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ABSTRACT

There has recently been much interest in
recursive optimization algorithms that rely on
measurements of only the objective function, not
requiring measurements of the gradient (or higher
derivatives) of the objective function. The algorithms
are implemented by forming an approximation to the
gradient at each iteration that is based on the function
measurements. Such algorithms have the advantage of
not requiring detailed modeling information describing
the relationship between the parameters to be
optimized and the objective function. To properly
cope with the noise that generally occurs in the
measurements, these algorithms are best placed within
a stochastic approximation framework. This paper
discusses some of the main contributions to this class
of algorithms, beginning in the early 1950s and
progressing until now.
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1. INTRODUCTION

In virtually all areas of engineering and the
physical and social sciences, one encounters problems
involving the optimization of some mathematical
objective function (e.g., as in optimal control, system
design and planning, model fitting, and performance
evaluation from system test data). Typically, the
solution to this optimization problem corresponds to a
vector of parameters such that the gradient of the
objective function (with respect to the system
parameters being optimized) is zero. Over the last
several years, there has been a growing interest in
recursive optimization algorithms that do not depend
on direct gradient information or measurements.
Rather, these algorithms are based on an approximation
to the gradient formed from (generally noisy)
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measurements of the objective function. This interest
has been motivated, for example, by problems in the
adaptive control and statistical identification of
complex systems, the optimization of processes by
large Monte Carlo simulations, the training of recurrent
neural networks, and the design of complex queueing
and discrete-event systems.

Overall, such algorithms exhibit certain
convergence properties of gradient-based algorithms
while requiring only objective (say, loss) function
measurements. A main advantage of such algorithms
is that they do not require the detailed knowledge of
the functional relationship between the parameters
being adjusted (optimized) and the loss function being
minimized that is required in gradient-based
algorithms. Such a relationship can be notoriously
difficult to develop in problem areas such as nonlinear
feedback controller design. Further, in areas such as
Monte Carlo optimization or recursive statistical
parameter estimation, there may be large computational
savings in calculating a loss function relative to that
required in calculating a gradient. Because of the
inherent randomness in the data and search algorithms
here, all algorithms will be viewed from the
perspective of stochastic approximation (SA).

Let us elaborate on the distinction between
algorithms based on direct gradient measurements and
algorithms based on gradient approximations from
measurements of the loss function. Examples of the
former include Robbins-Monro SA (Robbins and
Monro, 1951), steepest descent and Newton-Raphson
(Bazaraa and Shetty, 1979, Chap. 8), neural network
back propagation (Rumelhart, et al, 1986), and
infinitesimal perturbation analysis (IPA)-based
optimization for discrete-event systems (Glasserman,
1991). Examples of approximation-based methods
using loss function measurements are given below, but
include as an early prototype the Kiefer-Wolfowitz
finite-difference SA algorithm (Kiefer and Wolfowitz,
1952). The gradient-based algorithms rely on direct
measurements of the gradient of the loss function with
respect to the parameters being optimized. These
measurements typically yield an estimate of the
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gradient since the underlying data generally include
added noise. Because it is not usually the case that
one would obtain direct measurements of the gradient
(with or without added noise) naturally in the course of
operating or simulating a system, one must have
knowledge of the underlying system input-output
relationships in order to calculate the gradient estimate
(using the chain rule) from basic system output
measurements. In contrast, the approaches based on
gradient approximations require only conversion of the
basic output measurements to sample values of the loss
function, which does not require knowledge of the
system input-output relationships.

Because of the fundamentally different
information needed in implementing these two general
types of algorithms, it is difficult to construct
meaningful methods of comparison. As a general rule,
however, the gradient-based algorithms will be faster
to converge than those based on gradient
approximations when speed is measured in number of
iterations. Intuitively, this is not surprising given the
additional information required for the gradient-based
algorithms. In particular, the rate of convergence—
measured in terms of the deviation of the parameter
estimate from the true optimal parameter vector—is
typically of order k™Y for the gradient-based
algorithms and of order k~® for some 0<P<¥2 for the
algorithms based on gradient approximations, where k
represents the number of iterations (Fabian, 1971). In
practice, of course, many other factors must be
considered in determining which algorithm is most
appropriate for a given circumstance. Two examples
of why this is true are: (1) In cases where it is not
possible to obtain reliable knowledge of the system
input-output  relationships, the gradient-based
algorithms may be either infeasible (if no system
model is available) or undependable (if a poor system
model is used) and (2) The total computational burden
to achieve effective convergence depends not only on
the number of iterations required, but also on the
computation needed per iteration, which is typically
greater in gradient-based algorithms. Thus, for both of
the reasons above, one cannot say in general that the
IPA-based search algorithm (as an example) is superior
to a gradient approximation-based algorithm even
though the IPA algorithm requires only one system run
per iteration while the approximation-based algorithm
requires multiple system runs per iteration. As a
general rule, however, if direct gradient information is
ggnmmgnﬂy_an_d_r_ej_lab_lx available, it is generally to
one's advantage to use this information in the
optimization process. The focus in this review is the
case where such information is not readily available.

In the remainder of this write-up we attempt
to trace the historical development of algorithms based
on gradient approximations from function
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measurements, and to discuss the "when, what, and
who" for significant original contributions that have
been made. These contributions are given in a list in
Section 3 after some notation and basic concepts are
described in Section 2. The list in Section 3 is likely
to be incomplete, and the author welcomes suggestions
for corrections or additions. Note, however, that the
focus here is on developments that represent significant
methodological and/or theoretical advances. In
particular, not generally included are developments that
are focused on specific applications and/or hardware
implementation. Also excluded here are algorithms
that are not based on gradient approximations (such as
genetic  algorithms, evolutionary programming,
simulated annealing, random sampling, etc.) and
algorithms that require direct gradient measurements
(as discussed above). These are worthy topics for
another write-up—and another writer! (Two reviews
that tend to focus mainly on these other approaches are
L'Ecuyer, 1991, and Fu, 1994).

2. BACKGROUND

Consider the problem of minimizing a (scalar)
differentiable loss function L(0) where 6 e R?, p > 1.
A typical example of L(6) would be some measure of
mean-square error for the output of a process as a
function of some design parameters 6. For most cases
of practical interest, this is equivalent to finding the
minimizing 0* such that

It is assumed that measurements of L(0) are available
at various values of 0 (actually, the algorithms have a
slightly weaker requirement in that they only need
measurements of the difference in two values of the
loss function, as opposed measuring the loss functions
themselves). These measurements may or may not
include added random noise. No direct measurements
(either with or without noise) of g(0) are assumed
available, such as are required in the well-known
Robbins-Monro (1951) SA algorithm.

The recursive procedure we consider is in
general SA form:

B0 = 6 -a, 8,6 , ey
where ék represents the estimate of © at thek™
iteration, @, >0 represents a scalar gain coefficient,
and gk(e,‘) represents an approximation of g(ﬁk) based
on the above-mentioned measurements of L(8) at
values of  that are perturbed from the nominal value
0,. Under appropriate conditions, 8, will converge (in
some stochastic sense) to 0° (see, e.g., Kushner and
Clark, 1978).
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The most critical aspect in implementing (1)
is the gradient approximation g,‘(e,‘) at each k. This
review discusses the three general forms that appear to
have attracted the most attention. In formingg,(6,)
we let y(9) denote a measurement of L(-) at a design
level represented by the dot (i.e., () = L(9) + noise)
and ¢, be some (usually small) positive number (in
general, a dot as a function argument represents a
specific value of 6 that we will not specify here in
order to avoid excess notation). "One-sided" gradient
approximations involve measurements y(6,) and

(6 + perturbation) for each component ofgt(ek)
whlle "two-sided” approximations involve the
measurements y (8, + perturbation). The three general
forms are:

Finite difference (FD), where each component
of 0,‘ is perturbed one-at-a-time and corresponding
measurements y(?) are obtained; each component of
g,‘(O,) is formed by differencing corresponding
measurements of y() and then dividing by the
difference interval. This is the "standard" approach to
approximating gradient vectors and is motivated
directly from the definition of a gradient as a vector of p
partial derivatives, each constructed as a limit of the
ratio of a change in the function value over a
corresponding change in one component of the
argument vector. Typically, the i % component of
g,‘(ek) (i=1,2, ..,p) for a two-sided FD
approxunatxon xs given by

£,0) - YO, + cie) - ¥6, - cie)

2c

k
where e, denotes a unit vector in the i* direction (an
obvious analogue holds for the one-sided version;
likewise for the RD and SP forms below).

’

Random  directions (RD), where all
components of 9 are randomly perturbed together in
two separate dlrectxons to obtain two measurements
¥(), and each component of £,(6,) is formed from the
product of the corresponding component of the
perturbation vector times the difference in the two
measurements. For two-sided RD, we have

. ¥0, +c,d) -8, -c,d)
£.0) =d,, E % [

2¢,
where d, = (d,,, ..., d,))" isavector of user-specified

random variables satisfying certain conditions.

b

Simultaneous perturbation (SP), which also
has all elements of 6 randomly perturbed together to
obtnmtwonmsmnmls ¥y(), b\neadloanpo:mtofgk(ﬂ,‘)
is formed from a ratio involving the individual
components of the perturbation vector and the
difference in the two corresponding measurements.
For two-sided SP, we have

g0y - Xral) X6 mal)
2c,A,

b
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where the distribution of the user-specified random
perturbations for SP, A, = (A, , ..., A,)T, must satisfy
conditions different from those of RD (although certain
distributions satisfy both sets of conditions).

Algorithm (1) with one of the gradient
approximations will be referred to as FDSA, RDSA, or
SPSA, as appropriate. Note that the number of loss
function measurements y(*) needed in FD grows with
P, while with RD and SP only two measurements are
needed independent of p. This, of course, provides
the potential for RDSA or SPSA to achieve a large
savings (over FDSA) in the total number of
measurements required to estimate 0 when p is large.
This potential is only realized if the number of
iterations required for effective convergence to 6* does
not increase in a way to cancel the measurement
savings per gradient approximation. Some of the
references in Section 3 address this issue (especially
Spall (1992) and Chin (1993)), demonstrating when
this potential can be realized. Although the RD and
SP gradient approximation forms have certain
similarities, the performance of the RDSA and SPSA
algorithms will generally be quite different, as
demonstrated in some of the references below. Note,
however, that in one important special case the RDSA
and SPSA algorithms coincide: namely, when the
components of the perturbation vector are symmetric
Bemoulli distributed (e.g., £ 1 with each outcome
having probability !2). In general, however, the SPSA
formulation has been shown to be more efficient than
RDSA, as discussed in Section 3. Theoretically, this
follows from the fact that SPSA has a lower
asymptotic mean-square error than RDSA for the same
number of measurements y(-).

Let us close with definitions of some terms
used in Section 3. "Gradient averaging" refers to the
averaging of several (say,q) gradient approximations
at any given iteration; "gradient smoothing" refers to
averaging gradients across iterations (analogous to
"momentum" in the neural network parlance).
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3. LIST OF KEY DEVELOPMENTS AND ASSOCIATED REFERENCES

No. of Function Measurement
Measurements y(?) Noise in y()
References — perlteration Considered?
Kiefer and Wolfowitz 2 Yes
(1952) (p=1)
Blum (1954) p+i Yes
Sacks (1958) 2p Yes
Ermoliev (1969) 2 Yes
Fabian (1967, 1971) >2p Yes
Polyak and Tsypkin Depends on Yes
(1973) algorithm
Kushner and Clark (1978) 2 Yes

Comments
First FDSA algorithm. Limited to
scalar setting. Convergence in

probability shown.

Multivariate extension of Kiefer and
Wolfowitz (1952) FDSA. One-sided
finite difference gradient
approximation. Shows almost sure
(a.s.) convergence.

Shows asymptotic normality of
multivariate two-sided FDSA method.
Normality result useful in quantifying
accuracy of SA estimate.

Apparently first paper to consider a
special case of RDSA-type algorithm:
one-sided RDSA form with uniformly
distributed perturbations.  Includes
analysis of bias in gradient
approximation. No convergence
analysis or theoretical or numerical
comparisons with standard FDSA
algorithm.

Papers present several different
methods for accelerating convergence
of FDSA-type algorithms. Methods
are based on taking additional
measurements to explore loss function
surface in greater detail. The 1971
paper discusses stochastic analogue to
second-order algorithms of generic
Newton-Raphson form (this algorithm
uses O(p?) measurements of y(9).

Performs general analysis of FDSA-
and RDSA-type algorithms, including
a demonstration of a.s. convergence.

Considers two-sided RDSA form with
spherically uniform distributed
perturbations.  Theoretical analysis
shows no improvement over FDSA;
this finding appears to result from an
error in choice of RD perturbation
distribution, as discussed in Chin
(1993).
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No. of Function
Measurements y(9)

Measurement

References

Ermoliev (1983)

Spall (1987)

Spall (1988)

Polyak and Tsybakov
(1990, 1992)

Styblinski and Tang
(1990) Chin (1994)

Spall (1992)

t

2 Yes

2q Yes
for any g21

lor2 Yes

2q No
for any g=1

2q Yes
for any ¢g=21

Noise in y(9)
Considered?

Comments

Extends Ermoliev (1969) to include
constraints; special treatment for
convex L(). No convergence theory
or comparative numerical analysis.

Introduces SPSA (two-sided) form.
Apparently first paper to consider
general perturbation distributions (vs.
uniform  distributions for RDSA
above). Analysis of bias in gradient
approximation;, numerical study for
special case of symmetric Bernoulli
(random binary) perturbations shows
performance superior to FDSA. No
theoretical convergence analysis.

Extends Spall (1987) to include
measurement noise; also proves a.s.
convergence of SPSA algorithm;
numerical analysis of potential
benefits of gradient averaging (g>1).

Papers present approach similar to
RDSA based on kemel functions.
Show a.s. convergence in general
noise settings.

Styblinski and Tang uses modified
version of one- and two-sided RDSA
algorithms for global optimization.
Considers Gaussian- and Cauchy-
distributed  perturbations. Both
across-iteration smoothing and
gradient averaging (¢>1) considered.
Extensive numerical analysis,
including demonstration of superiority
of RDSA to simulated annealing; no
theoretical convergence analysis.
Chin substitutes SPSA for RDSA in
algorithm of Styblinski and Tang and
numerically illustrates superior
performance.

Extends SPSA theory in Spall (1987,
1988) to include asymptotic normality
(a la Sacks (1958)). First paper to
show theoretical advantage of two-
measurement approaches (SPSA in
particular, which includes RDSA with
symmetric Bernoulli perturbations as
special case) over classical FDSA
approach. Also includes theoretical
analysis on when gradient averaging
(g>1) is beneficial, and extensive
numerical analysis.
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References

Spall and Cristion (1992,
1994a,b) '

Chin (1993)

Yakowitz (1993)

Cauwenberghs (1993,
1994); Alspector,
et al. (1993)

Spall (1994)

No. of Function
Measuremen(s y()

29
(for any ¢21)

Depends on
algorithm

2p

2q
for any g=1

3q
for any g=1

Spall

Measurement
Noise in y(9)
Considered?

Yes

Yes

Yes

No

Yes

mment.

Papers show use of SPSA in closed-
loop control problems (where, e.g.,
the function L() changes over time).
Allows for optimal control without
constructing model of system
dynamics.  Convergence (a.s.) to
optimal controller shown under
certain conditions.  Across-iteration
gradient smoothing considered in
1994a paper. Numerical analysis and
comparison with FDSA for closed-
loop estimation. Considers
polynomial and neural net examples
where p ranges from 70 to 400.

Extends theoretical and numerical
comparison of SPSA and FDSA in
Spall (1992) to include RDSA.
Shows theoretical and numerical
superiority of SPSA for general
perturbation distributions.

Alternate global optimization
approach (vs. Styblinski and Tang
(1990) and Chin (1994)) using two-
sided FDSA algorithm. Shows both
ass. convergence and asymptotic
normality. Extensions to RDSA
and/or SPSA seem feasible.

Focus on constant gain (g,=a)
implementation of SPSA/RDSA
algorithms with symmetric Bernoulli
perturbation distribution
(SPSA/RDSA equivalent in this case).
Both open-loop identification and
closed-loop control problems
considered. Techniques for hardware
implementation in feed-forward and
recurrent neural networks.

Extends SPSA to include second-
order effects for purposes of
algorithm acceleration (in the spirit of
Fabian (1971) above). Estimates both
gradient and inverse Hessian at each
iteration (with number of
measurements independent of p, as
indicated at left) to produce an SA
analogue of the deterministic Newton-
Raphson algorithm.
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