ _MMwCpwðTw,in�Tw,2Þþ _MMaCpaðTa,1�Ta,2Þ,

)

ð12Þ

where MT, i is the weight of acid in tank i (i¼ 1, 2), Cpa

(Cpw) is the acid (water) specific heat, _MMa ( _MMw) is the

acid (water) mass flow rate, and Ta, i (Tw, i) is the acid
(water) temperature from tank i.
Heat transfer is modelled through a log-mean

delta T, i.e.

_MMwCpwðTw,1�Tw,2Þ¼k1A1
ðTa,1�Tw,1Þ�ðTa,1�Tw,2Þ

lnððTa,1�Tw,1Þ=ðTa,1�Tw,2ÞÞ

_MMwCpwðTw,2�Tw,inÞ¼k2A2
ðTa,2�Tw,2Þ�ðTa,2�Tw,inÞ

lnððTa,2�Tw,2Þ=ðTa,2�Tw,inÞÞ
,

9>>=
>>;

ð13Þ

where ki is the heat transfer coefficient in tank i and Ai

is the coil heat transfer area in tank i.
Parameter values and steady-state operating con-

ditions are listed in table 3. As sulfuric acid is
assumed to come from an upstream unit, the feed temp-
erature Ta,in varies and is considered as a non-measured
disturbance.

5.1. NN modelling

A neural state space model, as introduced by Suykens
et al. (1996), is selected:

x̂xkþ1 ¼ WAB tanhðVA x̂xk þ VB uk þ bABÞ

ŷyk ¼ WCD tanhðVC x̂xk þ VD uk þ bCDÞ:

)
ð14Þ

Ta,in Ta,1 Ta,2

Cold H20
Mw,Tw,in

setpoint

sensor

Tw,1 Tw,2

Tank 1 Tank 2

.

Figure 3. Two-tank cooling process.

Table 3. Model parameters.

MT,1¼ 4351 kg A1¼ 6.4m2

MT,2¼ 4351 kg A2¼ 8.9m2

Cp,a¼ 1.506 kJ/kgK Ta, in¼ 447K

Cp,w¼ 4.183 kJ/kgK _MMa ¼ 1.26 kg/s

k1¼ 1.136 kJ/m2 sK Tw,in¼ 293K

k2¼ 0.738 kJ/m2 sK _MMw ¼ 0.97 kg/s
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As illustrated in figure 4, neural state space models
are recurrent NNs. The dimensions of the weight
matrices and bias vectors are WAB 2 <n�nhx , VA 2

<nhx�n, VB 2 <nhx�m, bAB 2 <nhx , WCD 2 <‘�nhy , VC 2

<nhy�n, VD 2 <nhy�m and bCD 2 <nhy , where n, m, ‘,
nhx and nhy are the number of states, inputs, outputs
and hidden neurons, respectively.

The 40 weights and biases of a neural state space
model with n¼ 2, m¼ 1, ‘ ¼ 1, nhx¼ 5 and nhy¼ 2 are
estimated by minimizing an output error criterion in
the form (1). The training set consists of 2270 data pro-
duced by applying steps of various amplitudes and dura-
tions in the cooling water stream. During these
experiments, the inlet acid temperature is constant
(table 3). The evolution of the criterion for 10 indepen-
dent runs starting with random initial estimates (figure
5) illustrates the good performance of the adaptive
1SP-GS algorithm as compared with the original
1SPSA algorithm. Figure 6 shows some cross-validation
results demonstrating the good model agreement.

5.2. NN predictive control

Once the modelling task has been achieved, the neural
state space model can be used as a process emulator in
a model-based predictive control scheme (figure 7). The
NN state space model generates prediction of future
process outputs over a specified prediction horizon,
which allows a quadratic performance criterion to be
defined, i.e.

J ¼
XN2

i¼N1

yrðkþ iÞ � ŷyðkþ iÞð Þ
2
þl

XN2

i¼1

�uðkþ i� 1Þ2,

ð15Þ

where yr(k) is the output of a model reference, and N1

and N2 define the horizons over which the tracking
errors eðkÞ ¼ yrðkÞ � ŷyðkÞ and control increments �uðkÞ
are considered. The weighting factor l penalizes the
control increments.
The control signal u(k) can be produced in two

ways:

. On-line optimization routine is applied to the mini-
mization of J with respect to the control moves
u(k) over the prediction horizon, and the optimal
control signal is directly applied to the process.

. Minimization of J is accomplished with respect to
the weights of a feedforward NN controller, which
in some sense mimics the action of the on-line opti-
mization routine.

In this study, the second approach has been chosen
as it is conceptually more robust. Indeed, the NN
controller keeps track of the optimization procedure
and can produce a control signal even during periods
where optimization cannot be performed satisfactorily
(e.g. in an on-line application, higher priority events
and interrupts can prevail on optimization). In our
implementation, controller training occurs only during
the transient phases in which the system is sufficiently
excited by the input signals. Optimization is suspended
in steady-state phases to avoid detuning the NN con-
troller, which produces the input signal applied to the
process.
Following the line of thought in Tan (1993), the

NN controller parametrization is chosen in a similar
way as in a classical PID controller, i.e. with three
inputs i1ðkÞ ¼ eðkÞ, i2ðkÞ ¼

Pk
i¼1 eðiÞ and i3ðkÞ ¼ eðkÞ�

eðk� 1Þ, one hidden layer with nhl nodes and one

z-1

z-1

uk
yk

xk+1
xk

Figure 4. Neural state space model.
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Figure 5. Two-tank system identification: mean-square error curves for 10 independent runs. Solid lines, adaptive 1SP-GS; dashed

lines, original 1SPSA.
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Figure 6. Two-tank system identification: cross-validation results. Solid line, outlet temperature of sulfuric acid; dotted line,

NN output.
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output. As only a weighted sum of i1(k), i2(k), i3(k) is
needed to mimic the PID algorithm, the biases of the
NN controller are set to zero.

Of course, the prediction of the NN emulator is
usually not perfect, and the effect of modelling errors
can be treated as an additive disturbance which can be
estimated at the kth sampling instant in a manner similar
to dynamic matrix control (DMC) (Patwardhan et al.
1990), i.e.

ymðkÞ ¼ ŷyðkÞ þ dðk� 1Þ

dðkÞ ¼ yðkÞ � ŷyðkÞ,

)
ð16Þ

where ymðkÞis substituted for ŷyðkÞ in the expression of
the performance criterion (15), which allows modelling
errors to be compensated.

An NN PID controller with nhl¼ 2 is used to control
the acid temperature from the second tank Ta,2(t) by
acting on the cooling water stream _MMw(t). The eight
unknown NN weights are estimated by minimizing the
performance criterion (15) with N1¼ 1, N2¼ 20 and
the output yr(k) of a second-order model reference
with x ¼ 0:8 and on ¼ 4.

In this application, the requirements on the optimiza-
tion algorithm are: (1) small computational costs so that
the criterion minimization can take place within a sam-
pling period, and (2) robustness and reliability so that,
even in the presence of perturbations, at least a lower
value of the error criterion can be achieved. On the other
hand, accuracy in estimating the controller parameters
is not determinant. With this view, the minimization of
the receding horizon criterion (15) is performed using
1SPSA-GS, with a maximum of 100 iterations per sam-
pling interval. Figure 8 illustrates the excellent tracking
capabilities of the NN PID controller.

However, in the face of disturbances in the acid
feed temperature, the prediction of the NN process
emulator deteriorates, which results in large tracking
errors. Figure 9 shows the effect of step disturbances
of �4K in t¼ 15 h and þ8K in t¼ 42 h. The effect
of these non-measured disturbances can be compen-
sated using (16) (figure 10). The effect of measurement
noise with a standard deviation of 0.75K is also
shown in figure 11. In all these cases, the predictive
NN PID control scheme displays very satisfactory
performance.

6. Conclusion

The SP approach devised by Spall (1992, 2000) is a
very powerful technique that allows an approximation
of the gradient and/or the Hessian of a noisy perfor-
mance criterion to be computed by effecting simulta-
neous random perturbations in all the parameters.
This numerical procedure, which contrasts with stan-
dard finite difference approximations in which the
evaluation of the criterion gradient is achieved by
varying the parameters one at a time, appears a priori
attractive to address the parameter estimation problem
in NNs, which is characterized by large sets of unknown
parameters. In this connection, this paper discusses
several test results in nonlinear system identification
and control. Especially, a variation of the first-order SP
algorithm, including adaptive gain sequences, gradient
smoothing and a step rejection procedure, is described
and evaluated with a realistic numerical application.
In addition, a predictive NN PID control scheme is
developed that shows very satisfactory performance.
Remarkable properties of the SP algorithms are their
simplicity of implementation and ease of use.
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Figure 7. Model-based predictive neural control scheme.
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Figure 9. Two-tank system: effect of non-measurable disturbances in the acid feed temperature on the acid outlet temperature (key as

in figure 8).
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Figure 8. Two-tank system: tracking capabilities of an NN PID for the acid outlet temperature. Solid line, model reference; dotted

line, NN process emulator; dashed line, process output.
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Figure 10. Two-tank system: modelling error compensation (key as in figure 8).
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Figure 11. Two-tank system: effect of measurement noise (key as in figure 8).
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