TRANSPORTATION RESEARCH

RECORD

No. 1620

Marine Transportation

Ports/Waterways
Marine Transportation

A peer-reviewed publication of the Transportation Research Board

TRANSPORTATION RESEARCH BOARD
NATIONAL RESEARCH COUNCIL

NATIONAL ACADEMY PRESS
WASHINGTON, D.C. 1998



TRANSPORTATION RESEARCH RECORD 1620

11

Optimization Through Simulation of
Waterway Transportation Investments

CHING-JUNG TING AND PAUL SCHONFELD

The cost of tow delays is a serious problem in a waterway network. One
way to reduce the delay cost is to increase capacity at waterway locks.
Planners must determine how much additional capacity to provide at par-
ticular lock sites and when to implement the capacity expansion projects.
Answers for such project sizing and timing problems are difficult to
obtain analytically. The use of a new approach for optimizing through
simulation, called simuitaneous perturbation stochastic approximation
(SPSA), is investigated. This approach, which seeks optimal values for
all decision variables after each pair of simulation runs, is quite prom-
ising for optimizing large problems relatively fast. A small numerical
example tests how this simulation and optimization algorithm may be
used to optimize lock capacities and implementation times.

The inland waterway network includes ports and locks whose
effects on traffic are often interdependent. Traffic departing from a
port or lock affects the arrival distributions, and hence delays, at
downstream ports and locks. Tow delays at locks are a major cost
of inland waterway transportation, especially at congested locks (/).
Ting and Schonfeld (2) showed how different traffic control poli-
cies at locks can reduce delays. Still, capacity expansion may often
be the most cost-effective way to reduce delays, especially if traf-
fic volumes approach the capacity of locks. Planners must decide
not only how much capacity to add at given lock sites but also when
to do it. The problem of optimizing both the size and time of capac-
ity improvement projects is quite difficult to solve with analytical
models, especially when the projects are interdependent. Thus, an
efficient method of optimizing directly from simulation models is
very valuable.

An inland waterway network is a complex stochastic system.
Some decisions about it cannot be adequately modeled using ana-
lytical methods (i.e., functional derivations) but can be simulated.
The objective function used to evaluate and optimize the system
(which in this study is the sum of supplier and user costs) may be
impossible to express as an explicit function of the controllable
parameters. It may involve some response of the system that can be
found only by running a simulation model or, in some cases, by
observing the actual system.

The purpose of this paper is to introduce and describe a simulta-
neous perturbation stochastic approximation (SPSA)-based method
for optimizing the selection, sizing, and sequencing of lock improve-
ment projects. The next section (whose mathematics are not essen-
tial for reading the rest of this paper) briefly outlines the form and
characteristics of the SPSA algorithm. A more detailed description
of the algorithm may be found in Spall (3). The third section pre-
sents the assumptions in the simulation models. Three hypothesized
examples are presented in the fourth section, before a summary of
this paper.
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SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION (SPSA)

The Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm was introduced and developed by Spall (3). SPSA is an
iterative technique for finding local optimizers of linear or non-
linear objective functions from many types of systems. In each iter-
ation, SPSA computes the positively and negatively perturbed
objective function values. SPSA is like other Kiefer and Wolfowitz
(4) stochastic approximation algorithms, such as finite difference
stochastic approximation (FDSA), in that SPSA requires only
measurements (possibly noisy) of an objective function to form
gradient estimates and converge to a local optimum. However,
SPSA differs significantly from FDSA in requiring only two objec-
tive function evaluations per gradient estimate, whereas FDSA
requires 2p evaluations, where p is the number of system parameters
being estimated. This gives SPSA a significant advantage in high-
dimensional problems, especially when evaluating the objective
function is expensive or time-consuming (3).

The algorithm uses objective function measurements to itera-
tively update system control parameters until parameter values are
reached that locally optimize the objective function. Specifically,
let x € RP be a vector whose components represent system
parameters to be controlled, for example, the capacity expansion
ratios and implementation timing in waterway investments. Sup-
pose L(x) represents the objective function to be optimized. The
goal is to find a root x* of the gradient of this objective function.
That is, x should be such that

dL(x) _

glx) = 3x

0 Y

The SPSA algorithm attempts to find a minimizer x* by starting at
a fixed £,. Then a sequence of searches is done such that £, ,, the
value of x in the (k + 1)th iteration, depends on the value of £,
according to the following scheme:

Revr = X — a8 (By) (2)
Here {a,} is a gain sequence of positive scalars satisfying certain

conditions (in particular, a, — 0 and kZ_'.Iak =oo0), and g, is an estimate

of the gradient g whose 1-th component is defined as

A _ Y=Yk

8u = 2c:A, 3)

Here, y; represents a measurement of L(£ +c, A,), and y; is a sim-
ilar measurement of L(X — c,A,). The sequence {c,} is a sequence
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of positive scalars such that ¢, — 0, and A, € Re is a vector of p
mutually independent random variables satisfying conditions in
Equation 3. For example, the components of A, could be indepen-
dent Bernoulli (x1) distributed random variables.

Observe that the numerator in Equation 3 is the same for each
component of g,. Thus, only two measurements of the objective
function are required to obtain the SPSA gradient estimate at each
iteration. To illustrate, if £, represents the current estimate of the
best control policy x*, then £, + c,A, and £, — c;A are “perturbed”
policies. Then y; and y3 could be total system cost values obtained
from performing two simulations of the waterway network, one
using the control policy £, + c,A, and one using £ — ¢,A. These val-
ues would then used in Equations 2 and 3 to obtain a new estimate
£« of the best control policy x*. This process would be repeated
until the objective function (total system cost) cannot be signifi-
cantly improved any further. The general process is stated below and
shown in Figure 1:

Step 0: Make initial “guess” at x (= X ).

Step 1: From current value of £,, change all elements of £, simul-
taneously by a small (random) amount ¢,A, using SPSA guidelines.
Collect measurement L(£ + ¢,A).

start

A

initial parameter
vector
>l
I - }
compute positively compute negatively

perturbed parameter perturbed parameter
vector vector

A
obtain objective

obtain objective

function function
measurement measurement
calculate gradient
estimate

y

compute updated
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converges?

FIGURE 1 The SPSA algorithm.
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Step 2: From same £, change all elements in the opposite way
according to SPSA. Collect measurement L(£ — ¢,Ay).

Step 3: With information from Steps 1 and 2, estimate the gradi-
ent according to Equation 3 and update to new x value (X,,) by
recursion Equation 2.

Step 4: Repeat Steps 1-3 until the allowable number of iterations
has been reached or x is effectively optimized (i.e., there is negligible
change in the iterates for several successive iterations).

Note that the SPSA algorithm is very general and can be applied in
many different situations to optimize many different kinds of objec-
tive functions. For instance, x could represent the optimal capacities
at different locks in a waterway network for steady flow capacity opti-
mization, while L(x) could be the total system cost. The constraints
can be imposed by adding penalty functions in the objective. The flex-
ibility of the algorithm stems from the fact that only objective func-
tion measurements are required, instead of full objective function or
gradient information.

The objective function measurements required by the SPSA
algorithm can come from a real system as well as from a computer
simulation of a real world probabilistic system, depending on the
purpose of the optimization. Using SPSA to directly optimize a
real system may work well for short-term traffic control but is
impractical if the variables being optimized are characteristics of
expensive constructed facilities.

BASIC ASSUMPTIONS IN SIMULATION

The simulation model developed is based on the following
assumptions:

1. The service time may be estimated as a function of the num-
ber of cuts (which are the sets of barges into which tows are sub-
divided for passage through locks) and the number of barges in a
tow, that is,

s; = 0.+ Bb; + y(cut) (4)

where

b; = number of barges of tow i,
cut = 1, if tow i needs more than 1 cut; = 0, otherwise,
s; = service time of tow i, and
o, B, y= statistically estimated parameters of the service time
function

2. Because the processing time for tows often depends on the
direction of the preceding tow(s) in that chamber, a directional con-
stant service time is added when a tow’s direction is that of the pre-
vious tow. The constant service time does not consider the tow size
and lock congestion level. It varies by lock and chamber and can be
positive or negative. If tows following in the same direction have a
short entry time, the constant service time is negative. Otherwise,
the constant is positive.

3. Each tow passes through a lock separately from other tows
according to a first-come, first-served discipline.

4. Tows generated for each origin/destination are exponentially
distributed.

5. Tow’s speed is normally distributed with known mean and
standard deviation.
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6. Tows may pass other tows between locks.

7. The travel speeds between locks and link capacities are not
limited or otherwise affected by lock capacity changes.

8. The lock capacity increases instantaneously after a lock im-
provement project is implemented. A lock capacity increase means
the service rate increases and, thus, the service time decreases. For
instance, if the capacity increases by 50 percent (i.e., to 150 percent
of its previous level), the capacity expansion ratio is 1.5 and the
original service time per tow is divided by 1.5.

NUMERICAL EXAMPLES

The numerical examples described in this section demonstrate
an application of the SPSA optimization approach. The gain se-
quences {a;} and {¢,} from Equations 2 and 3 are defined as
ar=alk+1+10y3and ¢, = c(k + 1) with 8 = 0.602, and 0 =0.101,
as recommended by Spall (3). Figure 2 shows the tested inland
waterway network that includes five ports and five locks having ini-
tially the same capacity. Each of the five locks has one chamber with
the same dimensions, 33.528 x 182.88 m (110 x 600 feet). The ser-
vice time models are based on 1987 data from the Mississippi River
Lock 25 from the Lock Performance Monitoring System (LPMS)
which is documented by Fleming and Goodwin (35).

The regression models for lock service times are estimated
with the SAS (6) package. The models used are from Ting and
Schonfeld (2):

4 5 120
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dirl: 5 =18.342+1.180 x b, +57.343 x cut R? =0.860 (5)
(0.64) (0.19) (2.73)

dir2r s =17.126+2.633 x b; +51.762 x cut R®> =0.901 (6)
(0.64) (0.16) (2.14)

For Equations 5 and 6, standard errors are shown in parentheses
and R? is the coefficient of determination that indicates how well
the estimated model accounts for the variation in the dependent
variable.

Locks 2, 3, and 4 have higher arrival volumes than the other two
locks. Given their equal capacities, the delays at these three locks
are higher. The investment projects should provide optimal capaci-
ties at these three locks on the basis of different flow assumptions.
The objective is to minimize the total system cost per hour, which
includes supplier cost and user cost (delay and travel costs). The sup-
plier cost includes a fixed cost and a variable cost that is proportional
to the capacity

Cl=C;+C x|, @)

where

Ci = supplier cost of lock i ($/yr),

C, = fixed cost ($/yr),

C, = variable cost ($/yr), and

W, = capacity expansion ratio of lock i.

(®)
4
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FIGURE 2 Tested waterway network.
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TABLE 1 Origin/Destination Flows for Case 1

(tows/day)
| A B C D E
A 0.0 0.5 1.0 2.5 2.0
B 0.5 0.0 0.5 1.0 1.0
C 1.0 0.5 0.0 35 1.0
D 25 1.0 35 0.0 2.0
E 2.0 1.0 1.0 2.0 0.0

The user cost includes moving cost and delay cost, which are each
assumed to be $3,000 per tow per hr.

Three cases are tested for the same network with different ori-
gin/destination volumes. Each case simulates 3 years of traffic in the
network and computes the total system cost per hour. A common
random number is used for all the simulation iterations, which
makes the objective function deterministic. Each iteration includes
two simulation runs (one is for the positively perturbed parameter,
and the other one for the negatively perturbed parameter). Case |
assumes a steady-state flow between each pair of origin/destination
(O/D) ports and optimizes the capacities individually for each lock.
Cases 2 and 3 assume that the traffic flow increases continuously.
Case 2 optimizes the implementation times at each lock of preset
capacity expansions. Case 3 jointly optimizes the capacities and
implementation times.

Case 1: Optimization of Capacities

This case assumes that the traffic flow is steady all year long for each
O/D pair. The objective is to optimize the capacities for Locks 2, 3,
and 4 at the beginning of simulation to minimize the total system
cost. The O/D flow is shown in Table 1.

Starting at a feasible initial solution (i.e., starting point) x = (1.5,
1.5, 1.5), Figure 3 shows the total system cost changes through suc-
cessive iterations for same random seed. The total cost fluctuates in
the first few iterations. It stays very stable after around 40 iterations.
Figure 4 shows the optimal capacity ratios for Locks 2. 3. and 4. The
capacity ratios of Locks 3 and 4 are similar because they are rela-
tively closely spaced (20 miles between them). The optimal capac-
ity expansion ratios after 200 iterations are 1.729 for Lock 2, 1.844
for Lock 3, and 1.846 for Lock 4. Table 2 shows the results for five
different random seeds with the same starting point. The likely rea-
son for the small differences is that the objective function curve is
very flat near the optimum.

85000
84000

83000 \
82000

79000
78000
77000
76000
75000 & o
0 20 40 60 80 100 120 140 160 180 200

total cost ($/hr)

\\
oty
\
\
l
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FIGURE 3 Objective function value for steady flow
capacity optimization.
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FIGURE 4 Optimal capacity ratios at locks 2, 3, and 4 for
steady flow capacity optimization.

Case 2: Optimization of Implementation Times
for a Given Capacity Expansion Ratio

In this case, the O/D flow starts as half of Case 1, as shown in
Table 3, and grows over time according to Equation 8:

A =RoG, = Ao+ 1) ®)

where

Ao = O/D flow at time O,

A= O/D flow at time ¢,

G, = growth factor at time ¢,
r = growth rate, and
t=time.

To reduce the simulation time here, it is assumed that the flow will
grow quickly, reaching the same level as in Case 1 by end of the third
year. Based on Equation 8, A; = 249 = A (1 + )}, r=2'2 -1 =0.2599
Thus, the annual growth rate is almost 26 percent.

Figure 5 shows the objective function value of optimizing the
implementation time for preset capacity ratio 1.5 (i.e., 50 percent
capacity expansion). The optimal implementation times for locks
2, 3, and 4 are shown in Figure 6. Locks 3 and 4 should be expanded
at slightly different times even though they are near each other and
their traffic characteristics are the same. The probable reason is
that the arrival distributions at these two locks are somewhat dif-
ferent. The final optimized values for implementation times with
three starting points are shown in Table 4. After 200 iterations, the
solutions converge to the optimum even though the starting points
are different.

Table 5 shows the results with same starting points but different
gain sequence values {¢;} (c = 0.5, 1.0, 1.5). After 200 iterations,
the implementation times are quite different. This indicates that
200 iterations may not achieve the convergence or that SPSA will

TABLE 2 Results of Optimal Capacities for Different
Random Numbers

Random .

Number lock 2 lock 3 lock 4
RN1 1.729 1.844 1.846
RN2 1.729 1.842 1.837
RN3 1.728 1.849 1.841
RN4 1.715 1.859 1.840
RNS5 1.711 1.835 1.825
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TABLE 3 Origin/Destination Flows for Cases 2 and

3 (tows/day)
| A B C D E
Al 000 0.25 0.50 1.25 1.00
B 0.25 0.00 0.25 0.50 0.50
C 0.50 0.25 0.00 1.75 0.50
D 1.25 0.50 1.75 0.00 1.00
E 1.00 0.50 0.50 1.00 0.00

56600
56580 1 .

56560 1 JR
56540
56520 1
56500
56480 -
56460
56440

total cost ($/hr)

0 20 4 60 80 100 120 140 160 180 200
fteration
FIGURE 5 Objective function value for optimizing

implementation times of 50% capacity expansions at locks
2,3,and 4.
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implementation time (year)
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lock2 ------ lock 3 = - - lock 4
FIGURE 6 Optimal implementation times for pre-set capacities
at locks 2, 3, and 4.

TABLE 4 Results of Optimai Implementation Times with
Different Starting Points

starting

point lock 2 lock 3 lock 4
(0.5.0.5.0.5) 0.838 0.297 0.353
(1.2.1.2,1.2) 0.838 0.298 0353
(1.5.1.5.1.5) 0.836 0.298 0.353

TABLE 5 Results with the Same Random Number But
Different Gain Sequences {c,}

c lock 2 lock 3 lock 4
05 0.858 0427 0.482
1.0 0.838 0.298 0.353
1.5 0.703 0.052 0.095

15
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FIGURE 7 Objective function value for jointly optimizing
capacities and implementation times.

converge to a different local optimum if the gain sequence values are
chosen differently. However, these random samples show substantial
improvement from the initial values.

Case 3: Joint Optimization of Capacities
and Implementation Times

With the same traffic flows as in Case 2. the capacities and imple-
mentation times are jointly optimized. Figure 7 shows the objective
function value of jointly optimizing implementation times and
capacities. The total cost is comparatively stable after 160 iterations.
The optimal capacity ratios and implementation times for each lock
are presented in Figures 8 and 9, respectively. Figure 8 shows that
capacity ratios for Locks 3 (1.63) and 4 (1.626) are close, as
expected. The implementation times for Locks 3 (0.866) and 4
(0.897) are closer than those (0.179 for Lock 3 and 0.348 for Lock
4) shown in Figure 6, in which the capacity ratio is the same (1.5)
for both locks. The difference between Cases 2 and 3 shows the
interdependence of capacity ratios and implementation times. For a
given planning period. a larger capacity expansion implies a later
implementation.

SUMMARY

The technique of simultaneous perturbation stochastic approxima-
tion (SPSA) has been applied to the optimization of improvement
projects for an inland waterway network. The technique offers

n

capacity ratio
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<
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iteration
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FIGURE 8 Optimal capacity ratios at locks 2, 3, and 4 when
jointly optimizing capacities and implementation times.
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FIGURE 9 Optimal implementation times at locks 2, 3, and 4
when jointly optimizing capacities and implementation times.

significant computational savings over traditional finite-difference
methods. The authors considered three different cases and con-
ducted experiments to investigate the viability of the technique.
These simulation results, though not comprehensive, are quite
promising and should help encourage further experimental work on
the application of SPSA to the optimization of dynamic systems.
One direction for further study would be to use this optimization
method to optimize the maintenance scheduling problem. Another
direction of study would be to consider other control strategies and
other objectives such as minimizing fuel consumption.
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