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Abstract | The reduced fuzzy rank order de-
tector (R-FROD) [3] is a robust diversity com-
biner for fast frequency fopping multiple access.
Its performance is determined by the value of
an adaptation parameter 
 which represents the
degree of spread exhibited by the demodulated
spread spectrum data. EÆciency (time complex-
ity) of this adaptation is critical for a receiver
to be practically useful. A study is presented of
three powerful methods for optimizing this pa-
rameter. The methods presented are: the golden
section search (GSS) algorithm, a straightforward
random search (RS) algorithm, and the newer
simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm.

I. Introduction

Fast frequency hopping (FFH) waveforms o�er power-
ful resistance to arbitrary noise, multiaccess interference
(MAI), and jamming on mobile wireless channels, while
maintaining robust performance. The time and frequency
diversity of FFH enhance receiver performance provided
that careful attention is paid to the design of the diver-
sity combiner. In general, FFH is inherently near/far
resistant.

Previously [4] we introduced the fuzzy rank order de-
tector (FROD), a diversity combiner that weights chan-
nel data samples according to their distances from the
location of the sample distribution, as measured by an
aÆnity function, which is a Gaussian shaped function of
the di�erence between a selected data point and a se-
lected order statistic of the data. In [4] we demonstrated
the robustness and overall performance of the FROD and
introduced the R-FROD a computationally less complex
reduced FROD, which su�ers little performance degrada-
tion relative to the FROD while requiring substantially
less e�ort. Subsequently [3] we showed that the band-
width eÆciency of the R-FROD is competitive with other
diversity combiners for FFH with M-ary frequency shift

1Paper was prepared through collaborative participation in the
Communications and Networks Consortium sponsored by the U.S.
Army Research Laboratory under the Collaborative Technology Al-
liance Program, Cooperative Agreement DAAD19-01-2-0011. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
thereon.

keying (FFH/MFSK). The \inclusiveness" (width) of the
Gaussian aÆnity function is determined by the parame-
ter 
 in the same way that the variance of a Gaussian
probability density function controls its width.

To date, R-FROD performance has been demonstrated
by manually determining values of 
 which minimize the
error probability, but successful implemenation of the R-
FROD in an adaptive communication system requires an
eÆcient, automatic optimization algorithm. Analytic op-
timization of the objective or loss function (the probabil-
ity Pr(e) of error) of the detector is somewhat intractable
because it is the ratio of many sums of sums of Gaussian
functions [4] and because the noise and MAI may be non-
Gaussian and, for the mobile channel, non-stationary.

The need for accurate estimation of parameters in the
presence of multiple-access interference (MAI) has led to
the development of joint multiuser detectors and para-
meter estimators. In [5], an adaptive receiver is pre-
sented using neural network schemes with mathematically
tractable nonlinearities. Adaptive receivers presented in
[6] have been developed to combat cyclostationary MAI
using linear receivers.

This paper focuses on the adaptation algorithms,
studying several methods for achieving the optimizing
value of 
 to minimize the probability of error. Section II
presents the system model used as a testbed for the algo-
rithms, which are discussed in Section III. The results of
the study are presented and discussed in Section IV and
conclusions drawn in Section V.

II. System Model and The Estimator

Consider a conventional1 MFSK/FFH system with K
users, Q hop frequencies, M modulation tones (Q >>
M), spreading sequence length L, and hop duration Th.
The output of the frequency dehopper at the receiver is
represented by an M � L detection matrix whose values
are the non-coherently detected energies in each M -ary
frequency bin at each time interval Th. The K signals are
assumed hop synchronous, and interference from K � 1
interferers appears randomly in the entries of the detec-
tion matrix. The channel exhibits 
at, Rayleigh fading.
The channel model and the M�ary hypothesis testing

1In conventional FFH/MFSK, Q >> M ; in unconventional
MFSK/FFH Q = M and the modulation tone hops about among
the M allowed values. See, e.g., [10].



problem to which it gives rise are discussed in [4]. The
detector is the R-FROD.

The R-FROD accepts as inputs the M elements x =
(x1; x2; : : : ; xM ) of the detection matrix and the asso-
ciated vector xL = (x(1); x(2); : : : x(M)) of order sta-
tistics of the same data. Values of the aÆnity func-
tion �(xi; x(j); 
) = exp�f(xi � x(j))

2=2
g (Figure 1)
populate a square, time-rank matrix T. Each row of T is
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Figure 1: The Gaussian AÆnity Function

normalized by the sum of its elements to produce matrix
~T. The fuzzy ranks of the data are computed as

~r = ~T[1; 2; : : : ;M ]T

= (~r1;~r2; : : : ;~rM):

A vector of fuzzy ranks is computed for each column
(M�tuple) of the detection matrix. Fuzzy ranks extend
the concept of (integer-valued) so-called \crisp" ranks
for diversity combining [11] by re
ecting the statistical
spread of the detected energy values. They replace the
channel data in the detection matrix. Summation across
each row e�ectively accomplishes the hypothesis testing.
More detail is available in [4] and references therein.

Note that a small value of 
 causes the detector to dis-
criminate against even close-in \outliers" while a larger
value, emblematic of a broader aÆnity function, gives
weight to data points across a broader statistical spread.
The objective of this work is to examine algorithms for
quickly determining the optimizing value of 
, that value
which gives the minimum value of Pr(e) for the channel
environment. The rapid decay of the Gaussian shaped
aÆnity function is intended to discriminate against strong
outliers, typical of interference from other nodes in a mul-
tiple access system.

In previous work, trial and error were used to deter-
mine the optimizing 
 and produce the system perfor-
mance data. Implementation in an adaptive detector,
however, will require optimization against a relatively

small training set of known transmitted symbols, since
the MAI is assumed to be unknown. Thus, in what fol-
lows we evaluate candidate optimization algorithms for
their eÆciency (time complexity) in an adaptive system.

III. Parametric Optimization Algorithms

The adaptive optimization problem is to eÆciently de-
termine the value of 
 that minimizes the bit error rate
using short training sequences of known data. Since the
objective function cannot be described by an analytic
expression [2], we seek to apply numerical optimization
techniques which rely solely on measurements of the ob-
jective function and which also do not require a direct
measurement of the gradient of the function. We con-
sider recursive optimization techniques which update the
solution at each iteration, based upon results of a Monte
Carlo simulation of our detector. For a �xed value of
the R-FROD parameter 
, the objective function Pr(e)
is determined by averaging over �ve simulation runs for
each case in order to smooth the e�ects of modeled noise.
The shape of the typical plot of error probability vs 
 is
shown in Figure 2. The presence of a single global min-
imum makes it feasible to use a simple, one-dimensional
search technique such as the golden section search (see A
below).
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Figure 2: A typical curve of BER versus 
 for the FROD.

Two other recursive algorithms, which are stochastic
in nature, were also applied to this problem. They are
the simultaneous perturbation stochastic approximation
(SPSA) algorithm and a general random search (RS) al-
gorithm. These are described in the sequel.

A Golden Section Search

GSS [9] is a classical technique which provides a sim-
ple method of �nding and narrowing the region in which
the minimum occurs, in order to achieve convergence to
its actual value. Initially, a step size is selected and an



interval [a; b] is chosen within which the minimum value
of the objective function is expected to lie2. To narrow
the interval, a point �x is chosen such that: (a) a < �x < b
and (b) �x lies a fraction 0:38197 from one end of the in-
terval. This is the so-called golden section ratio [9]. Then
f(�x) is evaluated, and the appropriate end of the inter-
val is moved to �x. This algorithm is iterated until the
bracket is acceptably small. The nature of this search
process makes it optimal for problems having only one
true minimum.

B Random Search

A random search algorithm is ideal for the present
problem, since such an algorithm requires only minimal
information about the loss function. The parameter 

is updated at each iteration by 
k+1 = 
k + dk where
the direction vector dk is random and is obtained from
a normal distribution, N(0; �2). (In the present case, dk
is a scalar, and a one-dimensional search is, in fact, con-
ducted.) The variable � must be chosen for best perfor-
mance, in terms of convergence rate. The value of 
k+1

is updated only if it causes the loss function (probability
of error) to decrease; otherwise set 
k+1 = 
k. The initial
value 
0 may be chosen from prior or side information or
merely selected at random. Random search algorithms
thus require function evaluations only at a new value of

k and do not require that the loss function be di�eren-
tiable or that the gradient be computable. They are also
useful for loss functions with only one local/global mini-
mum, and these algorithms do not have a lot of random
variables that have to be optimized. They are thus easy
to implement, and a theoretical proof of performance and
accuracy that has been provided for these algorithms in
Spall [8].

C Simultaneous Perturbation Stochastic Approximation
(SPSA)

The simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm has recently attracted consider-
able attention for solving challenging optimization prob-
lems where it is diÆcult or impossible to directly obtain
a gradient of the loss or objective function with respect
to the parameters being optimized [7]. SPSA is based
on an easily implemented and highly eÆcient gradient
approximation that relies on measurements of the objec-
tive function, not on measurements of the gradient of the
objective function. The gradient approximation is based
on only two function measurements (regardless of the di-
mension of the gradient vector). The update law for the
parameter is similar to that of the steepest descent algo-
rithm:


k+1 = 
k � akgk:

2This initial interval is determined from information developed
outside the scope of the present problem. If necessary, one need
merely think of a very large interval.

where ak is a sequence of positive numbers that converges
to zero and gk is an approximation to the gradient of
Pr(e). To approximate gk, we obtain two evaluations of
the probability of error:

gk = fPr(
k + ck�k)� Pr((
k � ck�k)g=2ck
k:

where ck is a decreasing sequence of positive numbers
(usually of the form ck = c=k
 , c > 0; 0 � 
 < 1 and
where �k takes a value of +1 or 1, as determined by
sampling a Bernouilli distribution. See [7] for additional
detail. As before, the update law may be initialized by
a random \guess" or by prior or side information which
brings the algorithm into the neighborhood of the opti-
mum point.

IV. Simulations Results and Discussion

This subsection presents simulation results for the
three algorithms. The simulations were conducted
under identical conditions. The parameters used to test
the algorithms were number of frequencies Q = 1024;
the number of modulation tones M = 32; the num-
ber of hops per information symbol L = 5. Cases
were studied for 64, 73 and 81 users in the system,
and the signal to noise ratio (SNR) was 25 dB. The re-
sults for the three algorithms are shown in Table 1 below.

Algor. # Users # Iter PE log10

SPSA 64 9 0.0008 -3.3776
RS 64 29 0.0008 -4.2045
GSS 64 39 0.0007 -4.1530
SPSA 73 7 0.0013 -3.7831
RS 73 45 0.0020 -4.0210
GSS 73 39 0.0021 -4.0167
SPSA 81 4 0.0045 -3.4571
RS 81 27 0.0043 -3.582
GSS 81 16 0.0047 -3.743

Table 1

For each set of users, for the system under consider-
ation, Table 1 shows the number of iterations required
by each algorithm to �nd that value of 
 which achieves
a speci�ed value of probability of error (PE). The ran-
dom search (RS) and Golden Section Search (GSS) al-
gorithms each have one variable, equivalent to step-size,
which had to be optimized o�ine, while the SPSA al-
gorithm required optimization of two variables, ak and
ck. These variables a�ect performance of each algorithm
in terms of convergence rate, and also the accuracy with
which it is able to determine the optimizing value of 
 at
the speci�ed value of error probability Pr(e).

Each of these three algorithms was fairly simple to
implement involving straightforward evaluations of the
Pr(e) by the R-FROD estimator. This was the most
computationally intensive part of the optimization algo-
rithms. Thus one consideration in comparing the algo-
rithms is the number calls to the R-FROD estimator,
which was required to determine Pr(e). The random



search (RS) and Golden Section Search (GSS) algorithms
each required only one function evaluation of Pr(e) per
iteration, while the SPSA algorithm required two func-
tion evaluations per iteration in order to determine the
gradient. Even so, the SPSA algorithm achieved the op-
timizing value of 
 much faster than the other two algo-
rithms. This is seen in Figure 3, which shows a typical
optimization path of 
 for each of the three algorithms.
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Figure 3: A typical optimization path of 
 for each of the
three algorithms

V. Conclusions

In this work, three stochastic optimization algorithms
were investigated and tested on three FFH/MFSK sys-
tem con�gurations. The optimization algorithms were
iterated to nearly identical values of the objective func-
tion, and the value of the system parameter 
 was noted.
Within the dataset for each system con�guration, the �-
nal values of error probability never di�ered by more than
0.0008 and were usually much closer to one another. Val-
ues of the logarithm of the optimization parameter were
similarly close to one another. (Ideally, they would be
identical.)

Within the dataset for each system con�guration , the
number of iterations required to reach the optimum state
was fewest for SPSA by a wide margin. RS took the
largest number of algorithmic iterations to complete in
two of three cases and GSS the largest in one.

Yet, close examination of the algorithms reveals that
RS requires only a single function evaluation in response
to random perturbations of the current value of 
k while
GSS requires additional initialization steps plus a more
involved updating of the golden section rule. Finally, each
iteration of SPSA requires two function evaluations to
determine the gradient approximation which is used to

update 
k. Yet, SPSA is the most eÆcient and �nds the
optimizing value of 
 with the smallest time complexity.

Further and more detailed study is necessary in or-
der to determine the e�ect on communication eÆciency
of an adaptive FFH/MFSK multiaccess system using a
fuzzy rank order diversity combiner and the SPSA opti-
mization algorithm. Training set size vs performance for
various channels must be studied in terms of its impact
on bandwidth eÆciency and throughput. Meanwhile, we
have identi�ed an adaptive algorithm that will improve
the eÆciency of our ongoing FFH/MFSK research.
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