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Introduction

T RANSONIC airfoil design problems are typical design prob-
lems based on computational-fluid-dynamics (CFD) simula-

tion, which is used to investigate the flowfield characteristics to
measure the objective function values. It is well known that to sim-
ulate the whole flowfield characteristics using CFD is very time
consuming. The expensive evaluations make it is crucial for devel-
oping efficient optimization methods to deal with the CFD-based
problems. Stochastic methods such as simultaneous perturbation
stochastic approximation (SPSA) reported in Xing and Damodaran,1

simulated annealing (SA) reported in Wang and Damodaran,2 and
genetic algorithm (GA) reported in Quagliarella and Cioppa,3 and
so on have been successfully applied to transonic airfoil design
problems. These methods have the advantage of yielding a global
minimum and overcoming the limitations of deterministic gradient-
based search methods, such as in Xing and Damodaran1 and Eyi
et al.,4 which have a tendency of getting trapped in local minima. A
major drawback of SPSA, SA, and GA methods in these problems
is that these methods need thousands of function evaluations to get
the optima.

Parallel methods are appealing alternative approaches for reduc-
ing computational time. Wang and Damodaran2 have shown that a
parallel version of simulated annealing algorithm can significantly
reduce the number of design iterations running on each processor
and the wall-clock time. Applications of parallel GA to improve
the computational efficiency of aerodynamic design problems have
been reported in Vicini and Quagliarella5 and so on. In this work, a
parallel SPSA method is explored for the inverse design of a tran-
sonic airfoil shape to assess and compare its performance with the
parallel SA reported in Wang and Damodaran.2

Inverse Airfoil Shape Design Problem
The goal of inverse design problems is to determine the airfoil

shape that will support a target airfoil surface-pressure distribution.
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This shape is determined by minimizing the discrepancy between
the target and the evolving airfoil surface-pressure distribution cor-
responding to the designed airfoil. A baseline NACA 0012 airfoil is
chosen, and a steady flowfield around it at a Mach number of 0.73,
Reynolds number 6.5 × 106, and angle of attack of 2.78 deg is com-
puted for starting the design cycle iterations. The airfoil shape is
updated by adding smooth perturbations �yk(x) defined as a linear
combination of a family of smooth curves over the range 0 < x < 1
as follows:

�yk(x) =
K∑

k = 1

δk fk(x) (1)

where x is the normalized chordwise position of the coordinates
defining the airfoil contour, K is the number of basis functions and
has a value of 14 in this study, and δk is design variable, where
seven of them are for upper surface and seven for lower surface.
The impact of the choice of basis functions on inverse design using
simulated annealing has been studied and reported in Lee.6 For the
same example studied in Wang and Damodaran,2 Wagner functions
outlined in Ramamoorthy and Padmavathi7 are selected as the basis
function:

f1(x) = (θ + sin θ)/π − sin2(θ/2)

fk(x) = sin kπ/kπ + [sin(k − 1)θ ]/π for k > 1 (2)

where θ = 2 sin−1(
√

x). Figure 1 shows the 14 shape functions
fk(x).

For inverse design problems a typical objective function F(X) to
be minimized is defined as follows:

F(X) =
[∑M

m = 1

(
Cptm − Cpbm

)2
�Sm

∑M
m = 1 �Sm

] 1
2

(3)

where Cptm is the pressure distribution of the target airfoil, which
for this example is a RAE 2822 airfoil at the same Mach number and
angle of attack to that of the baseline airfoil; Cpbm is the pressure

Fig. 1 Plot of Wagner functions.
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distribution of the designed airfoil that evolves after each design
iteration; �Sm is the length of the airfoil surface element; and the
summation is done for the M coordinate points defining the airfoil
contour.

The flow analysis module used for evaluating the objective func-
tion is based on the finite volume formulation of the unsteady
Navier–Stokes equations for two-dimensional viscous flow. Sev-
eral convergence acceleration strategies such as local time-stepping,
implicit residual smoothing, and multigrid strategies are used to ac-
celerate the computation of steady-state solutions. Characteristic
boundary conditions are imposed at the far-field boundaries while
no-slip condition is imposed on the airfoil surface, which is also
assumed to be adiabatic. A simple algebraic turbulence model is
used to address the turbulence closure. Specific details of the flow
algorithm used as the CFD analysis tool for computing the objective
function can be found in Jameson and coworkers8,9

Parallel Implementation of SPSA
This study focuses on parallel simultaneous perturbation stochas-

tic approximation, details of which can be found in Spall.10 Parallel
SPSA is implemented by carrying out the search process on multiple
processors (say, p). Given the initial design variables, each proces-
sor performs the same SPSA search process with its own random
perturbations to the design variables. Therefore, each processor re-
ceives the objective function value of itself and the corresponding
design variables after a design cycle. Then, p values of the objective
function are gathered at the end of each design cycle, and the best
solution is chosen from the results of the p processors. The design
variables corresponding to the best solution at each design cycle
are used as the design variables to begin the next design cycle on
different processors. Iterations are terminated when the termination
criteria are satisfied. Computations were carried on SGI Origin 3000
system using message-passing-interface library.

Results and Discussions
The sensitivity of the converged values of the objective functions

on the size of the computational mesh for the test case is demon-
strated by carrying out the optimization using different grid sizes on
a single processor. Figure 2 shows the influence of grid size on the
optimization achievement, which is defined by the decrease of the
objective function value, i.e., (F0 − F)/F0, where F is the objec-
tive function defined by Eq. (3) and F0 is the value of F at the start
of iteration. From Fig. 2, it can be seen that the objective function
value has a convergence tendency as the grid size increases. It can
produce grid-independent solutions with a grid size of 128 × 48.

The convergence criteria for the parallel SPSA are set to be same
as that of parallel SA reported by Wang and Damodaran2 in order
to compare the performance of the two parallel methods. The op-
timization process is terminated as the objective function reduces
to 0.006, and the final design variables are taken as the optimized
results for the inverse design. The value of the objective function
based on the baseline airfoil NACA 0012 is 0.11420. Optimization
results of parallel SA can be found in Wang and Damodaran.2

Figure 3 shows the variation of the objective function with the
number of design cycles on different combinations of processors
(only results from processor number zero are given) obtained by
parallel SPSA method. It can be found that the objective function

Fig. 2 Influence of grid size on the objective function values.

Fig. 3 Convergence histories using parallel SPSA.

Fig. 4 Comparison of the speedup of parallel SPSA and parallel SA.

reduced to a value around 0.013 in about 800 design cycles on a
single processor, after which the convergence speed becomes very
slow. It is difficult to reduce the objective function value to 0.006
on a single processor, while parallel SPSA can reduce the objec-
tive function to a value less than 0.006 in a fewer design cycles,
as shown in Fig. 3. This suggests that parallel SPSA can increase
the possibility of finding the global optimum. This can be explained
by the stochastic nature of SPSA. Choice of tuning parameters is
critical for the performance of a stochastic method. The random
number generator or random seeds also affects the performance of
a stochastic method. Different random number generator or random
seeds as well as different tuning parameters will lead to different
convergence speed and different final design results. For this in-
verse design problem, it is difficult to reduce the objective function
value to less than 0.01 using a single processor with the selected
random number seeds and tuning parameters, suggesting other ran-
dom number seeds or tuning parameters should be tried to search
the global optimum, which means time-consuming reiterations of
the design process, while, with parallel SPSA, several processors
or tens of processors search the optimum. Every processor has its
own random number seeds and tuning parameters. Consequently,
the ability to get the global optimum is increased, and therefore the
objective function value can be reduced to a value less than 0.006
in a reasonable computation cost on each processor.

The number of design cycles reduced to 506 when two proces-
sors are used, 285 when four processors are used, 158 when eight
processors are used, 128 when 16 processors are used, and 74 when
32 processors are used. The corresponding speedups based on these
number of the design cycles/function evaluations are 1.6, 2.8, 5.0,
6.3, and 10.8, respectively, whereas, using parallel SA, the speedups
based on the functions evaluation are 1.5, 3.0, 4.5, 5.6, and 6.0 cor-
responding to 2, 4, 8, 16, and 24 processors, respectively, reported
in Wang and Damodaran.2 Figure 4 compares the speedup vs num-
ber of processors of parallel SPSA and parallel SA. From Fig. 4 it
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can be seen that the speedups are almost same for the two parallel
methods when the number of processors is less than eight, whereas
speedups of parallel SPSA are higher than those of parallel SA when
the number of processors is more than eight.

A gradient-based Broydon–Fletcher–Goldfarb–Shanno method
was applied to the same problem and it was observed that about 350
function evaluations were required to reduce the objective function
to 0.006. Therefore, by using eight or more processors, the parallel
SPSA method can reduce the function evaluations on each processor

a) Airfoil shapes

b) Airfoil surface-pressure distributions

Fig. 5 Comparisons of airfoil shapes and surface-pressure
distributions.

to the same order as that obtained by deterministic methods for this
inverse design problem.

Figure 5 compares the initial, target, and designed airfoil shapes
obtained using parallel SPSA implemented on 16 processors as well
as the corresponding airfoil surface-pressure distributions. It can be
seen that the airfoil shapes and surface pressure distributions of the
designed airfoil have good agreement with those of the target airfoil
defined by a RAE 2822 airfoil. The calculation pressure distributions
also have a good agreement with experimental data,11 suggesting
that the numerical simulation has a reasonable accuracy.

Conclusions
Parallel simultaneous perturbation stochastic approximation

(SPSA) has been implemented on multiple processors to deal with
the inverse airfoil design problem, in which the objective functions
are evaluated with a computational-fluid-dynamics solver. Results
clearly demonstrated that parallel SPSA is a feasible approach,
which not only reduces the number of objective function evalua-
tions on each processor by reducing the calculation time (wall-clock
time), but also increases the chance of finding the global optimum.
Compared with a parallel simulated-annealing method, the parallel
SPSA method is more efficient computationally when using eight or
more processors, and it is easy to parallelize the serial SPSA code.
Future study will focus on the implementation of parallel SPSA on
other single/multidisciplinary problems for testing its robustness for
complex design problems.
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