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Abstract— In this paper we address the problem of on-line
estimation of unknown static parameters in non-linear non-
Gaussian state-space models. We consider a particle filtering
method and employ two gradient-free Stochastic Approxi-
mation (SA) methods to maximize recursively the likelihood
function, the Finite Difference SA and Spall’s Simultaneous
Perturbation SA. We demonstrate how these algorithms can
generate maximum likelihood estimates in a simple and com-
putationally efficient manner. The performance of the proposed
algorithms is assessed through simulation.

I. INTRODUCTION

Sequential Monte Carlo (SMC) methods, also known as

particle filters, are a set of practical and flexible simulation-

based techniques that have become increasingly popular to

perform optimal filtering in non-linear non-Gaussian models

[3], [4], [11]. However standard SMC methods assume

knowledge of the model parameters. In many real-world

applications, these parameters are unknown and need to

be estimated. We address here the challenging problem

of obtaining their Maximum Likelihood (ML) estimates.

Previous approaches that extend the state with the unknown

parameter and transform the problem into an optimal filtering

problem - e.g. [5], [12], [21] - suffer from several drawbacks.

Recently, a robust particle method to approximate the optimal

filter derivative and perform maximum likelihood parameter

estimation has been proposed [15]. This method is efficient

but computationally intensive.

In general, gradient-based SA algorithms rely on a direct

measurement of the gradient of an objective function with

respect to the parameters of interest. Such an approach

assumes that detailed knowledge of the system dynamics is

available so that the gradient equations can be calculated. In

the SMC framework, the gradient estimates of the particle

approximations require a Likelihood Ratio or Infinitesimal

Perturbation Analysis-based approach [16]. This usually re-

sults in a very high estimation variance that increases with

the number of particles and with time. Although this problem

can be successfully mitigated with a number of variance

reduction techniques, this adds to the computational burden.

In this paper we investigate the use of gradient-free SA

techniques as a simple alternative to generate ML parameters

estimates. A related approach was used in [1] to optimize

the performance of SMC algorithms. We adapt here this
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approach to parameter estimation. In principle, gradient-free

techniques have a slower rate of convergence compared to

gradient-based methods. However, gradient-free methods are

only based on objective function measurements and do not

require knowledge of the gradients of the underlying model.

As a result, they are very easy to implement and have a

reduced computational complexity. The classical gradient-

free method is the Kiefer-Wolfworitz Finite Difference SA

(FDSA) algorithm [7]. A more efficient approach that has

recently attracted attention is the Simultaneous Perturbation

SA (SPSA) method introduced by Spall [17]. This is based

on a randomized finite different method and it is particularly

attractive in high dimensional optimization problems. Both

methods are considered here.

The remainder of the paper is organized as follows:

Section II describes the optimal filtering problem and the

SMC framework. In Section III we formalize the parameter

estimation problem and outline our solution methodology.

In Section IV we describe the proposed gradient-free algo-

rithms. Some applications demonstrating the efficiency of the

methods are presented in Section V. Finally in Section VI we

discuss the results and provide some concluding remarks.

II. OPTIMAL FILTERING USING SMC METHODS

A. State-Space Models

Let {Xn}n≥0 and {Yn}n≥0 be Rnx and Rny -valued

stochastic processes defined on a measurable space (Ω,F).
Let θ ∈ Θ be the parameter vector where Θ is an open subset

of Rm. A general discrete-time state-space model represents

the unobserved state {Xn}n≥0 as a Markov process of initial

density X0 ∼ μ and Markov transition density fθ(x′|x). The

observations {Yn}n≥0 are assumed conditionally indepen-

dent given {Xn}n≥0 and are characterized by their condi-

tional marginal density gθ(y|x). The model is summarized

as follows
Xn|Xn−1 = xn−1 ∼ fθ( . |xn−1), (1)

Yn|Xn = xn ∼ gθ( . |xn), (2)

where the two densities can be non-Gaussian and may

involve non-linearities. For any sequence {zk} and random

process {Zk} we will use the notation zi:j = (zi, zi+1, ..., zj)
and Zi:j = (Zi, Zi+1, ..., Zj).

Assume for the time being that θ is known. In such a

situation, one is interested in estimating the hidden state Xn

given the observation sequence {Yn}n≥0. This leads to the

so-called optimal filtering problem that seeks to compute

the posterior density pθ(xn|Y0:n) sequentially in time. In-

troducing a proposal distribution qθ (xn|Yn, xn−1) , whose
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support includes the support of gθ (Yn|xn) fθ (xn|xn−1),
the filtering density satisfies the recursion

pθ (xn|Y0:n) ∝ ∫
αθ (xn−1:n, Yn)

× qθ (xn|Yn, xn−1) pθ (xn−1|Y0:n−1) dxn−1

(3)

where αθ (xn−1:n, Yn) =
gθ (Yn|xn) fθ (xn|xn−1)

qθ (xn|Yn, xn−1)
. (4)

Except in some very simple cases, no closed-form expression

can be obtained for this recursion and numerical approxima-

tions are required.

B. SMC framework

SMC methods approximate the optimal filtering density

by a weighted empirical distribution; i.e. a weighted sum of

N � 1 samples, termed as particles. Here we will assume

that at time n−1, the filtering density pθ (xn−1|Y0:n−1) is ap-

proximated by the particle set X
(1:N)
n−1 �

[
X

(1)
n−1, . . . , X

(N)
n−1

]
having equal weights. The filtering distribution at the next

time step can be recursively approximated by a new set of

particles X
(1:N)
n generated via an importance sampling and

a resampling step.

In the importance sampling step, a set of predic-

tion particles are generated independently from X̃
(i)
n ∼

qθ

(
·| Yn, X

(i)
n−1

)
and are weighted by an importance weight

ã
(i)
θ,n that accounts for the discrepancy with the “target”

distribution. This is given by

a
(i)
θ,n = αθ

(
X̃(i)

n , X
(i)
n−1, Yn

)
and (5)

ã
(i)
θ,n =

a
(i)
θ,n∑N

j=1 a
(j)
θ,n

. (6)

In the resampling step, the particles X̃
(1:N)
n are multiplied

or eliminated according to their importance weights ã
(1:N)
θ,n to

give the new set of particles X
(1:N)
n , based on the mapping

X(1:N)
n = H

(
X̃(1:N)

n , I(1:N)
n

)
� [X̃(1)

n , . . . , X̃(1)
n︸ ︷︷ ︸

I
(1)
n times

, . . . , X̃(N)
n , . . . , X̃(N)

n︸ ︷︷ ︸
I
(N)
n times

] (7)

where I
(i)
n represents the number of copies of particle X̃

(i)
n .

The resampling index vector I
(1:N)
n �

[
I
(1)
n , . . . , I

(N)
n

]
can

be obtained using standard methods such as multinomial,

residual or systematic resampling. The full algorithm is

summarized as follows:

Generic Sequential Monte Carlo algorithm (SIR)

At time n − 1, assume that a set of equally weighted

particles X
(1:N)
n−1 =

[
X

(1)
n−1, . . . , X

(N)
n−1

]
is available.

Importance sampling step

• For i = 1, ..., N , sample X̃
(i)
n ∼ qθ

(
· | Yn, X

(i)
n−1

)
and evaluate the weights ã

(i)
θ,n using (5), (6).

Weighted resampling step

• Sample I
(1:N)
n ∼ L

(
· | ã

(1:N)
θ,n

)
using a standard

resampling scheme.
• Set X

(1:N)
n = H

(
X̃

(1:N)
n , I

(1:N)
n

)
.

Note that the standard bootstrap filter [6] corresponds to

the case where qθ

(
X̃

(i)
n | Yn, X

(i)
n−1

)
= pθ

(
X̃

(i)
n | X

(i)
n−1

)
and the distribution for I

(1:N)
n is a multinomial distribution

of parameters ã
(1:N)
θ,n .

III. PROBLEM STATEMENT AND SOLUTION

METHODOLOGY

Let us now consider the case where the model includes

some unknown parameters. We will assume that the system

to be identified evolves according to a true but unknown

static parameter θ∗, i.e.

Xn|Xn−1 = xn−1 ∼ fθ∗( . |xn−1) (8)

Yn|Xn = xn ∼ gθ∗( . |xn). (9)

The aim is to identify this parameter. Addressing this

problem for a non-Gaussian and non-linear system is very

challenging.

We aim to identify θ∗ based on an infinite (or very large)
observation sequence {Yn}n≥0, in an on-line fashion. A

standard method to do so is to maximize the limit of the

time averaged log-likelihood function:

l (θ) = lim
k→∞

1
k + 1

k∑
n=0

log pθ(Yn |Y0:n−1 ) (10)

with respect to θ. Suitable regularity conditions ensure that

this limit exist and l (θ) admits θ∗ as a global maximum [22].

The expression pθ(Yn |Y0:n−1 ) is the predictive likelihood

and can be written as

pθ(Yn |Y0:n−1 ) =
∫ ∫

αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1)
×pθ (xn−1|Y0:n−1) dxn−1:n.

(11)

Note that this is the normalization constant of (3). This ap-

proach is known as recursive maximum likelihood parameter

estimation [13].

Our contribution is a novel recursive ML parameter es-

timation scheme based on the SMC algorithm described

in the previous section. Unfortunately it is impossible to

compute log pθ(Yn |Y0:n−1 ) in closed form. Instead, we use a

particle approximation and propose to optimize an alternative

criterion: the SMC algorithm provides us with samples(
X

(i)
n−1, X̃

(i)
n

)
from pθ (xn−1|Y0:n−1) qθ (xn|Yn, xn−1).

Therefore a particle approximation to log pθ(Yn |Y0:n−1 ) is

given by

log p̂θ (Yn |Y0:n−1 ) = log

(
N−1

N∑
i=1

a
(i)
θ,n

)
. (12)

Now we use the key fact that the current hidden state

Xn, the observation Yn, the predicted particles X̃
(1:N)
n and

their corresponding unnormalized weights a
(1:N)
θ,n form a

homogeneous Markov chain. We will denote this Markov

chain by {Zn}n≥0, where:

Zn =
(
Xn, Yn, X̃(1:N)

n , a
(1:N)
θ,n

)
.
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Let us also define a “reward” function r(Zn) as follows,

r
(
Xn, Yn, X̃(1:N)

n , a
(1:N)
θ,n

)
= log

(
N−1

N∑
i=1

a
(i)
θ,n

)
.

Note that r(Zn) is precisely log p̂θ (Yn |Y0:n−1 ) in (12).

The new criterion we seek to maximize is the particle

approximation to the time averaged log-likelihood of (10)

that is given by

J (θ) = lim
k→∞

1
k + 1

k∑
n=0

log r (Zn) .

If the Markov chain {Zn}n≥0 is ergodic and admits an

invariant distribution πθ,θ∗ (·) , then this limit exists and is

equal to
J (θ) = Eπθ,θ∗ [r (Z)] ,

where Z is distributed according to πθ,θ∗ . This is true

irrespective of the initial distribution of the state of the chain

[14]. Note that the invariant distribution πθ,θ∗ (·) is a function

of both θ∗ and θ. This is because the first two components of

Zn, i.e. (Xn, Yn), evolve according to the true parameter θ∗

that we wish to identify. On the other hand, the particle filter

components of Zn, i.e.
(
X̃

(1:N)
n , a

(1:N)
θ,n

)
, evolve according

to θ.

In the following section, we propose SA algorithms to

solve
ϑ∗ = arg max

θ∈Θ
J (θ) .

Note that because we only use a finite number N of particles,(
X̃

(1:N)
n , a

(1:N)
θ,n

)
is only an approximation to the exact

prediction density pθ (xn|Y0:n−1). Hence ϑ∗ will not be

equal to the true parameter θ∗. However, as N increases,

J (θ) will get closer to l (θ) and ϑ∗ will converge to θ∗.

Our simulation results indicate that ϑ∗ provides a good

approximation to θ∗ for a moderate number of particles.

IV. MAXIMUM LIKELIHOOD ESTIMATION USING

GRADIENT-FREE SA

We are interested in maximizing J (θ) with respect to

the m-dimensional parameter vector θ. The function J (θ)
does not admit an analytical expression. Additionally, we do

not have access to it. Using the geometric ergodicity of the

Markov chain {Zn}n≥0, J (θ) can be approximated in the

limit as follows,

J (θ) = lim
n→∞

{
Jn (θ) � Eθ,θ∗ [r (Zn)]

}
, (13)

where the expectation is taken with respect to the distribution

of Zn. This implies that although J (θ) is unknown, we have

access to a sequence of functions Jn that converge to J (θ).
One way to exploit this sequence in order to optimize J(θ),
is to use a recursion as follows,

θn = θn−1 + γn∇̂Jn (θn−1) (14)

where θn−1 is the parameter estimate at time n−1 and ∇̂Jn

denotes an estimate of ∇Jn (preferably unbiased) 1. The

1For a real valued function y = f (x) of the row vector x =
[x1, . . . , xn], the operation ∇xf (x) will denote the row vector of the

partial derivatives of f (x), i.e. ∇xf (x) =
[

∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

]
.

idea is that we take incremental steps to improve θ where

each step uses a particular function from the sequence. Under

suitable conditions on the step size, the above iteration will

converge to ϑ∗ [10].

We will consider the case where the expression for the

gradient of Jn is either not available or too complex to

calculate. Note that analytic expressions for the model in

(8)-(9) are not always available and without which, the

gradient of Jn cannot be derived. One may approximate

∇̂Jn (θ) by recourse to finite difference methods. These

are “gradient-free” methods that only use measurements of

Jn (θ). The idea behind this approach is to measure the

change in the function induced by a small perturbation Δθ
in the value of the parameter. If we denote an estimate

of Jn (θ) by Ĵn (θ)2, one-sided gradient approximations

consider the change between Ĵn (θ) and Ĵn (θ + Δθ), while

two-sided approximations consider the difference between

Ĵn (θ − Δθ) and Ĵn (θ + Δθ). In cases where it is possible

to obtain samples from (1) for any θ but the functional form

fθ ( ·| ·) is unknown, then a gradient-free approach is the only

possibility. On the other hand, even if a gradient can be

derived, it is often the case that gradient calculations are very

involved. A gradient-free approach can provide a maximum

likelihood parameter estimate that is computationally cheap,

as well as very simple to implement. In principle however,

if direct measurements of the gradient can be computed with

reasonable effort, gradient-based methods should be used.

A. Finite Difference Stochastic Approximation

The classical method for gradient-free optimization is the

Kiefer-Wolfwitz FDSA technique introduced in 1952 [7].

In this approach, each component of θ is perturbed one

at a time and the corresponding changes in the objective

function are used to approximate the gradient. In the two-

sided case, the μth component of the gradient estimate

∇̂Jn (θ) =
[
∇̂Jn,1 (θ) , . . . , ∇̂Jn,m (θ)

]
is given by

∇̂Jn,μ (θ) =
Ĵn (θ + cneμ) − Ĵn (θ − cneμ)

2cn
,

where eμ denotes a row vector of size m with the value ‘1’ in

the μth entry and ‘0’ elsewhere and {cn}n�1 is a sequence

of small positive numbers that typically get smaller with time

n. Exact conditions on the choice of the step sizes are given

below. The motivation behind the FDSA approach can be

easily understood by observing that in the limiting case it

leads to the standard definition of the gradient as a vector

of partial derivatives, i.e. ∇θJ (θ) =
[

∂J(θ)
∂θ1

, . . . , ∂J(θ)
∂θm

]
.

Note that for each gradient estimate, the two-sided FDSA

method requires 2m cost function evaluations, where m is

the dimension of the gradient vector. Similarly, the one-sided

version would need m+1 evaluations. In scenarios where m
is large, it is therefore judicious to consider more efficient

methods such as the SPSA technique.

2In order to obtain an unbiased estimate of Jn (θ) we may simulate the
Markov Chain until time n, with a fixed value of θ, and use r(Zn). This
is a standard approach [14] that we adopt in this paper. See also Remark 1.
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B. Simultaneous Perturbation Stochastic Approximation

The key feature of the SPSA technique is that it requires

only two measurements of the cost function regardless of

the dimension of the parameter vector. This efficiency is

achieved by the fact that all the elements in θ are perturbed

together. The μth component of the two-sided gradient

approximation ∇̂Jn (θ) =
[
∇̂Jn,1 (θ) , . . . , ∇̂Jn,m (θ)

]
is

given by

∇̂Jn,μ (θn−1) =
Ĵn (θn−1 + cnΔn) − Ĵn (θn−1 − cnΔn)

2cnΔn,μ

where Δn � [Δn,1, . . . ,Δn,m] is a random perturbation

vector and {cn}n�1 is defined as before. Note that the

computational saving stems from the fact that the objective

function difference is now common in all m components of

the gradient approximation vector.

Almost sure convergence of the SA recursion in (14)

is guaranteed if J (θ) is sufficiently smooth (several times

differentiable) near ϑ∗. Additionally, the elements of Δn

must be mutually independent random variables, symmetri-

cally distributed around zero and with finite inverse moments

E

(
|Δn,μ|−1

)
. A simple and popular choice for Δn that

satisfies these requirements is the Bernoulli ±1 distribution3.

Furthermore, the positive step sizes should satisfy

γn −→ 0, cn −→ 0,
∞∑

n=1

γn = ∞ and

∞∑
n=1

(
γn

cn

)2

< ∞.

See [17] for more details on convergence conditions.

The choice of the step sequences is crucial to the perfor-

mance of the algorithm. Some guidelines on the general form

of the step sequences and some typical choices that have been

found effective for particular applications are discussed in

[18] and [19]. Note that if a constant step size is used for γn,

the SA estimate will still converge but will oscillate about the

limiting value with a variance proportional to the step size.

In most of our simulations γn was set to a small constant

step size that was repeatedly halved after several thousands

of iterations. For cn we used a decreasing sequence of the

form cn = c
nτ , where c and τ are non-negative coefficients.

C. Convergence Acceleration

A number of convergence acceleration methods can be

used to improve the performance of the algorithms. These

are discussed below.

a) Common Random numbers: In gradient-free SA

methods, the gradient approximation is the difference of two

objective function measurements, each based on a different

realization of the same system. For the two-sided SPSA

case for example, these would be Ĵn (θ + cnΔn; ω+
n ) and

Ĵn (θ − cnΔ; ω−
n ), where ω+

n and ω−
n denote the randomness

of each realization. This implies that besides the desired

objective function change induced by the perturbation in θ,

there is also some undesirable variability in ∇̂Jn (θ) due to

the underlying randomness ω±
n . Although in a real system

3Note that the uniform and the normal distributions do not satisfy the
finite inverse moment condition and are therefore unsuitable.

ω±
n cannot be controlled, in simulation settings it might be

possible to eliminate the undesirable variability component

by using the same random seeds at every time instant n, so

that ω+
n = ω−

n . This common random numbers idea leads

to faster convergence of the algorithm [8]. Common random

numbers were used in all our simulations.

b) Adaptive steps: The SA of (14) can be thought of

as a stochastic generalization of the steepest descent method.

Faster convergence can be achieved if one uses a Newton-

type SA algorithm that is based on an estimate of the second

derivative of the objective function. This will be of the form

θn = θn−1 − γn

[
∇̂2Jn (θn−1)

]−1

∇̂Jn (θn−1) , (15)

where ∇̂2Jn is an estimate of the negative definite Hessian

matrix ∇2Jn. Such an approach is particularly attractive in

terms of convergence acceleration, in the terminal phase of

the algorithm, where the steepest descent-type method of

(14) slows down. The main difficulty with second order

methods is the fact that the estimate of the Hessian should

also be a negative definite matrix. This is usually ensured

by projecting the Hessian estimate onto the set of negative

definite matrices, before using it in (15); see [2].

Finite difference methods are usually the only practical

choice for the Hessian estimate since extensions of gradient-

based methods to second order derivatives are in general

non-trivial. A simultaneous perturbation-based second order

algorithm has been proposed in [20]. The method estimates

the Hessian using a recursion that runs in parallel with

the SA of (15) and computes the running average of the

Hessian estimates. The algorithm requires only a small

number of cost function evaluations that, as in the standard

SPSA algorithm, are independent of the dimensions of the

parameter vector.

c) Perturbation averaging: As it was suggested in

[17], it might be useful to average several simultaneous

perturbation gradient approximations at each iteration, each

with an independent value of Δn. Despite the expense of

additional objective function evaluations, this can reduce the

noise effects and accelerate convergence.

D. Parameter Estimation using FDSA and SPSA

In this section we present two maximum likelihood pa-

rameter estimation algorithms within the SMC framework

that are based on a two-sided FDSA and a two-sided SPSA

method. In line with our objectives, the algorithm below

only requires a single realization of observations {Yn}n≥1 of

the true system (8)-(9). Furthermore, the algorithm operates

in an on-line fashion and does not need to revisit the past

observations.

At time n − 1, we denote the current parameter estimate

by θn−1. Also, let the filtering density pθ0:n−1 (xn−1|Y0:n−1)
be approximated by the particle set X

(1:N)
n−1 having equal

importance weights. Note that the subscript θ0:n−1 indicates

that the filtering density estimate is a function of all the

past parameter values. The FDSA/SPSA algorithms at time

n proceed as follows:
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Recursive Parameter Estimation using FDSA/SPSA
(Execute option 1 for FDSA or option 2 for SPSA)

Option 1: Gradient approximation using FDSA

• For each parameter component μ = 1, ..., m and
- for each particle i = 1, ..., N , sample

X̃
(i)
n,μ+ ∼ qθn−1+cneμ

(
· | Yn, X

(i)
n−1

)
,

X̃
(i)
n,μ− ∼ qθn−1−cneμ

(
· |Yn, X

(i)
n−1

)
and using (4) evaluate
aθ

(
Yn, X̃

(i)
n,μ+ , X

(i)
n−1

)
, aθ

(
Yn, X̃

(i)
n,μ− , X

(i)
n−1

)
.

• Evaluate ∇̂Jn,μ (θn−1) =
̂Jn(θn−1+cneμ)−̂Jn(θn−1−cneμ)

2cn

where Ĵn (θn−1 ± cneμ) =
log

{
1
N

∑N
i=1 aθn−1±cneμ

(
Yn, X̃

(1:N)
n,μ± , X

(i)
n−1

)}
.

Option 2: Gradient approximation using SPSA

• Generate random perturbation vector Δn.
• For i = 1, ..., N , sample

X̃
(i)
n,+ ∼ qθn−1+cnΔn

(
· | Yn, X

(i)
n−1

)
,

X̃
(i)
n,− ∼ qθn−1−cnΔn

(
· | Yn, X

(i)
n−1

)
and using (4) evaluate
aθ

(
Yn, X̃

(i)
n,+, X

(i)
n−1

)
, aθ

(
Yn, X̃

(i)
n,−, X

(i)
n−1

)
.

• Evaluate ∇̂Jn,μ (θn−1)=
̂Jn(θn−1+cnΔn)−̂Jn(θn−1−cnΔn)

2cnΔn,μ

where Ĵn (θn−1 ± cnΔn) =
log

{
1
N

∑N
i=1 aθn−1±cnΔn

(
Yn, X̃

(1:N)
n,± , X

(i)
n−1

)}
.

Parameter update step

• θn = θn−1 + γn∇̂Jn (θn−1), where

∇̂Jn (θn−1)
[
∇̂Jn,1 (θn−1) , . . . , ∇̂Jn,m (θn−1)

]
.

Particle Filter
• For i = 1, ..., N , sample X̃

(i)
n ∼ qθn

(
· | Yn, X

(i)
n−1

)
and evaluate the weights ã

(i)
θn,n using (5), (6).

• Sample I
(1:N)
n ∼ L

(
· | ã

(1:N)
θ,n

)
using a standard

resampling scheme.
• Set X

(1:N)
n = H

(
X̃

(1:N)
n , I

(1:N)
n

)
.

Remark 1: For a Markov Chain {Zn}n≥0with a fixed initial

distribution and a transition density parameterized by θ, an unbiased

estimate of Eθ,θ∗ [r (Zn)]is obtained by simulating the chain until

time n, while holding θfixed, and using r (Zn). In our problem,

θis the parameter we are estimating recursively and will not be

fixed. However, since θchanges slowly, a standard approach is to

reuse the trajectories Z0:n−1that were simulated with θ0:n−1and

still use r (Zn)as the estimate [14].

Remark 2: Even if θn−1 ∈ Θ, the perturbed values θ̃n =
θn−1 ± cneμin the FDSA or θ̃n = θn−1 ± cnΔnin the SPSA

case may not lie in Θ. A similar problem may arise for the updated

value θn. A standard approach to prevent such divergence is to

reproject the parameter value inside Θ =
∏m

μ=1

[
θmin

μ , θmax
μ

]
.

For the perturbed values, reprojection can be applied by modifying

the step size cnaccordingly, in both sides of the perturbation. For

the parameter update, standard reprojection can be performed.

V. APPLICATIONS

A. Example 1: Linear Gaussian State-Space Model

Let us consider the following linear state space model

Xn+1 = φXn + σvVn+1, X0 ∼ N
(

0,
σ2

v

1 − φ2

)
Yn = Xn + σwWn

where Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) . We are inter-

ested in estimating the parameter vector θ � [σv, φ, σw] . Us-

ing N = 1000 particles, the true parameter vector was set to

θ∗ � [0.2, 0.9, 0.3] and was initialized at θ0 � [0.5, 0.4, 0.5].
Results using the FDSA and the SPSA algorithms are shown

in Figure 1. In both examples, our estimates converge to a

value θ̂ in the neighborhood of θ∗.
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(a) FDSA estimates
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(b) SPSA estimates

Fig. 1. On-line parameter estimates θn = [σv,n, φn, σw,n] for the
linear Gaussian model using FDSA and SPSA, with N = 1000 particles.
From top to bottom: φn, σw,n and σv,n. The true parameters were
θ∗ = [0.2, 0.9, 0.3].

B. Example 2 : Stochastic Volatility Model

We consider a discrete-time approximation of a popular

diffusion model used in option pricing. The model is given

by
Xn = φXn−1 + σVn, X0 ∼ N

(
0,

σ2

1 − φ2

)
Yn = β exp

(
Xn

2

)
Wn

where Vn
i.i.d.∼ N (0, 1), Wn

i.i.d.∼ N (0, 1) and the unknown

parameter vector is set to θ � [σ, φ, β]. The true parameter

values were chosen to be θ∗ � [0.6, 0.9, 0.7]. Parameter

estimation using the SPSA algorithm was performed using

N = 1000 particles. Figure 2 shows the results. As it can

be seen, the algorithm converges towards a value around

θ∗. The step sizes were set to cn = c0/n0.101, with c0 =
[0.02, 0.01, 0.02] and γ = [5, 5, 5] × 10−3, where γ was

halved every several thousands of iterations.

C. Example 3: A Bimodal Non-linear Model

We use the following standard dynamic model [3], [6]

Xn = θ1Xn−1 + θ2
Xn−1

1 + X2
n−1

+ θ3 cos (1.2n) + σvVn,

Yn = cX2
n + σwWn,

where σ2
v = 10, c = 0.05, σw = 1, X0 ∼ N (0, 2),

Vn
i.i.d.∼ N (0, 1) and Wn

i.i.d.∼ N (0, 1) . Here we seek
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Fig. 2. On-line parameter estimates θn = [σn, φn, βn] for the Stochastic
Volatility model using SPSA and N = 1000 particles. From top to bottom:
φn, βn and σn. The true parameters were θ∗ = [0.6, 0.9, 0.7].

maximum likelihood estimates of θ = [θ1, θ2, θ3]. This is

a complex problem with a highly multimodal likelihood.

Therefore it is important to initialize the algorithm properly,

else some of the parameter estimates might get trapped in

local maxima. We set the true parameter values to θ∗ =
[0.5, 25, 8, ] and we initialize at θ0 = [0.2, 20, 5] . Figure 3

shows the results obtained using SPSA; convergence towards

θ∗ is again evident. As it was mentioned earlier, the choice

of the step sizes is critical to the performance of the SPSA

algorithm. In this example this is particularly true due to the

difference in the relative sensitivity of the three unknown

parameters. The results presented are based on a perturbation

step size cn = c0/n0.101, where c0 = [0.02, 2.5, 1] × 10−4.

For the parameter estimate we have chosen a constant step

size γ = [0.004, 6, 15] × 10−4.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10

x 10
4

18

20

22

24

26

0 1 2 3 4 5 6 7 8 9 10

x 10
4

4

6

8

10

Time Steps

Fig. 3. On-line parameter estimates θn = [θ1,n, θ2,n, θ3,n] for the
bimodal nonlinear model using SPSA and N = 1000 particles. From top to
bottom: θ1,n, θ2,n and θ3,n. The true parameters were θ∗ = [0.5, 25, 8].

VI. DISCUSSION

In this paper we have proposed fast and simple gradient-free

methods to perform on-line maximum likelihood parameter

estimation in general state space models, using SMC filters.

The methods are based on measurements of the objective

function and do not involve any gradient calculations. The

SPSA method is particularly attractive over the FDSA due

to its reduced computational complexity that remains fixed

with the dimensions of the parameter vector. However, its

performance is very sensitive to the step size parameters and

special care should be taken when these are selected.
Simulation results demonstrate that the methods are effective

and at the same time very computationally efficient compared

to gradient-based methods. Nevertheless, if one decides to

allow for more resources and use a gradient-based approach,

the gradient-free algorithms proposed here can still prove ex-

tremely useful in exploring the parameter space and choosing

suitable initial values for the parameter vector.
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