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Abstract—A long-standing problem in traffic engineering is to optimize the flow of vehicles through a given
road network. Improving the timing of the traffic signals at intersections in the network is generally the most
powerful and cost-effective means of achieving this goal. However, because of the many complex aspects of a
traffic system—human behavioral considerations, vehicle flow interactions within the network, weather
effects, traffic accidents, long-term (e.g. seasonal) variation, etc.—it has been notoriously difficult to deter-
mine the optimal signal timing. This is especially the case on a system-wide (multiple intersection) basis.
Much of this difficulty has stemmed from the need to build extremely complex models of the traffic dynamics
as a component of the control strategy. This paper presents a fundamentally different approach for optimal
signal timing that eliminates the need for such complex models. The approach is based on a neural network
(or other function approximator) serving as the basis for the control law, with the weight estimation occur-
ring in closed-loop mode via the simultaneous perturbation stochastic approximation (SPSA) algorithm. The
neural network function uses current traffic information to solve the current (instantaneous) traffic problem
on a system-wide basis through an optimal signal timing strategy. The approach is illustrated by a realistic
simulation of a nine-intersection network within the central business district of Manhattan, New York. ©
1997 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

A major component of advanced traffic management for complex road systems is the timing
strategy for the signalized intersections. This is an extremely challenging control problem at a
system (network)-wide level. For present purposes:

System-wide control is the means for real-time (demand-responsive) adjustment of the timings of all signals in

a traffic network to achieve a reduction in overall congestion consistent with the chosen system-wide measure

Y of effectiveness (MOE). This real-time control is responsive to instantancous changes in traffic conditions,

- including changes due to accidents or other traffic incidents. Further, the timings should change automatically to

adapt to long-term changes in the system (e.g. street reconfiguration or seasonal variations). To achieve true sys-

tem-wide optimality, the timings at different signals will not generally have a predetermined relationship to one
another.*

L.

To the best knowledge of the authors, no existing or planned approach achieves such system-wide
control. This paper presents an approach—S-TRAC (System-wide Traffic-Adaptive Control)—for
treating this challenging problem.

All attempts known to us for real-time demand responsive control either are optimized only on
a per-intersection basis or make simplifying assumptions to treat the multiple-intersection pro-
blem. An example of the former is OPAC (Gartner er al., 1991) while examples of the latter
include SCOOT (Hunt et al. 1981; Martin and Hockaday, 1995) and REALBAND (Dell’Olmo
and Mirchandani, 1995). SCOOT’s system-wide (i.e. multiple, interconnecting artery) approach is
limited to broad strategy choices from one traffic corridor to another rather than a co-ordinated
set of signal parameter selections for the entire network. Hence, although SCOOT may be

*One notable exception to this would be for those signals along one or more arteries within the system to synchronize the
timings, where it is desirable.
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implemented on a full traffic system, it is not a true system-wide controller in the sense considered
here. “[SCOOT’s] regional boundaries are satisfactory for zoned control, but fail to offer wide-
spread strategic control” (Martin and Hockaday, 1995). The other multiple intersection technique
mentioned above, REALBAND, provides a way to improve platoon progression, which the other
techniques apparently lack. However, REALBAND is limited in its application to types of traffic
patterns for which vehicle platoons are easily identifiable and, thus, may not perform well in
heavily congested conditions with no readily identifiable platoons. Note that none of these tech-
niques incorporate a method to automatically self-tune over a period of weeks or months. In
addition, most approaches to traffic control have been developed independent of modern techni-
ques in nonlinear stochastic control (notable exceptions to this for freeway traffic control are
Messmer and Papageorgiou (1994) and Papageorigiou et al. (1995)).

The essential ingredient in these and other modern attempts to provide optimal signal timings
for single or multiple intersections is a model for the traffic behavior. However, the problem of
fully modeling traffic at a system-wide level is daunting: “To develop a ‘general theory’ for the
stochastic behavior of a traffic system is out of the question. Even if it were possible such a theory
would be so complex as to be of no practical value.” (Newell, 1989, p. 258). In the OPAC, '
SCOOT, and REALBAND approaches discussed above, the models used are in the form of tra-
ditional equation-based relationships, but it is also possible to use other model representations
such as a neural network (Nataksuji and Kaku, 1991), fuzzy associative memory matrix (Kelsey
and Bisset, 1993), or rules base for an expert system (Ritchie, 1990). The signal timings are then
based on relationships (algebraic or otherwise) derived from the assumed model of the traffic
dynamics. For real-time (demand-responsive) approaches, this relationship (or ‘control function’)
takes as input information about current traffic conditions and produces as output the timings for
the signals. However, to the extent that the traffic dynamics model is flawed or oversimplified, the
signal timings will be suboptimal.

The unique aspect of the S-TRAC control strategy here is that it does not require a system-wide
traffic-dynamics model (this model avoidance is possible through use of a powerful method in
stochastic optimization, as discussed in Sections 2-4 below). S-TRAC is based on a neural net-
work or other function approximator for use in the control function; no model (e.g. set of differ-
ential equations or a second neural network) is needed for the traffic dynamics. Thus, in S-TRAC,
there are no requirements to build equations describing critical traffic elements such as complex
flow interactions among the arteries in the presence of traffic congestion, weather-related changes
in driving patterns, flow changes as a result of variable message signs or radio announcements, etc.

The extreme difficulty in mathematically describing such critical elements of the traffic system will
inherently limit any control strategy that requires a model of the traffic dynamics, which is the
implication of the Newell (1989) quote above. Related to this is the non-robustness of system
model-based controls to operational traffic situations that differ significantly from situations
represented in the data used to build the system model (this non-robustness can sometimes lead to
unstable system behavior). Further, even if a reliable system model could be built, a change to the <
scenario or measure-of-effectiveness (MOE) would typically entail many complex calculations to
modify the model and requisite optimization process.

In addition to the above considerations, system-wide control (as defined in the first paragraph)
requires that the controller automatically adapt to the inevitable long-term (say, month-to-month)
changes in the system. This is a formidable requirement for the current model-based controllers as
these long-term changes encompass difficult-to-model aspects such as seasonal variations in flow
patterns on all links in the system, long-term construction blockages or lane reconfigurations,
changes in the number of residences and/or businesses in the system, etc. In fact, in the context of
the Los Angeles traffic system, Rowe (1991) notes that the difficulty in adapting to long-term sys-
tem changes is a major limitation of current traffic control strategies. By avoiding the need for a
system model, however, S-TRAC is able to produce a controller that generates optimal instanta-
neous (minute-to-minute) signal timings while automatically adapting to long-term (month-to-
month) system changes.

Central to S-TRAC is the use of the simultaneous perturbation stochastic approximation
(SPSA) algorithm (Spall, 1992). SPSA provides a highly efficient means for estimating parameters
without the need for the gradient of the underlying performance measure (with respect to the
parameters being estimated). In the context of control problems, requiring the gradient vector is
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tantamount to requiring a model of process (see, e.g. Spall and Cristion, 1994, 1995, 1997 for
further discussion).

The remainder of this paper is organized as follows: Section 2 presents an overview of the
S-TRAC approach, including the relationship between the demand-responsive instantaneous
traffic controller and the long-term SPSA training process, and some of the practical issues asso-
ciated with algorithm initialization and calculation of the measurement of effects. Section 3 dis-
cusses the SPSA algorithm for traffic control and Section 4 translates the principles in Section 2
and Section 3 into a step-by-step implementation guide. Section 5 illustrates S-TRAC for a nine-
intersection network in mid-town Manhattan and Section 6 offers some concluding remarks.

2. OVERVIEW OF S-TRAC CONTROL STRATEGY

2.1. Summary

S-TRAC is based on developing a mathematical function, say u(e), that takes current informa-
tion on the state of the traffic conditions and produces the timings for all signals in the networks to
optimize the performance of the system. (A dot shown here and throughout the rest of this paper
as an argument in a mathematical function represents all relevant variables entering the function.)
The inputs may include sensor readings from throughout the traffic system and other relevant
information such as weather and time-of-day. The output values for each of the signals in the
network may be any of the usual timing quantities: e.g. red-green splits, offsets, and cycle times.

The traffic control function u(e) in S-TRAC is implemented by a neural network (NN) for
which the internal NN connection weights are estimated and refined by an on-line training process.
These weights will fully define a function that takes sensor information on current traffic condi-
tions and produce the optimal system-wide timings.* It is within these weights that information
about the optimal control strategy is embedded. To reflect reality, it is important that the weights
contain information to facilitate a response to traffic conditions (including accidents or other
incidents). The weights are able to evolve in the long-term (say, month-to-month) in accordance
with the inevitable changes in the transportation system. Hence, the values of the weights are
absolutely critical to this framework.

Figure 1 illustrates the overall operation of S-TRAC. The lower loop provides the real-time
feedback on traffic conditions for use by the NN controller (with specified weights) in providing
real-time signal commands. The upper loop is the weight estimation path that refines the real-time
control. This loop operates on a day-to-day basis and can be turned on and off as needed to build
the NN controller and to self-tune the controller to long-term changes in the system. At the heart
of the upper-loop weight training is the SPSA algorithm!, which provides a highly efficient and
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Fig. 1. S-TRAC configuration: relationship between traffic system, controller, and training algorithm.

*Theory given in, say, Funahashi (1989) shows that any reasonable mathematical function can be approximated to a high
level of accuracy by a NN if (and only if) the weights are properly estimated. In our case, the NN is being used to

*Note that SPSA is fundamentally different from infinitesimal perturbation analysis (IPA) (or other PA approaches)
although the algorithms share one word in their names. SPSA uses only loss function evaluations in its optimization
while IPA uses the gradient of the loss function. For traffic control problems, requiring the gradient is equivalent to
requiring a network-wide model of the system; evaluating the loss function alone does not require a model. The lack of a
gradient also precludes the use of such standard NN training algorithms as backpropagation.
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relatively easy-to-implement means of estimating the NN weights 6 on an on-line basis. The use of
SPSA in the day-to-day training will be presented in detail in Sections 3 and 4.

In implementing S-TRAC, a different specific NN structure (number of inputs/outputs, number
of weights, etc.) may be chosen to produce controls during each of several periods within a 24 h
time-frame. The periods should be chosen so that system-wide traffic patterns are roughly consis-
tent over the period. For example, a 24 h time-frame may be divided into five periods: 5:30 AM—
9:30 AM, 9:30 AM-3:30 PM, 3:30 PM-7:30 PM, 7:30PM-11:30 PM, and 11:30 PM-5:30 AM,
each of which will have a separate NN controller. Hence, the controller illustrated in Fig. 1 per-
tains to one time period of interest. In principle, it would be possible to have one NN for a full
24 h period, but such a NN may be excessively complex due to the wide variety of traffic conditions
over a full day (and further a fixed timing plan may be sufficient for the time periods 9:30 AM—
3:30 PM and 11:30 PM-5:30 AM).

2.2. Some practical issues

The upper loop (weight training process) in Fig. 1 will continue as long as needed to achieve
effective convergence of the weight estimate; convergence is obtained when the MOE has been '
optimized subject to constraints on road capacity, minimum signal phase length, etc. While the
SPSA training is occurring, only minor controller-imposed variations in traffic flow (from what
would have occurred based on the previous day’s timing strategy) will be seen, which should be
unnoticed by most drivers. After training is complete for a given period, there will be a control
function u(e) (based on a converged value of weights 6) that provides optimal signal timings for
any specific time within the period given the current traffic conditions.* Note that the training is
based on adjacent days having similar mean traffic behavior within the time period of interest (the
actual traffic conditions are allowed to vary significantly day-to-day in line with the usual sto-
chastic effects); so, for example, there may be a recursion for weekdays (perhaps with a special
‘tag’ for Friday evenings to accommodate the extra flow if that was significant) and another
corresponding recursion (and associated NN) for weekends/holidays.

As part of the training process, an initial set of values (prior to running SPSA) must be chosen
for the NN weights (these yield the control strategy on ‘day 0’ of the training process). It will
generally be desirable to initialize the weights to produce a NN control with the same timing
strategy as the traffic system had in place prior to the implementation of S-TRAC (this allows S-
TRAC to take advantage of the ‘tuning’ and prior information embedded in the prior strategy).
For a fixed time-of-day strategy, this is straightforward, though the specification of ‘bias weights’
on the NN output (with other weights, except those linking time-of-day if that input is used,
zeroed out). For a demand-responsive prior strategy, one could use current and recent-past
data on traffic flow and corresponding (flow dependent) signal timings in conjunction with stan-
dard (‘off the shelf’) back-propagation-type software. This will generate a NN controller that is
able to reproduce the timing strategy embedded in these data. Then the SPSA optimization pro-
cess will begin with that strategy and improve from there. We must emphasize that this off-line
analysis is done only to initialize the weights in the algorithm. Alternatively (or supplementarily)
‘pseudo historical’ data could be generated by running traffic simulations (say, based on the well-
known U. S. Federal Highway Administration-sponsored TRAF software collection) together
with corresponding ‘reasonable’ (flow-dependent) signal timings. These pseudo historical data
could then be used with back-propagation (as with the real historical data) to generate the initial
weights.

One appealing feature in using simulations for initialization is that it is possible to introduce
‘incidents’ (accidents, break-downs, special events, etc.) that may not have been encountered in
other initialization information (e.g. historical data); having this incident information embedded in

P

*We must emphasize that although there is a fixed value of 6 after training is complete, the signal timings given by u(e) will
generally change throughout the period—possibly on a cycle-to-cycle basis—to adapt to instantaneous fluctuations in
traffic conditions, i.e. the function u(e) is the same during the time period of interest, but the specific output values of u(s)
will change during the period as the traffic conditions change. If necessary, this idea can perhaps be made clearer by
viewing the NN control u(e) with specified weights as analogous to a polynomial function with specified coefficients. For
a fixed set of coefficients, the value of the polynomial will change as the value of the independent variable changes. In
contrast, a change in the coefficient values represents a change in the polynomial function itself. The former case is
analogous to what happens in producing instantaneous controls for a fixed weight vector (the lower loop in Fig. 1) and
the latter case is analogous to what happens as the NN undergoes its day-to-day training (the upper loop in Fig. 1).
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the initial weights may help the real-time NN controller cope with similar incidents in real opera-
tions after day 0. It is not required that all possible incident scenarios be introduced in the simu-
lation since the NN (in principle, at least) can interpolate to unencountered incidents if the
initialization information contains a reasonable variety of plausible incidents.

Periodically, after effective convergence for 6 has been achieved (and the controller is operating
without the use of SPSA, i.e. the upper loop in Fig. 1 is disconnected), the training should be
turned ‘on’ in order to adapt the weights to the inevitable long-term changes in the traffic system
and flow patterns. (The reason that it is not recommended to run training continuously day-to-day
is that when the training is operative, the weight values 6 used in the controller are slightly per-
turbed from those that the algorithm has currently found to be optimal.) This updating can be
done relatively easily without the need to do the expensive and time-consuming off-line modeling
that is required for standard model-based approaches to traffic control (e.g. in the context of the
Los Angeles traffic system, Rowe (1991) points out that the adaptation to long-term changes is not
done as frequently as necessary because of the high costs and extreme difficulty involved). Whether
the training in SPSA is ‘on’ or ‘off” should be invisible to most drivers.

-

3. THE MATHEMATICAL ALGORITHM: SPSA-BASED TRAINING

The above discussion outlines how NN functions for real-time traffic control can be constructed
by setting up a recursion that iterates on a day-to-day basis for a fixed time period. The discussion
here will provide the mathematical form of the recursion. Given the set of weights to be deter-
mined, we let 6; denote the estimate of 4 at the kth iteration of the SPSA algorithm. The aim of the
SPSA algorithm is to find that set of weight values that minimizes some ‘loss function’, which is
directly related to optimizing the MOE. Mathematically, this is equivalent to finding a weight
value such that the gradient of the loss function with respect to the weights is zero. However, since
we are not assuming a model for the traffic dynamics, it is not possible to compute this gradient for
use in standard NN optimization procedures such as backpropagation.

The SPSA algorithm is based on forming a succession of highly efficient approximations to the
auncomputable gradient of the loss function in the process of finding the optimal weights. The SP
gradient approximation used in SPSA only requires observed values of the system (e.g. loop
detector counts, traffic queues, wait times, pollutant emission readings, etc.). The theoretical and
numerical properties of the SPSA algorithm are thoroughly described in Spall (1992). The high
efficiency of SPSA relative to competing (gradient-free) SA algorithms is established in Spall
(1992) and Chin (1993, 1997). The application of SPSA to NN controller design has been consid-
ered in Spall and Cristion (1994, 1995, 1997). (The theoretical properties related to algorithm
convergence in Spall (1992) provide a guarantee that SPSA will work properly in a wide variety of
practical conditions; this contrasts with many other algorithms proposed for adaptive traffic con-
trol, which are ad hoc and have only been demonstrated on a limited set of test cases.) The SPSA
algorithm for estimating 8 has the form:

bies1 = 6k — argi(B) (1

where ay is a scalar gain coefficient and gy (ék) is the SP gradient estimate at = ék. Note that eqn
(1) states that the new estimate of 6 is equal to the previous estimate plus an adjustment that is
proportional to the negative of the gradient estimate. The initial value 6y may be chosen according
to the discussion of subsection 2.2.

To calculate the most critical part of eqn (1)—i.e. the gradient approximation g (6) for any 6—
we must define an underlying loss function L(6). This loss function is directly related to the MOE,
and mathematically expresses the MOE criteria. The form of L(6) reflects the particular system
aspects to be optimized and/or the relative importance to put on optimizing several criteria at once
(e.g. mean queue length or wait times at intersections, traffic flow along certain arteries, pollutant
emissions, etc.). Because of the variety of MOE criteria considered in practice, the specific form of
L(6) will be allowed to be flexible in this paper. An example loss function might be a standard
quadratic measure such as

L) = E[xTx | 6] )
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where

e E(e | 6) denotes an expected value conditional on the set of controls with weights 6;

e x represents the system state vector, e.g. vector of mean queue lengths or mean vehicle wait
times at all intersections within the time period of interest (the state depends on 6 through the
fact that the control used in affecting the state x depends on 6).

Given a definition of the loss function (as derived from the MOE), the critical step in imple-
menting the SPSA algorithm in eqn (1) is to determine the gradient estimate g;(6) of any value of
6. This embodies the key and unique technical contribution of our approach since g,(6) does not
require a complete model for the system-wide traffic dynamics. Assuming that 6 is p-dimensional,
the gradient estimate at any 6 has the form

Zc‘k Ak|
®

8u(6) = . €)

L(6+ex Ax)—Li6—cxAe)
2L‘k Akp

where i,(o) denotes an observed (sample) value of L(e), Ax = (Axi, A2, ..., Agp) is @ user-gener-
ated vector of random variables that satisfy certain important regularity conditions, Spall (1992),
Spall and Cristion (1994, 1995, 1997); having Ay; = £1 Vk, i with probability 1/2 of each outcome
satisfies these conditions and is used in the study of Section 5 below), and ¢ is a small positive
number. Note that the numerators in the p components of g,(6) are identical; only the denomi-
nators change. Hence, to compute gx(6), one only needs two values of L( ) independent of the
dimension p. Note also that SPSA (as a stochastic approximation algorithm) is designed specifi-
cally to deal with day-to-day stochastic variations in traffic conditions. The mathematical mani-
festation of this property is that SPSA will converge even though L( e) # L(e) in general.

The SPSA approach is in contrast to the standard approach for approximating gradients (the
‘finite-difference’ method), which requires 2p values of L(s), each representing a positive or nega-
tive perturbation of one element of 6 with all other elements held fixed. In the context of traffic
control, each value of L(e) represents data collected during one time period (within one 24 h per-
iod). For traffic control, the dimension p is at least as large as the total number of factors to be
controlled within the traffic system (e.g. in a system with 100 signals and an average of four control
factors per light, p>400). Hence, the SPSA method is easily two to three orders of magnitude
more efficient than the standard finite-difference method in finding the optimal weights for most
realistic traffic settings. Theory in Spall (1992) and Chin (1993, 1997) rigorously justifies this gain
in efficiency. (In particular, it is shown that the SPSA method and the finite-difference method
achieve a given level of accuracy in estimating 6 in the same number of iterations, which translates
into a p-fold total savings in L( ) evaluations since each iteration of SPSA requires only 1/p the
number of L(e) evaluations as finite-difference.)

4. STEP-BY-STEP IMPLEMENTATION OF SPSA TRAINING ALGORITHM FOR S-TRAC

Let us now present a step-by-step summary of how the SPSA algorithm in eqns (1) and (3)
would be implemented to achieve optimal traffic control in the system-wide setting. This summary
pertains to building up the controller (i.e. estimating a 6) for one time period, as illustrated in Fig. 1
above. Obviously, the same procedure would apply in the other periods. Starting with some 6
(see the discussion in subsection 2.2) the step-by-step procedure for updating 6; to 6k is:

1. Given the current weight vector estimate ék, change all values to ék + cx A where ¢, and Ay
satisfy conditions in Spall (1992) or Spall and Cristion (1994, 1995, 1997).

2. Throughout the given time period, use a NN control u(f, ¢) with weights 6 = br + cr Ak
Inputs to u(6, ¢) at any time within the period include current and recent past state infor-
mation (e.g. queues at intersections), previous controls (signal parameter settings), time-of-
day, weather, etc.
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3. Monitor system throughout time period (and possibly slightly thereafter) and form sample
loss function L(f; + cxAx) based on observed system behavior. For example, with the loss
function in eqn (2), we have

i(ék + ckAg) = xTx

where the state values are based on the controls u(ék + cx Ak, @) used throughout the period
(a possible state vector might include the queues of all intersections over a set of sampling
time in the overall time periods).

4. During the same time period on following like day (e.g. weekday after weekday), repeat steps
1-3 with Gk — ¢, A replacing 0k + ¢k Ag. Form L(()k — ckA).

5. With the quantities computed in steps 3 and 4, L(Bk + cxAy) and L(Gk — cxAg), form the SP
gradient estimate in eqn (3) and then take one iteration of the SPSA algorithm in eqn (1) to
update the value of 6; to 6.

6. (Optional) During same period on following like day, use a NN control with updated weights
0= 0k+1 This provides information on performance with current updated weight estimates
(no perturbation); this information, is not explicitly used in the SPSA updating algorithm.

7. Repeat steps 1-6 with the new value 9k+| replacing 6 until traffic flow is approximately
optimized (or at least sufficiently improved) based on the chosen MOE.

-

There are several practical aspects of the above procedure that are worth noting. By initializing
the weight vector at a value 8y that is able to produce the initial signal timings actually in the sys-
tem (see Section 3), the algorithm will tend to produce signal timings that are between the initial
and improved timings while it is in the training phase. Hence, there will likely be no significant
control-induced disruption in the traffic system during the training phase. After the weight esti-
mates have effectively converged (so we have a controller that produces improved signal timings
for given traffic conditions), the algorithm may be turned ‘on’ or ‘off’ relatively easily without the
need to perform detailed off-line modeling. It would, of course, be desirable to turn the algorithm
‘on’ periodically in order to adapt to the inevitable long-term changes in the underlying traffic flow
patterns. A further point to note in using SPSA is that there will be some coupling between traffic
flows in adjacent time periods within a 24 h time-frame. This is automatically accounted for by the
fact that inputs to u(e) include previous states and controls (even if they are from the previous
period). Hence, even though there are separate SPSA recursions (and neural networks) for each of
the time periods, information is passed across periods to ensure true optimal performance.

5. EXAMPLE OF S-TRAC IMPLEMENTATION IN MANHATTAN

5.1. Introduction

This section illustrates by simulation an application of the S-TRAC approach to a nine-inter-
section network in mid-town Manhattan, NY. The small-scale realistic example here is intended to
be illustrative of the ability of S-TRAC to address larger-scale traffic systems and is not entirely
trivial as it considers a congested (saturated) traffic network and includes nonlinear, stochastic
effects. The simulation was calibrated based an actual Manhattan traffic' data, as discussed in
subsection 5.2.

We are considering control for one 4 h time period and are estimating, across days, the NN
weights for the collective set of traffic signal responses to instantaneous traffic conditions during
this 4 h period. The software used here is described in detail in Chin and Smith (1994); the simu-
lation was conducted on a Pentium-based PC using C+ +. The traffic dynamics were simulated
using state-space flow equations similar to those in Papageorgiou (1990) or Nataksuji and Kaku
(1991) with Poisson-distributed vehicle arrivals at input nodes into the network. Of course, con-
sistent with the fundamental S-TRAC approach as it would be applied in a real system, the
controller does not have knowledge of the equations being used to generate the simulated traffic
flows. The traffic simulation here is being applied as a surrogate for the real traffic system; SPSA
on-line training in a real system would not require a traffic simulation. The controller is con-
structed via SPSA by the efficient use of small system changes and observation of resulting system
performance. Recall that SPSA is explicitly designed to account for stochastic variations in the
traffic flow in creating the NN weight estimates. This simulation will illustrate this capability.
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5.2. The simulated traffic flow and form for NN controller

Two studies were conducted for a simulated 90-day period: one with constant mean Poisson
distributed arrival rates over the total period, and another with a 10% step increase in all mean
arrival rates into the network (not including the internal egress discussed below) at day 10 during
the total period. In both studies, the simulated traffic network runs between 55th and 57th Streets
(North and South) and from 6th Avenue to Madison Avenue (East and West) and therefore
includes nine intersections with 5th Avenue as the central artery. Figure 2 depicts the scenario. The
time of control covers the 4 h period, from 3:30 PM to 7:30 PM, which represents evening rush
time. The technique could obviously be applied to any other period during the day as well. In the
4 h control period several streets have their traffic levels gradually rising and then falling. Their
traffic arrival rates increase linearly from non-rush hour rates starting at 3:30 PM The rates peak
at 5:30 PM to a rush hour saturated flow condition and then subside linearly until 7:30 PM Back-
up occurs during some of the 4 h period in the sense that queues do not totally deplete during a
green cycle. Nonlinear, flow-dependent driver behavioral aspects are embedded in the simulation.
(e.g. the probabilities of turns of intersections are dependent on the congestion levels of the through
street and cross street). Some streets have unchanging traffic statistics during the total time period
while others have inflow rates from garage-generated egress at the end of office hours from 4:30
PM to 5:30 PM. The simulation and baseline fixed time controller have been extensively tested to
ensure that they produce traffic volumes that correspond to actual recorded data for the Man-
hattan traffic sector as given in Rathi (1988). [A complete discussion of the development and test-
ing of the baseline simulation and the details of its operation are given in Chin and Smith (1994).]

For S-TRAC, we used a two-hidden-layer, feed-forward NN with 42 input nodes. The 42 NN
inputs were (i) the queue levels* at each cycle termination for the 21 traffic queues in the simula-
tion, (ii) the per-cycle vehicle arrivals at the 11 external nodes in the system, (iii) the time from the
start of the simulation, and (iv) the nine outputs from the previous control solution. The output
layer had nine nodes, one for each signal’s green/red split. The two hidden layers had 12 and 10
nodes, respectively. For this NN, there were a total of 745 NN weights that must be estimated.

In response to current traffic conditions, the controller determines the green/red split for the
succeeding cycle of each of the nine signals in the traffic network. Each signal operates on a fixed
90 cycle as discussed in Rathi (1988) (in a full implementation of S-TRAC, cycle length for each
signal could also be a control variable). The controller operates in a real-time adaptive mode in
which its cycle-by-cycle responses to traffic fluctuations are gradually improved, over a period of
several days or weeks, based on an MOE (i.e. loss function) consisting of the summed square
values of the cycle-traffic-wait time at each intersection over the daily 4 h period. Note that since
the underlying MOE for the NN controller weight estimation is based on system-wide traffic data
(1.e. data downstream from each traffic signal as well as upstream ) over a several-hour time period,

6th Ave.  5th Ave. Madison Ave.

@— 57th St.
@o—

56th St.

55th St.

Fig. 2. Traffic simulation area (mid-Manhattan).

*The traffic queues were approximated from the assumed travel time, the upstream and downstream loop-counts, the down-
stream traffic signal phases, and the depletion process. Also, a queue represents the total number of cars on a road sector
at each intersection without being further divided into lane counts.
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the effect of signal settings, turning movements, etc. on the future accumulation of traffic at
internal queues is factored into the formation of the controller function. (This is an example of
how a true system-wide solution would differ from a solution based on combining individual
intersection, artery, or zoned solutions on a network-wide basis as done e.g. in SCOOT.)

5.3. Results

The results of our simulation study of the system-wide traffic control algorithm are presented in
Fig. 3 (mean arrival rate into the network over the 90 day period does not change) and Fig. 4 (step
increased mean arrival rates on day 10 for all artery points into network). The ‘prior’ fixed-time
control assumed a green-time/total-cycle-time value of 0.55 for all signals along N-S arteries. This
was in the specified range of prior strategies in-place in the Manhattan sector during the recording
of actual data (Rathi, 1988). In order to show true learning effects (and not just random chance as
from a single realization) the curves in Figs 3 and 4 are based on an average of 100 statistically
independent simulations. Every third day for S-TRAC in both figures represented an optional
‘evaluation day’ (step 6 of implementation in Section 4) to demonstrate improved values of the
MOE. However, only data from the other 60 ‘training days’ were used in the SPSA algorithm;
thus, the adaptive training period could have been reduced to 60 days.

In Fig. 3, S-TRAC resulted in a net improvement of approximately 10% relative to the fixed-
strategy-controlled system. This reduction in total wait time represents a reasonably large saving
with a relatively small investment, particularly for high traffic density sectors. In comparison,
major construction changes to achieve a net improvement in traffic flow of 10% in a well-devel-
oped area, such as for the traffic system in mid-Manhattan, would be enormously expensive. The
large drop on the first day follows from the introduction of real-time (demand-responsive) control
(vs the initial fixed-time strategy). Confidence bonds around the indicated curves that captured
90% of the daily variation were +2.8h for the prior control strategy and +5.2h for S-TRAC.
Note that these bounds do not overlap after the first day, indicating the significance of the
improvement offered by S-TRAC.

In the step increase case, Fig. 4 shows a corresponding step increase in total system wait time
under the fixed-time (prior) strategy. Under S-TRAC, a step increase also occurred in total system
wait time on day 10, but the wait time continued to decrease without any transient behavior
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Fig. 4. System-wide mean wait time for 3:30 PM-7:30 PM period with increase in mean arrival rates on day 10.
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subsequent to this phenomenon, and an approximate 11% improvement is evident after the 90-day
test period.

6. CONCLUDING REMARKS

This paper has discussed S-TRAC for system-wide signal timing. It provides timings in response
to instantaneous flow conditions while accounting for the inherent stochastic variations in traffic
flow through a powerful stochastic optimization technique. The SPSA optimization technique
(Spall, 1992) is critical to the feasibility of the approach since it efficiently provides the values of
weight parameters in the neural network for control of signal timings in one of the periods within
a 24 h time-frame. S-TRAC makes signal timing adjustments to accommodate to short-term con-
ditions such as congestion, accidents, brief construction blockages, adverse weather, etc. Through
SPSA, S-TRAC also has the ability to automatically accommodate to long-term system changes H
(such as seasonal traffic variations, new residences or businesses, long-term construction projects,
etc.) without the cumbersome and expensive off-line remodeling process that has been customary
in traffic control. The SPSA training process may be turned ‘on’ or ‘off’ as necessary to adapt to »
these long-term changes in a manner that would be essentially invisible to the drivers in the system.

A major issue in modern traffic control is practical implementation and maintainability. In
practice, it has been found that most modern computer-based systems are not achieving their full
potential as a result of inadequate understanding or commitment on the part of municipal autho-
rities and the associated difficulties in implementation [see, e.g. DeSanto (1996)], which mentions
that only two of 24 systems recently surveyed by the U. S. Department of Transportation were
operating at their full capability. Approaches currently under development (e.g. OPAC) are even
more complex than those currently implemented. On the other hand, S-TRAC avoids much of the
complex modeling associated with other modern traffic control approaches (the main practical
challenges in S-TRAC are the initialization of the search process and the choice of the NN struc-
ture for the controller). Further, S-TRAC may work with any existing sensor implementation
provided there is some means of transmitting information between intersections and a central
control facility; this contrasts with known model-based approaches (e.g. SCOOT) where addi-
tional sensors must be installed. Hence, S-TRAC has the potential to deliver real-time system-wide
signal timings in a practically feasible manner.
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