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Application of Simultaneous Perturbation Stochastic
Approximation Method for Aerodynamic

Shape Design Optimization

X. Q. Xing∗ and M. Damodaran†

Nanyang Technological University, Nanyang 639798, Republic of Singapore

Aerodynamic shape design optimization problems, such as inverse and constrained airfoil design and axisym-
metric nozzle design, are investigated by applying the simultaneous perturbation stochastic approximation (SPSA)
method to objective functions that are estimated during each design iteration using a finite volume computa-
tional fluid dynamics technique for solving the compressible Navier–Stokes equations. The SPSA method has been
demonstrated in the literature as having significant advantages over stochastic global optimization methods such
as the simulated annealing (SA) method. In this work the SPSA is compared with SA method for a class of two-
dimensional and axisymmetric aerodynamic design optimization problems. The numerical studies show that the
SPSA method is robust in reaching optimal aerodynamic shapes, is easy to implement, and is highly efficient. The
SPSA method can also decrease the computational costs significantly compared with the SA method.

Introduction

A ERODYNAMIC shape design problems are a typical class of
complex design optimization problems that have been exten-

sively investigated in recent years using computational fluid dynam-
ics (CFD) as in Ref. 1. The characteristic features of such problems
are the presence of a large number of design variables, complex
constraints, and even discrete design parameter values. Unlike ap-
plications in structures and control systems, sensitivity information
cannot be easily extracted from CFD codes. Hence, the characteris-
tics of the entire flowfield must be computed to assess the objective
function values during the aerodynamic shape design cycle. It is
well known that the numerical computation of the flowfield char-
acteristics is very time-consuming. In view of the enormous costs
associated with evaluating the objective function, many optimiza-
tion methods have been proposed in the literature to deal with these
problems. Most of these methods fall into two categories; namely,
deterministic methods and stochastic methods.

Deterministic optimization methods are efficient for finding the
minima of continuously differentiable problems for which suffi-
ciently accurate derivatives can be estimated at reasonable cost, but
these methods do not always lead to a global optimum and often
restrict the design space to conventional designs. Besides deter-
ministic methods, stochastic methods such as genetic algorithms
(GAs), simulated annealing (SA) algorithms, and so on have re-
cently found applications in many practical engineering design op-
timization problems as well as nonengineering problems. Aly et al.2

had applied SA to the design of an optimal aerodynamic shape of an
axisymmetric forebody for minimum drag. GAs have also been suc-
cessfully applied to aerodynamic shape optimization problems, such
as airfoil shape design reported by Quagliarella and Cioppa3 and
Yamamoto and Inoue,4 multi-element airfoil shape design reported
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by Cao and Blom,5 and centrifugal compressor design reported by
Benini and Tourlidakis.6 These applications show that SA and GAs
are all stochastic in nature and can easily be implemented in robust
computer codes compared with deterministic methods. They also
have the advantages of yielding a global minimum and in overcom-
ing the limitations of deterministic gradient-based search methods,
which have a tendency of having searches getting trapped in local
minima. However, SA and GA methods require a large number of
function evaluations and relatively long computation times, espe-
cially for the case of complex design problems. One approach to
reduce computational time would be to use parallel GA and parallel
SA. Gallego et al.7 have shown that the parallel SA not only results
in improved speedup but also increases the chances of searching for
the global optima. Bhandarkar and Machaka8 have discussed a va-
riety of parallel schemes of SA. The division algorithm of Aarts and
Korst9 and the three parallelization strategies of Diekmann et al.10

are also widely used. Wang and Damodaran11,12 used parallel simu-
lated annealing (PSA) to reduce the number of evaluations of the ob-
jective function for each processor and wall-clock time for a number
of representative aerodynamic shape design optimization problems.
Applications of parallel GA to improve the computational efficiency
of aerodynamic design problems have also been reported by Vicini
and Quagliarella13 and Hämäläinen et al.14 Although parallel SA and
GA can speed up the computation, they still require enormous com-
putational resources and effort. An attractive alternative to SA and
GA that is investigated in this work is the simultaneous perturbation
stochastic approximation (SPSA) method, which has been devel-
oped and described by Spall15−17 and which has been applied to a
number of difficult multivariate optimization problems. The SPSA
method has attracted attention in many diverse areas such as statisti-
cal parameter estimation,18 feedback control,19−21 simulation-based
optimization,22 signal and image processing,23,24 and so on. The es-
sential feature of SPSA, which accounts for its power and relative
ease of implementation, is the underlying gradient approximation,
which requires only two measurements of the objective function
to approximate the gradient regardless of the dimension of the op-
timization problem. It only uses objective function measurements
and does not require direct measurements of the gradient of the ob-
jective function. This feature results in a significant decrease in the
cost of optimization, especially in problems that have a large num-
ber of variables to be optimized. Based on its successful application
in the wing design problem outlined by Xing and Damodaran,25

the SPSA method is briefly outlined here and its performance as
a viable optimization tool is demonstrated by applying it to aero-
dynamic objective functions obtained using CFD for inverse and
constrained airfoil design, and axisymmetric nozzle design in this

284



XING AND DAMODARAN 285

study. The performance of the SPSA method is also compared with
that of the SA method.

Optimization Methods
Simultaneous Perturbation Stochastic Approximation Method

The problem of minimizing a scalar differentiable loss function
L(X), where X is a p-dimensional vector of design variables, can
be treated as searching for the vector X∗ such that ∂L/∂X = 0. This
is the classical formulation of local optimization for differentiable
loss functions and it is assumed that measurements of L(X) are
available for various values of X. These measurements may or may
not include added noise and no direct measurements of ∂L/∂X are
assumed available. The SPSA algorithm is usually defined in the
general recursive SA form:

Xk + 1 = Xk − ak g(Xk) (1)

where g(Xk) is the estimate of the gradient ∂L/∂X at the iteration
k based on the measurements of the loss function. Under appro-
priate conditions, the iteration in Eq. (1) will converge to X∗ in
some stochastic sense, as shown by Fabian26 or Kushner and Yin.27

The most essential part of this algorithm is the approximation of
the gradient. If y(·) denotes a measurement of L(·) at a design level
represented by the dot (·) then y(·) = L(·) + noise. One-sided gradi-
ent approximations involve measurements y(Xk) and y(Xk +∆Xk),
whereas two-sided gradient approximations involve measurements
of y(Xk ±∆Xk). The simultaneous perturbation approximation has
all the elements of the vector of design variables Xk randomly per-
turbed together to obtain two measurements of the objective function
Y (Xk), but each component of g(Xk) is formed from a ratio involv-
ing the individual components in the perturbation vector and the
difference in the two corresponding measurements. For a two-sided
simultaneous perturbation, this approximation is given as

g(Xk) = y(Xk + ck∆k) − y(Xk − ck∆k)
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for a vector of p design variables. The parameter ck = c0/(km),
where c0 is a small positive number and m is a coefficient that is as-
signed a value of 1

6 in this study. The term ∆k represents the random
perturbation vector generated by Monte Carlo approaches and the
components of this perturbation are independently generated from a
zero-mean probability distribution. One simple distribution that has
been used in this study is the Bernoulli ±1 distribution with proba-
bility of 1

2 for each ±1 outcome. The implementation of the SPSA
method requires only two measurements, which are independent of
p because the numerator is the same for all the p design variables.
This aspect enables the SPSA method to achieve significant savings
in the total number of measurements required when p is large.

The SPSA algorithm starts by iterating from an initial guess of the
optimal vector X0. First, the counter index k is initialized to a value
of 0. Then an initial guess of the design variable vector Xk and non-
negative empirical coefficients are defined. Next a p-dimensional
random simultaneous perturbation vector ∆k is constructed and two
measurements of the objective function, namely y(Xk + ck∆k) and
y(Xk − ck∆k), are obtained based on the simultaneous perturbation
around the given vector Xk . Then the simultaneous perturbation ap-
proximates to the gradient g(Xk) using Eq. (2). This is followed
immediately by the updating of the design vector Xk to a new value
Xk + 1 using the general recursive SA form, Xk + 1 = Xk − ak g(Xk),
where the parameter ak = a0/(A + k)α; a0, A, and α can be chosen
to ensure an effective practical performance of the algorithm. In this
study, a0 = 0.167 and A = 300 for the airfoil shape design problem,
and A = 1 for the nozzle shape design problem; α is taken to be 1.
Finally the algorithm is terminated if there are insignificant changes
in several successive iterations or if the maximum allowable num-
ber of iterations has been reached. The details of the step-by-step
implementation of the SPSA algorithm are explained by Spall.15−17

The choice of the coefficients and parameters pertaining to the al-
gorithm is crucial for the performance of the SPSA (as is the case
with the choice of coefficients and parameters pertaining to all other
stochastic optimization algorithms such as SA). Some useful guide-
lines for choosing the values of these coefficients and parameters
can be found in Refs. 15–17, 26, 28, and 29.

Simulated Annealing Algorithm
The SA method resembles the cooling process of molten metals

through annealing. At high temperatures, the atoms in the molten
metal can move freely with respect to each another, but, as the
temperature is reduced, the movement of the atoms gets restricted.
The atoms start to get ordered and finally form crystals having the
minimum possible energy. However, the formation of the crystals
depends on the specified cooling rate. If the temperature is reduced
at a very fast rate, the crystalline state may not be achieved at all;
instead, the system may end up in a polycrystalline state, which may
have a higher energy state than the crystalline state. Therefore, to
achieve the absolute minimum energy state, the temperature needs
to be reduced at a slow rate. The process of slow cooling is known
as annealing in metallurgical parlance. Specific details of the SA
algorithm and its implementation can be found in Ref. 30.

In this study, SA is based on Monte Carlo techniques and starts
with a high temperature corresponding to the cycle N = 1. The ob-
jective function is calculated based on an initial (baseline) configu-
ration (defined by the initial state of the vector of design variables)
and this is followed by the random generation of a new configura-
tion (new vectors of design variables). New trial points are generated
around the current design vector by applying random moves along
each design coordinate. The new design coordinate values are uni-
formly distributed in intervals around the corresponding coordinate
and a step vector is used to guide the extent of the random moves.
The step vector VM is adjusted periodically through the step adjust-
ment vector H, NT times to adapt to the behavior of the objective
function. The new configuration is accepted as the current config-
uration if this change in the objective function is less than or equal
to zero or if the change is greater than zero, provided the change
in objective function also satisfies the Metropolis criterion, which
measures the acceptance probability. The random generation of new
design vectors and the satisfaction of the acceptance criteria are re-
peated Ns times until the Markov chain has completed at a given
temperature. Then the temperature is lowered via temperature re-
duction factor RT , a new sequence of moves is generated, and the
cycle is repeated until the design vector converges to the optimum
value. Tuning parameters are crucial for improving the performance
of the optimization method. Details of the tuning parameters of SA
have been outlined by Lee.31 The values of the SA tuning parame-
ters employed for this study are as follows: RT = 0.1, VM = 0.001,
H = 2.0, NS = 10, and NT = 5 for the inverse airfoil design prob-
lem; RT = 0.1, VM = 0.001, H = 1.0, NS = 20, and NT = 10 for
the transonic airfoil drag minimization problem; and RT = 0.25,
VM = 0.05, H = 2.0, NS = 10, and NT = 5 for the two-dimensional
axisymmetric nozzle design problem.

Application of Simultaneous Perturbation Stochastic
Approximation in Aerodynamic Shape Design Problems
Inverse Airfoil Design Problem

Problems concerning the design of transonic airfoil shape to sat-
isfy desired aerodynamic characteristics can be classified as con-
strained and unconstrained design optimization problems. An exam-
ple of an unconstrained design problem is the inverse design problem
of determining the airfoil shape that will support a target airfoil sur-
face pressure distribution. This shape is determined by minimizing
the discrepancy between the target and the evolving airfoil surface
pressure distribution corresponding to the designed airfoil.

A baseline NACA 0012 airfoil is chosen and a steady flowfield
around it at a Mach number of 0.73 and angle of attack of 2.78 deg is
computed for starting the design cycle iterations. The airfoil shape is
updated by adding smooth perturbations �yk(x), defined as a linear
combination of a family of smooth curves over the range 0 < x < 1
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as follows:

�yk(x) =
K∑

k = 1

δk fk(x) (3)

where x is the normalized chordwise position of the coordinates
defining the airfoil contour, δk are the design variables which will
change during the design iterations, K is the number of basis func-
tions fk(x), and K = 14 for this study. Seven basis functions are used
to define the upper surface while the remaining seven basis function
define the lower surface. Hicks and Henne functions32 are used as
the basis functions to represent the airfoil shape and to restrict the
design space in this study.

The leading edge and the trailing edge are fixed at the origin
and a chord length away from the origin, respectively, along the
x axis. For inverse design problems, a typical objective function to
be minimized, F(X), is defined as follows:

F(X) =
[

M∑
m = 1

(
Cptm − Cpbm

)2
�Sm

/
M∑

m = 1

�Sm

] 1
2

(4)

where Cptm is the pressure distribution of the target airfoil, which
for this example is a RAE 2822 airfoil at the same Mach number and
angle of attack as that of the baseline airfoil; Cpbm is the pressure dis-
tribution of the designed airfoil which evolves with each design itera-
tion; �Sm is the length of the airfoil surface element; and the summa-
tion is done for the M coordinate points defining the airfoil profile.
Details of this process have been outlined by Lee and Damodaran.33

Transonic Airfoil Drag Minimization
The optimization of selected aerodynamic parameters such as

aerodynamic lift, drag, or pitching moment subject to some imposed
design constraints generally belongs to the class of constrained op-
timization problems. A typical constrained design problem is that
of the transonic airfoil drag minimization, where the aim is to obtain
an airfoil shape that produces minimum transonic drag at a specified
flight condition while maintaining the lift at the original level. Two
inequality constraints are imposed to ensure that the aerodynamic
lift and cross-sectional area of the airfoil do not decrease during the
optimization process. The constrained design problem is defined as
follows:

Minimize

F(X) = Cd (5)

subject to

g1(X) = 1 − Cl/Cl0 ≤ 0, g2(X) = 1 − A/A0 ≤ 0 (6)

where X is the vector of k design variables δk ; Cl and Cd are the
aerodynamic lift and drag coefficients, respectively; A is the air-
foil profile area; A0 is the area of the baseline airfoil profile; and
Cl0 denotes the initial value of the lift coefficient, which has to be
maintained during the design optimization process. The baseline
airfoil that is used to initiate this design optimization process is the
RAE 2822 airfoil immersed in transonic flow at a Mach number
of M = 0.726, angle of attack α = 2.44 deg, and Reynolds num-
ber Re = 6.5 × 106. The aerodynamic lift and drag values at this
flight condition are first computed. The aim of optimization is to
improve the aerodynamic shape of this baseline airfoil so that the
drag can be minimized while maintaining the same lift and airfoil
area. Here an external penalty function method is used to incorpo-
rate the constraints so that the composite function to be minimized
can be defined as

F(X) = Cd + λk

2∑
j = 1

{max[0, g j (x)]}2 (7)

where λk + 1 = 5λk when any g j (X) > 0.

Axisymmetric Nozzle Shape Design Optimization
This problem concerns the search for the optimal two-

dimensional axisymmetric shape of the nozzle that maximizes the

thrust of the nozzle. A two-dimensional CFD solver for solving
Navier–Stokes equations is used to compute the internal flowfield
from which the objective function is evaluated for each iterated aero-
dynamic shape. The objective function to be optimized is defined
as

F(X) = ρ0u2
0

P0

∫
P dS (8)

where dS = π(y2
i + 1 − y2

i ) is the elemental circular cross-sectional
area of the nozzle; yi + 1 and yi are the radii at the grid points i + 1
and i ; ρ0 and u0 are the inflow density and velocity, respectively,
which are used as reference values for scaling flow quantities in
internal flow simulations using CFD analysis; P0 is the inlet pres-
sure; and X is the vector of design variables. Two design variables,
namely inlet expansion half-angle and outlet expansion half-angle
of the nozzle wall, are used for the shape optimization process in
this study. Here the maximization of the objective function is done
by the minimization of its reciprocal: f (X) = 1/F(X). The conver-
gence plot shown for this case is based on f (X). For this study, the
constraints are specified in a simple way; that is, the design variables
are only subject to the defined upper and lower bound limits. Both
the SA method and the SPSA algorithm are used for the optimiza-
tion, and the termination criterion for the convergence is set when
the absolute change in the objective function between a certain num-
ber of user-defined consecutive design iterations is less than 10−3

or the maximum number of iterations has been reached.

Computational Fluid Dynamics Analysis
for Evaluating Objective Functions

Numerical methods for solving the Navier–Stokes equations are
used for computing the flowfield. The computation is updated in
time from a set of initial conditions by a suitable time-marching
algorithm. The flow analysis module used to evaluate the objec-
tive function is based on the finite volume formulation of the un-
steady Navier–Stokes equations for two-dimensional viscous flow.
For airfoil design problems (including inverse design problem and
drag minimization problem), the equations are advanced from a set
of initial conditions to steady-state solutions for the desired flow
conditions by a multistage time-stepping scheme. Several conver-
gence acceleration strategies, such as local time-stepping, implicit
residual smoothing, and multigrid strategies, are used to accelerate
the computation of steady-state solutions. Characteristic boundary
conditions are imposed at the far-field boundaries, and a no-slip
condition is imposed on the airfoil surface, which is also assumed
to be adiabatic. A simple algebraic turbulence model is used to
address the turbulence closure. The readers can refer to Jameson
et al.34,35 and Damodaran and Lee36 for specific details of the flow
modeling. A structured C grid of 128 × 48 cells is used for the
CFD analysis. The objective function to be minimized is estimated
for each design iteration by the CFD solver solving the unsteady
compressible Navier–Stokes equations. The objective function is
then minimized using the SPSA method. For the two-dimensional
nozzle shape design problem, these equations are solved by the
lower–upper symmetric Gauss–Seidel implicit scheme proposed by
Yoon and Jameson,37 and for enhancing the convergence and im-
proving resolution, the scheme is extended using the total variation
diminishing (TVD) scheme of Yee and Harten.38 The code has been
verified for a number of benchmark test problems by Wang et al.,39

and a simple algebraic turbulence model is used in the present study
for viscous flows. A structured grid of 41 × 101 grids with grids
clustered near the nozzle wall surface is used for the CFD analysis.
The inlet Mach number of the nozzle is 4.84 and the Reynolds num-
ber based on the diameter of inlet is Re = 1.35E + 8. The values
of the radii are 0.5 m at the inlet section and 1.0 m at the exit. The
length of the nozzle is 2.52 m.

Results and Discussion
Airfoil Inverse Design Problem

Computed results pertaining to the inverse airfoil shape design
optimization problem using SPSA and SA methods are compared
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a) b)

Fig. 1 Convergence history of the inverse design problem: a) SPSA method and b) SA method and hybrid SA.

a)

b)

c)

d)

Fig. 2 Initial, design, and target airfoil shapes: a) SPSA method, b) SA method and surface pressure coefficient distributions, c) SPSA method, and
d) SA method.

in Figs. 1 and 2. Figure 1 compares the convergence of the min-
imization of the objective function with design cycles. Compar-
ison of Figs. 1a and 1b shows that the SPSA method requires
fewer function evaluations to reach the target design than that re-
quired using SA. SPSA requires about 800 iterations (i.e., 2400
objective function evaluations to reach convergence) whereas the
SA method requires about 2000 accepted function evaluations or
about 4000 objective function evaluations because only about half

of the objective function evaluations are accepted using the SA
method. This suggests that the SPSA method provides a reason-
able computational advantage over the SA method, which results
from the fact that the SPSA method requires only two measure-
ments of the objective function to approximate the gradient regard-
less of the dimensions of the design space corresponding to the
optimization problem and consequently the cost of optimization
decreases.
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Figures 2a and 2b compare the initial, target, and designed airfoil
shapes while Figs. 2c and 2d compare the corresponding airfoil sur-
face pressure distributions computed using SPSA and SA methods,
respectively. In Fig. 2c, the computed surface pressure distribution is
also compared with the experimental data from Cook et al.40 (case 6)
for the RAE 2822 airfoil at Mach number 0.73, angle of attack
α = 2.78 deg, and Re = 6.5 × 106. The good agreement between
the computed and experimental data suggests that the numerical
simulation is reasonably accurate. It can be seen from Fig. 2 that the
discrepancies of the pressure distribution between the target and the
designed airfoil obtained by the SPSA method are larger than that
obtained by the SA method. This is also verified by the discrepan-
cies of the airfoil shapes between the target and the designed airfoils.
However, as mentioned earlier, the computational cost of the SPSA
method is only half that of the SA method. The possibility of com-
bining the SPSA method with other optimization methods to exploit
the high rate of reduction of the objective function at the inception of
the design process using SPSA to drive the design toward the optimal
design zone first, followed by the use of other methods to perform
the final stages of the convergence toward the optimal solutions to
improve the design accuracy or to decrease the discrepancies of the
pressure distribution between the target and the designed airfoil fur-
ther, has also been explored. Here SPSA has been combined with
SA and the gradient-based Broydon–Fletcher–Goldberg–Shanno
(BFGS)41 method, respectively. The hybrid SPSA with the BFGS
method has also been explored by Xing and Damodaran42 to see
whether hybrid optimization methods could improve the design ac-
curacy and cut the computational cost.

Prior to combining the SPSA method or the SA method with other
optimization methods, the convergence histories are first examined
to determine the switchover point for changing the optimization
scheme. It can be observed from Fig. 1a that SPSA reduces the
objective function value rapidly to about 0.012 in 800 design cycles,
and after that the rate of reduction appears to be flat. The steepest
reduction in the objective function occurs during the first 85 design
iterations and after that the rate of reduction decreases gradually.
These two points for switching from SPSA to BFGS and SA are
considered: the switching point at the end of 800 design cycles of the
SPSA method to see if the hybrid optimization method can further
reduce the objective function and that after 85 design cycles of the
SPSA method to see if design computational cost of the optimal
solutions can be reduced significantly. From Fig. 1b, it can be seen
that, for the SA method, after 1200 accepted function evaluations,
the slope turns flat; therefore, the switch point is selected at 1200
accepted function evaluations of the SA method.

Figures 3 and 4 show the design results obtained by the hybrid
SPSA method with different switch points. Figures 3a and 3b com-
pare the convergence histories of the objective functions with de-
sign cycles and function evaluations of SPSA, SPSA+BFGS, and
SPSA+SA methods for the two cases of hybrid SPSA (i.e., the
switchover is activated at the end of 800 and 85 design cycles of
the SPSA method, respectively). From Fig. 3a, it can be seen that
the SPSA+BFGS method appears to have a higher local conver-
gence rate than that of the SPSA and SPSA+SA methods. The final
objective function value reached by SPSA+BFGS and SPSA+SA
methods are 0.003369 and 0.003427, respectively. These values are
of the same order and much smaller than the value of 0.012 reached
by the SPSA method. The computational cost of SPSA+BFGS is
also significantly cheaper than that of SPSA or SPSA+SA because
it involves only 271 function evaluations compared to the 800 de-
sign cycles of SPSA. From Fig. 3b, it can be seen that SPSA+BFGS
method reduced the objective function value of 0.0028 in 402 func-
tion evaluations of BFGS after 85 design cycles of SPSA, whereas
the hybrid of SPSA and SA methods requires 2521 function evalu-
ations of the SA method besides the 85 design cycles of the SPSA
method to reduce the objective function value to 0.0031, which is
more expensive than that of the SPSA+BFGS method. The conver-
gence of the hybrid SA method is shown in Fig. 1b. It can be seen
that the SA+BFGS method reduced the objective function value
to 0.0027 in 472 function evaluations of BFGS besides the 1200
accepted function evaluations for the SA method.

a)

b)

Fig. 3 Comparison of the convergence histories of the inverse de-
sign problem obtained by the SPSA method and hybrid methods with
switchover points at a) 800 design cycles of the SPSA method and b) 85
design cycles of the SPSA method.

Figure 4a compares the initial, the target, and the final designed
airfoil shapes and Fig. 4b compares the corresponding airfoil sur-
face pressure coefficient distributions of the initial, target, and final
designed airfoils obtained by SPSA+SA and SPSA+BFGS meth-
ods. It can be seen that the airfoil shapes and the surface pressure
coefficients obtained by the hybrid methods are in good agreement
with that of the target airfoil. Figure 4c compares the initial, the
target, and the final designed airfoil shapes, and Fig. 4d compares
the corresponding airfoil surface pressure coefficient distributions
of the initial, target, and final designed airfoils obtained by the hy-
brid SA method. The airfoil shapes and the surface pressure co-
efficients obtained by the hybrid SA are also in good agreement
with that of the target airfoil. The hybrid optimization methods,
especially the hybrid stochastic methods with the BFGS method,
not only obviously improved the design accuracy, but they also re-
duced the computational cost significantly, provided the switchover
point was chosen properly. Details of switchover point selection
and its impact on the solutions have been addressed by Xing and
Damodaran.42

Figure 5 shows the evolution of the airfoil shape and the compu-
tational grid from the initial NACA 0012 airfoil to the target RAE
2822 airfoil during the design process. The evolution of the grid
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a)

b)

c)

d)

Fig. 4 Comparison of the initial, target, and designed results of a) airfoil shapes and b) airfoil surface pressure coefficient distributions: obtained by
hybrid SPSA with switchover point at 85 design cycles and c) airfoil shapes and d) airfoil surface pressure distributions by hybrid SA.

Fig. 5 Evolution of the computational grid and airfoil shape during the inverse design process.

shows the adjustment of the entire computational grid based on the
perturbations imposed on the airfoil profile. The effect of values of
random number and the tuning parameters pertaining to the SPSA
method on the convergence process of the SPSA method are also in-
vestigated. Figure 6 shows the convergence histories of the inverse
design problem with different random seeds. It can be seen that
the convergence processes are not same, but the convergence speed
and the final objective function values are very similar. Choice of

the coefficients and parameters pertaining to the algorithm is crit-
ical to the performance of the SPSA, as is the case with all other
stochastic methods such as SA, and useful guidelines for choos-
ing the values of these coefficients and parameters are outlined by
Spall,15−17 Fabian,26 Chin,28 and Dippon and Renz.29 As long as the
parameters are selected properly according to the guidelines, they
will not affect the convergence speed and final design results very
much.
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Fig. 6 Effect of random number seeds on the convergence of the SPSA
method for inverse airfoil design problem.

a)

b)

Fig. 7 Convergence history of the constrained problem: a) SPSA and
b) SA methods.

Transonic Airfoil Drag Minimization
Figure 7a shows the computed convergence history of the objec-

tive function obtained by the SPSA method for the transonic airfoil
drag minimization problem. The computed results show that the
airfoil shape obtained from the SPSA method yields a reduction in
the coefficient of drag Cd by 9.78% (from 0.01800 to 0.01624) and
both Cl and the airfoil section area satisfy the constraints defined
by Eq. (6). The computed results agree well with the results ob-
tained by Lee and Damodaran31,33 using the SA method. However,
the computational costs are very different. In this study, it can be
seen that the SPSA method requires about 1489 iterations or 4467
function evaluations to reach convergence, whereas the SA method
requires about 4500 accepted objective function evaluations (or a
total of 9000 function evaluations) resulting in a reduction of 11.1%
(from 0.01800 to 0.0160) in the coefficient of drag, Cd , as shown
in Fig. 7b. Hence, the SPSA method results in an obvious gain in
efficiency in terms of computational cost for this optimization prob-
lem. The computed airfoil shapes and surface pressure coefficient
distributions of the baseline airfoil and the final designed airfoils are
compared in Fig. 8. Figure 8a compares the initial airfoil shape and
the designed shape obtained by using SPSA, whereas Fig. 8b com-
pares the initial shape and the designed airfoil shape obtained by
using the SA method. By comparing the baseline airfoil with the fi-
nal designed airfoil shape obtained using SPSA, as shown in Fig. 8a,
it can be seen that the main modification on the suction surface of
the airfoil appears in the region that lies between the normalized
chordwise position x/c = 0.5 and 0.8, whereas the modification on
the pressure surface appears in the region located from x/c = 0.25
to 0.65. From the airfoil shape before and after optimization by SA
the method, as shown in Fig. 8b, it can be seen that the modification
on the suction surface and pressure surface is distributed evenly over
the entire airfoil profile. However, the final shapes obtained by the
SPSA and SA methods are similar and, when compared with the
baseline airfoil, the thickness of the final designed airfoils appears
to have increased in the region between x/c = 0.5 and 0.8 and ap-
pears to have marginally decreased or remained unchanged before
x/c = 0.5.

Figure 8c compares the initial and designed airfoil surface pres-
sure coefficient distributions obtained by the SPSA method, whereas
Fig. 8d compares the initial and designed airfoil surface pressure
coefficient distributions obtained by the SA method. Figure 8c also
compares the computed surface pressure distributions with the ex-
perimental data from Cook et al.40 (case 9) for the RAE 2822 airfoil
at a Mach number of 0.726, angle of attack of α = 2.44 deg, and
Reynolds number of Re = 6.5 × 106. The good agreement between
the computed and experimental data suggests that the numerical
simulation is reasonably accurate. It can be seen that the final pres-
sure distributions on the suction surface obtained by SPSA and SA
methods are totally different from that of the baseline. Before op-
timization, a strong shock wave can be seen to be located between
x/c = 0.5 and 0.65, whereas the shock wave appears to be weak-
ened considerably after constrained optimization using SPSA and
SA. Figures 9a and 9b show the computed contours of local Mach
number of the baseline airfoil and the designed airfoil using the
SPSA method. From the Mach-number contours, it can be seen that
the shock wave has been weakened considerably, resulting in a lower
drag coefficient.

Axisymmetric Nozzle Shape Design Optimization
The aim of the design optimization is to determine the inlet expan-

sion half-angle α1 and outlet expansion half-angle α2 to determine
the optimal shape of the nozzle that maximizes the thrust of the noz-
zle. Figures 10a and 10b compare the convergence histories obtained
by SPSA and SA methods, respectively. It can be seen that the SPSA
method requires 4 iterations (i.e., 12 function evaluations) to get a
value very close to the converged result, whereas the SA method
requires 15 accepted (or 30 total) function evaluations to get a value
close to the converged result. The computational cost of the SPSA
method is only 50% of the cost of the SA method with the same con-
verged objective function values. Figure 11a shows the computed
local pressure contours of the original nozzle shape, which is the
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a)

b)

c)

d)

Fig. 8 Initial and designed airfoil shapes obtained by a) SPSA and b) SA methods and surface pressure coefficient distributions obtained by c) SPSA
and d) SA method.

a) b)

Fig. 9 Mach-number contours of the a) baseline airfoil and b) final designed airfoil.
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a)

b)

Fig. 10 Comparison of convergence histories of the nozzle shape de-
sign problem using SPSA and SA methods.

baseline flowfield for the optimization studies. Figure 11b shows the
computed flowfield of the optimized nozzle shape. The comparison
of Fig. 11a with Fig. 11b shows that the nozzle shape has changed to
a certain extent from the original shape and the reduction of the pres-
sure from the inlet to exit of the optimized nozzle is more than that
corresponding to the baseline nozzle. Consequently, it has a higher
thrust on the whole nozzle. Figure 12 shows the effect of the SPSA
tuning parameter A [ak = a0/(A + k)α] on the convergence of the
optimization process for the two-dimensional nozzle shape design
problem. It can be seen that the convergence speed and the final de-
sign results are independent of the value of the parameter A as long
as A is selected according to the guidelines specified by Spall,15−17

Fabian,26 Chin,28 and Dippon and Renz.29

Influence of Grid Size on the Values of Objective Functions
For the aforementioned test cases, the sensitivity of the converged

values of the objective functions on the size of the computational
mesh is demonstrated by carrying out the optimization using the
same SPSA tuning parameters but using meshes of different grid
sizes. For the airfoil inverse design and drag minimization prob-
lem, the grid size dependence studies have been done on 64 × 24,
128 × 48, and 256 × 96 meshes and satisfy the same convergence
criteria for objective function convergence. Figures 13a and 13b
show the influence of grid size on the objective function values at-
tained by the method of tracking a parameter, which is defined as
the decrease in the value of the objective function value; that is,
(F0 − F)/F0 for the inverse airfoil design problem and drag mini-
mization problem, where F0 and F are, respectively, the initial value
of the objective function and the final optimal value of the objec-
tive function obtained on the different meshes. It can be seen that
the finer the grid, the lesser the reduction in the value of the objec-
tive function. The reduction in the value of the objective function
for each design problem converges to an asymptotic limit as the grid
size is increased. For the nozzle design problem, a grid size depen-
dence study has been done on meshes with 31 × 81, 41 × 101, and
41 × 131 grid points. The convergence criteria used is the same for
all the meshes. The variation of the value of ( f0 − f )/ f0 based on
the objective function value at the end of the design optimization
on different grids is shown in Fig. 13c. It can be seen that, as the
grid is refined, the parameter shows a tendency to converge to some
limiting value. From Fig. 13, it can be seen that the change in the
value of the objective function corresponding to each design prob-
lem demonstrates a general tendency to converge to a limiting value
as the grid is refined. For the inverse design problem and transonic

a)

b)

Fig. 11 Flowfields and shapes of the a) baseline nozzle and b) final
designed nozzle.

Fig. 12 Effect of SPSA tuning parameter A on the convergence of the
optimization method for the nozzle shape design optimization problem.



XING AND DAMODARAN 293

a)

b)

c)

Fig. 13 Influence of grid size on the objective function values of a) air-
foil inverse shape design problem, b) transonic airfoil drag minimization
problem, and c) axisymmetric nozzle design problem.

drag minimization problem, as the grid is refined from 128 × 48 to
256 × 96, the change in the objective function value is smaller than
that which occurred when the grid was coarsened from 128 × 48 to
64 × 24. Hence, a grid size of 128 × 48 used for airfoil problems
in this study should be good enough to produce a fairly good eco-
nomical estimate. Similarly, a 41 × 101 grid-point mesh used for
the nozzle design problem can also produce a fairly good estimate
for the nozzle shape design problem. The effect of using optimal so-
lutions obtained on intermediate grids to analyze optimal solutions
on finer grids on the performance of the optimization process will
be addressed in a separate study in due course.

Conclusions
The SPSA method has been successfully implemented for aero-

dynamic shape design optimization problems, including inverse and
constrained airfoil design and axisymmetric nozzle design, in this
study. Results show that SPSA is able to find the optima of the de-
sign optimization problems considered in this paper and that the
optimization algorithm can be easily implemented and integrated
with the CFD code. Compared with SA algorithm, SPSA is able to
decrease the computational costs significantly. For the problem of
inverse airfoil design, the satisfaction of the termination criteria by
the SPSA method appears to show that SPSA tends to be slightly
less accurate than the SA method. SPSA results in an objective func-
tion value reaching a converged value by oscillating slightly about
some mean value. This can be improved by combining the SPSA
method with other optimization methods, such as a local search
method, when the objective function reaches a point where it starts
to oscillate about the converged value. Thus, the global optimum
zone can be found by the SPSA method quickly while the accuracy

can be improved by the local optimal methods by taking advan-
tage of the rapid global search capability of the SPSA method and
high accuracy of other methods simultaneously. The SPSA method
shows higher convergence speed compared with the SA method for
the drag minimization problem and the nozzle shape design prob-
lem, with almost the same optimization benefits as that of the SA
method. From the results, it can be concluded that the SPSA method
is a feasible optimization method that can be used to handle com-
plex design problems. It is also relatively easy to implement. SPSA
requires only two measurements of the objective function to ap-
proximate the gradient regardless of the dimensions of the design
space corresponding to the optimization problem and, consequently,
the cost of optimization decreases compared with global optimizers
such as SA.
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