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Abstract— A method of dynamic optimization using simulta- We consider a class of dynamic optimization problems com-
neous perturbation principle is proposed and illustrated with nu-  monly referred to as extremum seeking problems. We limit our-
merical examples. The method is developed from a simultaneous- selves to the dynamic optimization problems with the following
pertL_er_ation stochastic approximation (_SPSA) recursive algorithm properties: (i) for the cost functiod(x(t)), whenz(t) is held
and is |n_tend_ed for problems with contmt_Jous mgasqrements. The  ~onstant there exists a steady-state tifnguch that fort > 7',
method is suitable for large scale dynamic optimization problems. J is almost constant, that i%]\ < ¢5, wheree, , is a small

Problems requiring continuous measurements appear, for example, .\ ber. Wi h frt . h
in the area of neurocontrol, where, for some algorithms, the updates positive number. We assume that affertime units, the cost

of the network gains depend on the integral of the square tracking J(x(t)) is constantas |0ng asits ,afgumem).is hel.d constant;
error with respect to time. A method of dynamic optimization (i) J is a continuously differentiable function with respect to

using simultaneous perturbation principle is proposed and illus- x, satisfying the condition||V.J(z(kT)) — VJ(y(kT))| <
trated with numerical examples. The method is developed from L||z(kT) — y(kT)||, for some positive constant. Another

a simultaneous-perturbation stochastic approximation (SPSA) re- property of dynamic optimization problems that is similar to
cursive algorithm and is intended for problems with continuous  the stochastic approximation problems is that an exact analytic
measurements. The method is suitable for large scale dynamic opti- form of .J is not known, but the values of can be measured.

mization problems. Problems requiring continuous measurements The cost function/ can be regarded as a dynamic-map with
appear, for example, in the area of neurocontrol, where, for some . - T d For thi
algorithms, the updates of the network gains depend on the integral n-inputs, z(t) = [z1(t)---2.(t)]" , and one output. For this

of the square tracking error with respect to time. reason we sometimes denote the dynamic cost(as

I. MOTIVATION AND PROBLEM STATEMENT II. DEFINITIONS AND NOTATION

A common objective in stochastic approximation problems is The following notation is used throughout the paper. A space

to minimize a cost function/ (x), whose exact analytic expres- of real vectors is denote®™. A vector of real parameters is

sion is unknown but whose noisy measurements are available, .o oo € R™. Thei—th element of: is denoted as;. An

To solve this class of problems, we usually employ recursivien er product of two vectors andy in R” is given by(z, y) =

gradient-descent type of algorithms, which are classified basgn 2:y:. The norm ofz, |||, is given by(x x>%
on the methods used to determine descent directions. An algé=i=! i ' 1S9 A, '

rithm known as the finite-difference algorithm usas pertur- gesfﬁ?eléegge{fér}ff;[f}. t.iir’l;ijritsRé Igr?::: S:Crz tz:(rjne q
bations ofJ(z), z € R", two perturbations for each of the q y P g

variables, to determine a descent direction. On the other harg a discrete-time signal/functian.. An inner product of two

a simultaneous perturbation stochastic approximation (SPS screte time signals;. andyy, over the interva(nT, mT)], n <

. . _ k=m . . .
recursive algorithm needs only two perturbations of the decisio” "> 9"&" aslze, yx) = 37, @ryx- This signal space s
n ; o . : also known ag (nT, mT].
vectorz € R". The perturbation used in this algorithm is ran- . . . . .
Consider a space of continuous integrable functions in an

dom. Descent direction is consequently randomly determined. lla.b] denoted ad..la. bl. An el tin thi .
However, in each step of the search process, the algorithm usﬁ&ewa [a, 8] denoted adlz[a, b]. An element in this space is

a method to generate a descent direction. Analytical studi enoted.as:(t). € Lofa, b]. An |nnerpr8duct ofe(t) andy(t) in

have shown that the SPSA algorithm provides a significarit2(@: 0l is defined asa (), y(1)) = faf”(t)y(t)dt' The norm
improvement in terms of the number of required computation8f z(t), [|z(?)]], is given by(z(t), z(t)) 2.

for large scale optimization problems. Impressive results of the Two vectorsz andy, wherez € R™ or x € Lsla,b] are
use of the SPSA on large scale problems can be found in [10}rthogonal if (z,y) = 0. Two vectorsz andy are almost
[11]. orthogonal if|(x, y)| < ¢, wheree is a small positive number.

In this paper, we present a SPSA-based approach to con-Two vectorsz and y are aligned if(z,y) = ||z|/|y].
tinuous time dynamic optimization problems. Specifically, weTwo vectorsz andy (or, z(t) andy(t)) are almost aligned if
address the question of how to design a network that employéz, y) — [|z||||y||| < €, wheree is a small positive number.
the SPSA principle to solve large scale dynamic optimization The notions of inner product, norm, orthogonality and align-
problems using continuous time measurements. Our proposetent, as well as the parallelogram law are discussed in more
approach can be employed to the design of a neurocontroller detail in [4].
an approximating architecture for solving approximate dynamic A piecewise constant signalz;(t) on the interval
programming problems. We will elaborate on the term dynami¢kT’, (k + 1)T') is defined as:x () = xp, kT < t < (k+1)T.
optimization in the problem statement below. This signal is held constant over this interval. Note that
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xr € R™. Thereforexy(t) is a vector whose: components
are piecewise constant functions.

For a functionJ : R™ — R, a pseudo-gradient af(z) at a
point Z is a vectors(z) € R" such that(VJ(z),s(z)) > 0,
i.e., the vector(z) forms an acute angle with the gradientbf

at the point ofz. The vector—s(z) is consequently a descent
direction. For a discussion pertaining to the pseudo-gradient and

its use in optimization problems, we refer to [7].
A nonlinear dynamical system with the state vectat R™,
inputu € R™, and output/ € R, described by the equations,

fr(=(t),u(t))
hJ(z(t)a u(t)),

1)
)

is in an equilibrium state whenevey (z(t), u(t)) = 0. At the

J(t)

A. The SPSA Algorithm in an Inner Product Form

The SPSA algorithm that can be used to recursively estimate
the minimizer of a cost function/(z) based on its noisy
measurements has the form ([15]),

+ —
Y — Yy
=P d
2Ck k)

LTk+1 — Tk — Ak (8)
where bothaj, and ¢, are positive scalars], is a vector of

the same dimension as, y;* and y; are one dimensional
vectors (that is, scalars) of noisy measurements of the function
J perturbed at two distinct points. In the SPSA algorithm, these
measurement vectors are defined by

J(l‘k + dek) + 6;7
J(xp — cndi) + ey,

9)
(10)

Yr
Yr

equilibrium state, the corresponding state and input vectors are
denoted:, andu,. The equilibrium state, can be expressed as wheree;” ande; are additive measurement errors. We note that,

a function ofu,, zo = ¢zu(uo). Thereforep = f(zo,uo) =
fi(¢zu(uo), uo). When there exists small variation in,, and
another equilibrium state is reached, the variatiolfi ofs given
by

09 00uuy Oy

0= 0fs(z0,u0) = 0z Ou ou

The gradient of/ with respect to the input variabteevaluated
at the equilibrium input:, is denotedv,,J and is given by

Su + 3)

-1 afj

ou

Oh s

= ( ou’ “)

T ofs
Vud (uo)” = 5= *)

Bz
where the second equality is obtained by compuiihgdu
from (3). Note that the partial derivative8h;/0z € R'*™,
Ohy/Ou € RY™*", 0f;/02z € R™*™, 8f;/0u € R™*" are

evaluated at, andu,. Whenu is perturbed by, the variation
of J(t) due to the perturbatiof is given by

_ Ohys. . Ohs 2
J(t) = hy(z0,u0) + 5 0z + 5 du+ o(||oul]”), (5)
wheredz is the solution of the differential equation,
ds _0frs . Ofs
dt§z =5 0z + D ou. (6)

Whendf;/0z is stable and invertible, the solution is given by

t
e%(t—ﬂd(_%T) <_%)
‘" 0z 0z

-1
%&L.

0=(t) ou

@)

be
Note that all partial derivatives in equations (5) and (6) are evabri

uated atz, andu,, and the perturbatiofu is constant on the

in the above algorithm, the cost function is static, thatiis,
R™ — R. A distinctive feature of the SPSA algorithm is that
dr € R™ is arandom direction vector witfy,, = +1 generated
using the symmetric Bernoulli distribution.

Remark 1: In [15] and [9], the measuremeny;j/* are
represented a$(zx + cxri), Wherery, = (dki)*l. However,
becausel,, = +1, we havedy, = (dx,) ™" = 7%, .

To proceed, we represent the SPSA algorithm as follows,

+ —
- Y
Thy1 = wk—akkafkdk
%
+
— _ Ok Yr 1 d
e (2] 2]
—— N —
=Yk =dm,,

The recursive algorithm now constitutes a discrete-time dy-
namic system for parameter update with an inner product term
of two vectors inR?. The elements af, which arey;” andy,,

are sequentially measured ev@ryime units.

We next express the recursive algorithm SPSA in terms of
an inner product of two discrete-time signals in the interval
(KT, (k 4+ 2)T], which will then be used to devise an SPSA-
type of algorithm for the elements ifiz[a, b] on the inter-
val (KT, (k + 2)T)]. To proceed, consider two discrete-time
sequencesy { yx;tp Yp_1s yljr Yg s yl:+17 Yer1 '}Tv
which is a sequence of measurements, and an alternating se-
quenced,, = {---,+1,—1,+1,—1,---}7. The above two se-
quences constitute discrete-time signals. det= [v;", v, | r
a segment of discrete-time signalwherey;” is available
or to y, . Similarly, letd,,, = [+17—1}T be a segment
of d.,. Using the discrete-time segment signals,and d., ,

time interval[t,, t]. We mention that the above manipulationsyne recrsive algorithm SPSA can be represented in terms of an

follow the arguments that can be found, for example, in [3

pages 52-57].

Ill. SIMULTANEOUS PERTURBATION EXTREMUM SEEKING
NETWORK

In this section, we present the development sifaultaneous
perturbation extremum seekit§PES) network using continu-
ous measurements.

inner product of two discrete-time signals on the time interval
(KT, (k + 2)T] as follows,
ak
- - 5 dm d 5
Thil =Tk~ 5 (Y, iy, ) die
where the inner-product in the above algorithm is defined on
l2(kT, (k + 2)T). Note that the parameter update period1s
We now wish to extend the above paradigm to the case in

which we use continuous time measurements and a periodic
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alternating signal to construct an inner product term in théy equations (1)—(2) where the inputig(t). The functionJ(t)
recursive equation. We define the following signals, driven by the inputcy, (¢) + crdrdm (t) is N0 longer a piecewise
constant signal.
< . .
dm(t) = { "_Fi’ Ig; ](C]€T+—1§T<<(kt+<1()g+ 0T (11) To proceed, we expand(t) into a Taylor series, on the
’ - interval [T, t], driven by the inputz, (¢) + crdrdm(t),

and
J(t) = J(kT) + crdm (t)di VI (KT) +64r () + 0| dm () ||*),
o (t) = y, for kT <t<(k+1)T (12) (15)
Yy, for (k+1)T <t<(k+2)T where the gradientVJ(kT) corresponds to the input
Using the above two signals, we express the SPSA algorithm & (K1) =, Tk and is given by VIED)T =
an S (—8f2) 2 4 2R The transient term o,
Thy1 = Tp — ﬂnﬂyk(t%dm(t))dm (13 is given by 8 (t) = —VJIGET) crdpdm(t) +

of _

where 7, is a correction factor used to maintain equalitny;:Te 22 (=g [_%T] [—%] ' %{fd] crdrdm(t).
between equations (8) and (13). In equation (8), the inneifhe above three expressions are derived from equations (5), (4)
product is onR?, while in equation (13) the inner-product is and (7), where we set = x anddu(t) = crdrdm(t). Note
in Lo[kT, (k + 2)T]. The update period of this discrete-time that att = kT the system generating(t) is in an equilibrium
procedure remaing7. The subscriptk in the signaly,(t)  state. Each term on the right side of (15) is assumed to be
indicates that it is a piecewise constant signal. (Note that, ipontinuous. The transient portion dft) is lumped ind;.(t).
the section on the dynamic optimization network developmengach signal with the transient present in it is decomposed into
we usey(t) instead ofyy (¢) to emphasize the fact that we dealtwo components, the transient and steady-state components,
with continuous signals.) thatis,J(t) = Jur(t) + Jss(t). We assume that the length of

Because a piecewise constant sigpa(t) is used in the the transientigi,. = AT, A € (0, 1). We design a continuous
recursive equation (13), we need to modify the arguments of tHéme signald,(t) so that it is orthogonal to the signéj. (¢) and
cost functionJ. In equations (9) and (10), the arguments can baligned withJ.(t). The signalds(t) must also be orthogonal
viewed as discrete time signals. To generate the piecewise cdp-constant signals. Multiplying both sides of equation (15) by
stant signaly (¢), the arguments of must also be piecewise dq(t) and integrating the result from = kT tot; = (k+2)T,

constant signals, we obtain
tf
yr(t) = J (2 (t) + cudrdm (1), (14) / J()da(t)dt = 2(1 — N\ TerdE VI (KT) + Asn(t), (16)
wherez (t) is a piecewise constant signd), € R™ is a vector b ) ) _
of random direction whose elements aré and are generated Where — the  first  term  is  obtained  from

using the symmetric Bernoulli distribution as before, ap(t) ~ cxdk VI (KT) f;f da(t)dm(t)dt and the second term
is a square wave signal (see equation (11)) with a p@iad A« (t) is an integral of the transient portion of (t),

The signali,d.(t) is a square wavé,, (t) modulated byl,,  Aw(t) = f:,f dq(t)der (t)dt. The magnitude of the integral
a random direction vector. This randomly modulated signal is af the transient is bounded, that i, (£)] < €. Note
distinctive feature of the proposed network. The sighal,,(t)  that the termsJ(kT") and VJ(kT) on the right hand side
simultaneously perturbs all argumentsifr, (¢)). The pertur- of equation (15) are constant on the interjiel’, (k + 2)T
bation of J(x(¢)) in this fashion can also be interpreted as abecause they are determined from the equilibrium state at
single-frequency perturbation by a vector of square waves with = kT (see equations (5), (4), (7)). Also note that the inner
uniform magnitudes and random phase shifts randomly selectgdoduct ofd,(t) with constant signals is zero on the interval
using the Bernoulli distribution from the séd, 7 }. [KT, t]. For this reason, we excludé.J(kT') from the integral

In the above discussions, the cost functibwas considered and remove constant terms from equation (16).
a static map that exhibits no transient. As mentioned earlier, The integration in equation (16) constitutes demodulation as
problems in dynamic optimization or extremum seeking aravell as an inner product of (¢) anddy(t). Through this inner
no longer concerned with static cost functions. In dynami@roduct, we obtain the information of directional derivative
optimization problems transients are present, the shape of thongd.. Recall that the recursive SPSA algorithm has an inner
cost function, or the performance surface, changes with time. fproduct term. Substituting the inner product of equation (16),
the next section, we present methods that allow us to emplayives an algorithm/network that can be applied to solve contin-
the framework of the SPSA to the extremum seeking problemsous time dynamic optimization problems. A block diagram of
using continuous measurements. the simultaneous perturbation extremum network is shown in
Figure 1.

B. SPES Network Using Continuous Measurements The network is described by the equations,

The SPSA algorithm belongs to a class of algorithms that

employ a pseudo-gradient in search of an optimizer. Perturba- a(t) = @, KT <t < (k+2)T(17)
tions of the cost function are necessary to obtain a proper sign y(t) = J@) +o(t) (18)
of di. so thatz, progresses along a descent direction. In the ﬁj(kT)‘ = sp 4w (19)
problems of extremum seeking, is viewed as an output of a u=ak(t)

dynamic system and, as such, it is a function of time, that is, sko= 2(1—N)Tepdy, VJ(KT)dy,

J = J(t). A dynamic system that generatéét) is described wr = Ap(t)dg
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pi ecevi se_constant | o YHame _f*\v(t) perturbation as well as parameter update under the influence of
stonal I(x(1)) the measurement noise/error. Convergence results of stochastic
> approximation methods require that diminishing gains should
xt) [270] % [[paramecer oigde pe used. iny under certain circumstances, constant update gain
Update Gener at or is appropriate.

The proposition below gives conditions that guarantee the
convergence of the proposed method. The result is of determin-
istic nature and it is adapted from the deterministic analysis of

hol d
igkdmm

Tdn(,t)

‘vﬁ

T

Peri odi ¢ Random convergence of the gradient method with the error as presented
etnerator | | conerator in [2]. The results in [14], [15] also provide a deterministic

convergence analysis of the recursive stochastic approximation
algorithms.

Proposition 2: (SPES Convergence Using Sequence of De-
creasing Gains)n a simultaneous perturbation extremum seek-
ing method with continuous measurements given by equa-
tions (17)—(20) used to minimize the dynamic performance

Fig. 1. A simultaneous perturbation extremum seeking network.

(

(k+2)T

v(t)dq (t)dt) dy,

T

Tipr = ok = Ye(sk o+ wh), 20)  surfaces(t), if
where v, = ai/2cr constitutes parameter update gain, 1) J, = J(zx) = J()|i=oxr, VJ = VJ(z) =
VJ(kT)‘u:Ik is a descent direction vector of the dynamic Vj(t)| -
cost functionJ (kT") due to inputu = z(t) corrupted by the 2) IV (zk) = VI (zr41)|| < Ll|lzk — ot
measurement nois&t) and by the computational errors, is 3) 1| VJ(zk)|]* < VI (zk)" sk,

4)
5)

l[skll < c2(1 + [V (x)]]),

the pseudo-gradient vectoers;. is the descent direction vector,
andw;. lumps both the effect of the measurement noises&and the update gainy is positive and satisfieg;":0 Y
from equation (16). 00, Yool Mk < 00,

Remark 2: It was mentioned earlier that the perturbationthen the network generates a sequenceofuch that either
method used here can be viewed as a single-frequency pertyrtx, ) — —oo or elseJ(x) converges to a finite value and
bation ofn-variables. This approach differs from the existingjim,,_, .. V.J(zx) = 0. Furthermore, every limit point of, is
extremum-seeking methods (for example, in [1], [6]) which em3 stationary point off ().
ploy multi-frequency sinusoidal signals. Using only one singleproof: See [5m
frequency wave generator significantly simplifies the design \we next consider a special case where the magnitude, of
process as well as the resulting network implementation. is bounded by the magnitude mj(wk), for which we can use
constant gainy, = .

Proposition 3: (SPES Convergence Using Constant G&in)
a

- . - : simultaneous perturbation extremum seeking method with
proposed algorithm. The algorithm convergence is shown in two

stages. First, we show that the method is capable of extractir%) nra?nﬂ;?jenlﬁgsgrigg?és g;\r/]% r:n:)gngzlen;lfrzfg)&e: ’zé);jsffd
the pseudo-gradient from the dynamic cost function. Next, y P TRy

we "
show that the discrete-time recursive parameter update genggndltlons 1-3 from Proposition 2 hold and
ates a sequence such thatapproaches a stationary point, that

IV. CONVERGENCEANALYSIS
In this section, we analyze convergence properties of the

4 skl < c2a(IVI (k)]
is, limg—o0 z = 2°, whereVJ(z°) = 0.
Proposition 1: (Pseudo-Gradient Extraction)f c; is se-
lected so thaty||V.J(KT)" dx|| > 5557, then the demod-

5) llwkll < csl|VJ(@k)ll cs < ea,
6) the update gainy satisfied) < v <

c1—c3
(e3+c3)L”
then the network generates (i) a descent direction, and (ii)

a sequence of, such that eitherJ(zx) — —oo or else
J(xy) converges to a finite value adiny ... VJ(zr) = 0.
Proof: See [5]m Furthermore, every limit point of; is a stationary point of

Proposition 1 indicates the minimum value of for a  J(zy).
suitable pseudo-gradient generation. When this condition Broof: See [5]m
violated, the demodulation process does not yield a descent
direction. It is also important to note that ag approaches
the neighborhood ofz° : VJ(x°) = 0}, €. also decreases. In this section, we present two numerical experiments, both
Theorems on stochastic approximation problems in [8], [10]involving nonlinear dynamic problems, to illustrate the use of
[15], generally require that as, — 2°, ¢ — 0. This the SPES method to solving dynamic optimization problems.
implies that the gairc,, should not be too large for the sake The first example illustrates the design process. The second
of convergence, yet at the same time, it should not be too smadkample shows the use of the SPES method when applied to
for the sake of generating a descent direction. a large scale dynamic optimization problem.

We can perform the convergence analysis of the recursive The first problem uses the nonlinear dynamic system de-
parameter update using the results from the field of stochaseribed by equations (5) in [12]. The system state vector is
tic approximation. Convergence in a recursive stochastiddenoteds € R* with inputsz € R? and an outpuy € R.
approximation is determined by proper selection of gains foFor fixed z1, 2, and any initial condition such th#g(0) #

ulation, or the inner-product, of (zx(t) + crdrdm(t)) with
dq(t)dy yields a pseudo-gradient vector.

V. NUMERICAL EXPERIMENTS
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TABLE |
GAINS FOR DIFFERENT CASES IN THE SECOND EXPERIMENT

P ter Pr inO Process

A 2, 2 i
C: {(x,,)I0.25; +5 = 20}

°r : A n Zifl z;(0) =0 aj C T

o2 SPES ~ " " == Wang-Kstic 2 0.5 3 1 0.1 10
b . PR 10 0.5 3 1/5 01 10
T i 30 0.5 3 1/15 0.1 10

3

6L Final-Point x,’ 100 0.5 1/50 0.1 10

Initial Point
-8 I I
0 2 4 6 8 10 12 14 16

Cost Function Progression in Optimization Process
2000 T T T T T

towards the set of optimizing parameters (labeflexhd marked
g with the grey-color oval). Both methods generate sequences of
parameters that convergedoHowever, it is noticeable that the
sequence generated using the method of &estid Wang takes
i ] a longer path to arrive to the neighborhood’ofThe lower plot
N shows the time history of(t) = J(¢) as the search for the
% 4 s e 1 s e 100 oOptimizer progresses. As the sequence generated by the SPES
- [sec] method takes a somewhat shorter path to reach thé,dbe
Fig. 2. Comparison of dynamic optimization using two extremumCorreSponding value qf(t) converges to the neighborhood of
seeking methods. the minimum faster.
The second example is concerned with the minimization of
the phase-portrait orbital size. This problem is discussed in
0 and £4(0) # 0, the states of the system converge to theletail in [13]. The problem can also be viewed as the problem of
attractor A = {¢ € R* : & = %Il,fg = 2,2 + the limit-cycle amplitude minimization. We use a second-order
&2 = (iz% +a2— 20) + 9} which constitutes level sets. nonlinear system, known as the Van der Pol system, which is
The set of minimizers for the performance surface is given bgescribed by the equation,
C = {(x1,22) € R*: 2a% + 2, = 20}. The objective of the
design process is to build an optimizing network that generates
sequences of variables, z» that will drive the output of the \heres ¢ R, f(z) = (Z?ﬂ x; + m0)2. Four different cases
nonlinear dynamical system to its minimal set. are investigated, = 1,2, 3, 4. The setup for this experiment for
To proceed with the design, we first characterize transierdach case is summarized in Table I.
properties of the dynamic system. After collecting several step The results of numerical experiments are plotted in Figures 3
responses, we can determine that the periad,0f) is7" = 4, and 4 for different cases with different dimensionaofSimu-
the period ofd. (¢) and the update rate of; satisfy27" = 8. |ation results indicate that, as the number of the parameters in-
The signaldq(t) is designed in such a way that it annihilatescreases fron to 100, the simultaneous perturbation extremum

f(xl.xz)

w+e[(w7wo)2717f(x)]u')+,u2(w7wo):0,

Jir. The above observations indicate that the signal network can minimize the limit cycle amplitude at a roughly
0, KT <t < kT +3 similar rate irrespective of the number of parameters. Figure 3
1, KT +3<t<(k+1)T shows the evolution of the orbit size (in the phase-plane, that is,
da(t) = 0 k+1D)T <t<(k+1)T+3 the w-w plane) as the search for the optimum progresses. Fig-
_L (k+1)T+3 <t < (k+2)T ure 4 shows the time history of the limit cycle amplituds).

. . . As the number of the parameters increases, the smoothness of

S approprlatg for demodulatlorl pUrpoSes. . the steady-state minimum limit cycle amplitude decreases when
To determine the update gain, we can employ a low gain 5 ¢onstant gain is used in the update mechanism. We conjecture

for v and gradually increase it until we observe a satlsfac’[oryhat a smoother result can be achieved with decreasing the

outcome. In this experiment, a fixed gain=1/300 is chosen iy 45 the limit-cycle magnitude is in the neighborhood of its
after several trials.

. ¢ . o minimum.
The gainc;, is determined ag, = 0.1 because it gives
sufficient distinction in the steady state responses, which is VI. ACKNOWLEDGEMENT
useful in determining the sign of the vectar. We would like to thank Dr. J. C. Spall for his suggestions and

Using the above design parameters, we perform the closegdycouragement, Professor W. A. Crossley for his support, and

loop simulation of the network depicted in Figure 1. AS @professor M. J. Corless for his feedback on technical issues.
benchmark, we simulate the closed-loop dynamics using the

method of Krstt and Wang [13]. Simulation results of this REFERENCES

expgriment are Summarized in Figure 2. In this figure, the tracg 1] K.B. Ariyur and M. Krstic. Analysis and design of multivariable
of signals generated with the SPES method are denoted using  extremum seeking. IProceedings of the American Control
solid lines with the label SPES, while those generated using the = Conferencevolume 4, pages 2903-2908, May 2002.

method of Krstt and Wang are denoted using the dash-dot lined?] D-P(-j_ Betrtselzgsdand_ﬂJ].N. TSitSSI”A‘\"i\j- 5 Gra‘:ie”t Ocopve_rgc;:_nce in
with the abel Wang and Krd gradiert methods with emorsSIAM Journal an Optnizain

The upper plot shows the paths of the parameters in thgs] G.c. Goodwin, S.F. Graebe, and M.E Salgadgontrol System
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