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Abstract— A method of dynamic optimization using simulta-
neous perturbation principle is proposed and illustrated with nu-
merical examples. The method is developed from a simultaneous-
perturbation stochastic approximation (SPSA) recursive algorithm
and is intended for problems with continuous measurements. The
method is suitable for large scale dynamic optimization problems.
Problems requiring continuous measurements appear, for example,
in the area of neurocontrol, where, for some algorithms, the updates
of the network gains depend on the integral of the square tracking
error with respect to time. A method of dynamic optimization
using simultaneous perturbation principle is proposed and illus-
trated with numerical examples. The method is developed from
a simultaneous-perturbation stochastic approximation (SPSA) re-
cursive algorithm and is intended for problems with continuous
measurements. The method is suitable for large scale dynamic opti-
mization problems. Problems requiring continuous measurements
appear, for example, in the area of neurocontrol, where, for some
algorithms, the updates of the network gains depend on the integral
of the square tracking error with respect to time.

I. M OTIVATION AND PROBLEM STATEMENT

A common objective in stochastic approximation problems is
to minimize a cost function,J(x), whose exact analytic expres-
sion is unknown but whose noisy measurements are available.
To solve this class of problems, we usually employ recursive
gradient-descent type of algorithms, which are classified based
on the methods used to determine descent directions. An algo-
rithm known as the finite-difference algorithm uses2n pertur-
bations ofJ(x), x ∈ Rn, two perturbations for each of then
variables, to determine a descent direction. On the other hand,
a simultaneous perturbation stochastic approximation (SPSA)
recursive algorithm needs only two perturbations of the decision
vectorx ∈ Rn. The perturbation used in this algorithm is ran-
dom. Descent direction is consequently randomly determined.
However, in each step of the search process, the algorithm uses
a method to generate a descent direction. Analytical studies
have shown that the SPSA algorithm provides a significant
improvement in terms of the number of required computations
for large scale optimization problems. Impressive results of the
use of the SPSA on large scale problems can be found in [10],
[11].

In this paper, we present a SPSA-based approach to con-
tinuous time dynamic optimization problems. Specifically, we
address the question of how to design a network that employs
the SPSA principle to solve large scale dynamic optimization
problems using continuous time measurements. Our proposed
approach can be employed to the design of a neurocontroller or
an approximating architecture for solving approximate dynamic
programming problems. We will elaborate on the term dynamic
optimization in the problem statement below.

We consider a class of dynamic optimization problems com-
monly referred to as extremum seeking problems. We limit our-
selves to the dynamic optimization problems with the following
properties: (i) for the cost functionJ(x(t)), whenx(t) is held
constant there exists a steady-state timeT such that fort ≥ T ,
J is almost constant, that is,| d

dt
J | ≤ εδJ whereεδJ is a small

positive number. We assume that afterT time units, the cost
J(x(t)) is constant as long as its argumentx(t) is held constant;
(ii) J is a continuously differentiable function with respect to
x, satisfying the condition,‖∇J(x(kT )) − ∇J(y(kT ))‖ ≤
L‖x(kT ) − y(kT )‖, for some positive constantL. Another
property of dynamic optimization problems that is similar to
the stochastic approximation problems is that an exact analytic
form of J is not known, but the values ofJ can be measured.

The cost functionJ can be regarded as a dynamic-map with
n-inputs,x(t) = [x1(t) · · ·xn(t)]T , and one output. For this
reason we sometimes denote the dynamic cost asJ(t).

II. D EFINITIONS AND NOTATION

The following notation is used throughout the paper. A space
of real vectors is denotedRn. A vector of real parameters is
denoted asx ∈ Rn. Thei−th element ofx is denoted asxi. An
inner product of two vectorsx andy in Rn is given by〈x, y〉 =∑n

i=1
xiyi. The norm ofx, ‖x‖, is given by〈x, x〉 1

2 .
A sequence{x1, x2, x3, · · ·}, xi ∈ R, in which each term

is defined sequentially atT time units apart can be regarded
as a discrete-time signal/functionxk. An inner product of two
discrete time signalsxk andyk over the interval(nT, mT ], n <
m, is given as〈xk, yk〉 =

∑k=m

k=n+1
xkyk. This signal space is

also known asl2(nT, mT ].
Consider a space of continuous integrable functions in an

interval [a, b] denoted asL2[a, b]. An element in this space is
denoted asx(t) ∈ L2[a, b]. An inner product ofx(t) andy(t) in
L2[a, b] is defined as〈x(t), y(t)〉 =

∫ b

a
x(t)y(t)dt. The norm

of x(t), ‖x(t)‖, is given by〈x(t), x(t)〉 1
2 .

Two vectorsx andy, wherex ∈ Rn or x ∈ L2[a, b] are
orthogonal if 〈x, y〉 = 0. Two vectorsx and y are almost
orthogonal if|〈x, y〉| ≤ ε, whereε is a small positive number.

Two vectorsx and y are aligned if 〈x, y〉 = ‖x‖‖y‖.
Two vectorsx andy (or, x(t) andy(t)) are almost aligned if
|〈x, y〉 − ‖x‖‖y‖| ≤ ε, whereε is a small positive number.

The notions of inner product, norm, orthogonality and align-
ment, as well as the parallelogram law are discussed in more
detail in [4].

A piecewise constant signalxk(t) on the interval
[kT, (k + 1)T ) is defined asxk(t) = xk, kT ≤ t < (k +1)T .
This signal is held constant over this interval. Note that



xk ∈ Rn. Therefore,xk(t) is a vector whosen components
are piecewise constant functions.

For a functionJ : Rn → R, a pseudo-gradient ofJ(x) at a
point x̄ is a vectors(x̄) ∈ Rn such that〈∇J(x̄), s(x̄)〉 > 0,
i.e., the vectors(x̄) forms an acute angle with the gradient ofJ
at the point ofx̄. The vector−s(x̄) is consequently a descent
direction. For a discussion pertaining to the pseudo-gradient and
its use in optimization problems, we refer to [7].

A nonlinear dynamical system with the state vectorz ∈ Rm,
inputu ∈ Rn, and outputJ ∈ R, described by the equations,

ż(t) = fJ(z(t), u(t)) (1)

J(t) = hJ(z(t), u(t)), (2)

is in an equilibrium state wheneverfJ(z(t), u(t)) = 0. At the
equilibrium state, the corresponding state and input vectors are
denotedzo anduo. The equilibrium statezo can be expressed as
a function ofuo, zo = φzu(uo). Therefore,0 = fJ(zo, uo) =
fJ(φzu(uo), uo). When there exists small variation inuo, and
another equilibrium state is reached, the variation offJ is given
by

0 = δfJ(zo, uo) =
∂fJ

∂z

∂φzu

∂u
δu +

∂fJ

∂u
δu. (3)

The gradient ofJ with respect to the input variableu evaluated
at the equilibrium inputuo is denoted∇uJ and is given by

∇uJ(uo)
T =

∂hJ

∂z

(
−∂fJ

∂z

)−1 ∂fJ

∂u
+

∂hJ

∂u
, (4)

where the second equality is obtained by computing∂z/∂u
from (3). Note that the partial derivatives:∂hJ/∂z ∈ R1×m,
∂hJ/∂u ∈ R1×n, ∂fJ/∂z ∈ Rm×m, ∂fJ/∂u ∈ Rm×n are
evaluated atzo anduo. Whenu is perturbed byδu, the variation
of J(t) due to the perturbationδu is given by

J(t) = hJ(zo, uo) +
∂hJ

∂z
δz +

∂hJ

∂u
δu + o(‖δu‖2), (5)

whereδz is the solution of the differential equation,

d

dt
δz =

∂fJ

∂z
δz +

∂fJ

∂u
δu. (6)

When∂fJ/∂z is stable and invertible, the solution is given by

δz(t) =

∫ t

to

e
∂fJ
∂z

(t−τ)d

(
−∂fJ

∂z
τ

)(
−∂fJ

∂z

)−1 ∂fJ

∂u
δu. (7)

Note that all partial derivatives in equations (5) and (6) are eval-
uated atzo anduo, and the perturbationδu is constant on the
time interval[to, t]. We mention that the above manipulations
follow the arguments that can be found, for example, in [3,
pages 52–57].

III. S IMULTANEOUS PERTURBATION EXTREMUM SEEKING

NETWORK

In this section, we present the development of asimultaneous
perturbation extremum seeking(SPES) network using continu-
ous measurements.

A. The SPSA Algorithm in an Inner Product Form

The SPSA algorithm that can be used to recursively estimate
the minimizer of a cost functionJ(x) based on its noisy
measurements has the form ([15]),

xk+1 = xk − ak
y+

k − y−k
2ck

dk, (8)

where bothak and ck are positive scalars,dk is a vector of
the same dimension asx, y+

k and y−k are one dimensional
vectors (that is, scalars) of noisy measurements of the function
J perturbed at two distinct points. In the SPSA algorithm, these
measurement vectors are defined by

y+
k = J(xk + ckdk) + e+

k , (9)

y−k = J(xk − ckdk) + e−k , (10)

wheree+
k ande−k are additive measurement errors. We note that,

in the above algorithm, the cost function is static, that is,J :
Rn → R. A distinctive feature of the SPSA algorithm is that
dk ∈ Rn is a random direction vector withdki = ±1 generated
using the symmetric Bernoulli distribution.

Remark 1: In [15] and [9], the measurementsy+/−
k are

represented asJ(xk ± ckrk), whererki = (dki)
−1. However,

becausedki = ±1, we havedki = (dki)
−1 = rki .

To proceed, we represent the SPSA algorithm as follows,

xk+1 = xk − ak
y+

k − y−k
2ck

dk

= xk − ak

2ck

〈[
y+

k

y−k

]

︸ ︷︷ ︸
=yk

,

[
1
−1

]

︸ ︷︷ ︸
=dmk

〉
dk.

The recursive algorithm now constitutes a discrete-time dy-
namic system for parameter update with an inner product term
of two vectors inR2. The elements ofyk, which arey+

k andy−k ,
are sequentially measured everyT time units.

We next express the recursive algorithm SPSA in terms of
an inner product of two discrete-time signals in the interval
(kT, (k + 2)T ], which will then be used to devise an SPSA-
type of algorithm for the elements inL2[a, b] on the inter-
val (kT, (k + 2)T ]. To proceed, consider two discrete-time
sequences,y = {· · · y+

k−1, y
−
k−1, y

+
k , y−k , y+

k+1, y
−
k+1 · · ·}T ,

which is a sequence of measurements, and an alternating se-
quencedm = {· · · , +1,−1, +1,−1, · · ·}T . The above two se-
quences constitute discrete-time signals. Letyk =

[
y+

k , y−k
]T

be a segment of discrete-time signaly, wherey+
k is available

prior to y−k . Similarly, let dmk = [+1,−1]T be a segment
of dm. Using the discrete-time segment signals,yk anddmk ,
the recursive algorithm SPSA can be represented in terms of an
inner product of two discrete-time signals on the time interval
(kT, (k + 2)T ] as follows,

xk+1 = xk − ak

2ck
〈yk, dmk 〉dk,

where the inner-product in the above algorithm is defined on
l2(kT, (k + 2)T ]. Note that the parameter update period is2T .

We now wish to extend the above paradigm to the case in
which we use continuous time measurements and a periodic



alternating signal to construct an inner product term in the
recursive equation. We define the following signals,

dm(t) =

{
+1, for kT ≤ t < (k + 1)T
−1, for (k + 1)T ≤ t < (k + 2)T

(11)

and

yk(t) =

{
y+

k , for kT ≤ t < (k + 1)T
y−k , for (k + 1)T ≤ t < (k + 2)T

(12)

Using the above two signals, we express the SPSA algorithm as

xk+1 = xk − ak

2ck
ηk〈yk(t), dm(t)〉dk, (13)

where ηk is a correction factor used to maintain equality
between equations (8) and (13). In equation (8), the inner-
product is onR2, while in equation (13) the inner-product is
in L2[kT, (k + 2)T ]. The update period of this discrete-time
procedure remains2T . The subscriptk in the signalyk(t)
indicates that it is a piecewise constant signal. (Note that, in
the section on the dynamic optimization network development,
we usey(t) instead ofyk(t) to emphasize the fact that we deal
with continuous signals.)

Because a piecewise constant signalyk(t) is used in the
recursive equation (13), we need to modify the arguments of the
cost functionJ . In equations (9) and (10), the arguments can be
viewed as discrete time signals. To generate the piecewise con-
stant signal,yk(t), the arguments ofJ must also be piecewise
constant signals,

yk(t) = J(xk(t) + ckdkdm(t)), (14)

wherexk(t) is a piecewise constant signal,dk ∈ Rn is a vector
of random direction whose elements are±1 and are generated
using the symmetric Bernoulli distribution as before, anddm(t)
is a square wave signal (see equation (11)) with a period2T .

The signaldkdm(t) is a square wavedm(t) modulated bydk,
a random direction vector. This randomly modulated signal is a
distinctive feature of the proposed network. The signaldkdm(t)
simultaneously perturbs all arguments ofJ(xk(t)). The pertur-
bation ofJ(xk(t)) in this fashion can also be interpreted as a
single-frequency perturbation by a vector of square waves with
uniform magnitudes and random phase shifts randomly selected
using the Bernoulli distribution from the set{0, π}.

In the above discussions, the cost functionJ was considered
a static map that exhibits no transient. As mentioned earlier,
problems in dynamic optimization or extremum seeking are
no longer concerned with static cost functions. In dynamic
optimization problems transients are present, the shape of the
cost function, or the performance surface, changes with time. In
the next section, we present methods that allow us to employ
the framework of the SPSA to the extremum seeking problems
using continuous measurements.

B. SPES Network Using Continuous Measurements

The SPSA algorithm belongs to a class of algorithms that
employ a pseudo-gradient in search of an optimizer. Perturba-
tions of the cost function are necessary to obtain a proper sign
of dk so thatxk progresses along a descent direction. In the
problems of extremum seeking,J is viewed as an output of a
dynamic system and, as such, it is a function of time, that is,
J = J(t). A dynamic system that generatesJ(t) is described

by equations (1)–(2) where the input isxk(t). The functionJ(t)
driven by the inputxk(t)+ ckdkdm(t) is no longer a piecewise
constant signal.

To proceed, we expandJ(t) into a Taylor series, on the
interval[kT, t], driven by the inputxk(t) + ckdkdm(t),

J(t) = J(kT )+ckdm(t)dT
k∇J(kT )+δtr(t)+o(‖dm(t)‖2),

(15)
where the gradient∇J(kT ) corresponds to the input
xk(kT ) = xk, and is given by ∇J(kT )T =
∂hJ
∂z

(
− ∂fJ

∂z

)−1 ∂fJ
∂u

+ ∂hJ
∂u

. The transient term δtr

is given by δtr(t) = −∇J(kT )T ckdkdm(t) +[∫ t

kT
e

∂fJ
∂z

(t−τ)d
[
− ∂fJ

∂z
τ
] [
− ∂fJ

∂z

]−1 ∂fJ
∂u

]
ckdkdm(t).

The above three expressions are derived from equations (5), (4)
and (7), where we setu = xk andδu(t) = ckdkdm(t). Note
that att = kT the system generatingJ(t) is in an equilibrium
state. Each term on the right side of (15) is assumed to be
continuous. The transient portion ofJ(t) is lumped inδtr(t).
Each signal with the transient present in it is decomposed into
two components, the transient and steady-state components,
that is,J(t) = Jtr(t) + Jss(t). We assume that the length of
the transient isTtr = λT , λ ∈ (0, 1). We design a continuous
time signaldd(t) so that it is orthogonal to the signalJtr(t) and
aligned withJss(t). The signaldd(t) must also be orthogonal
to constant signals. Multiplying both sides of equation (15) by
dd(t) and integrating the result fromti = kT to tf = (k+2)T ,
we obtain∫ tf

ti

J(t)dd(t)dt = 2(1−λ)TckdT
k∇J(kT )+∆tr(t), (16)

where the first term is obtained from
ckdT

k∇J(kT )
∫ tf

ti
dd(t)dm(t)dt and the second term

∆tr(t) is an integral of the transient portion ofJ(t),
∆tr(t) =

∫ tf

ti
dd(t)δtr(t)dt. The magnitude of the integral

of the transient is bounded, that is,|∆tr(t)| ≤ εtr. Note
that the termsJ(kT ) and ∇J(kT ) on the right hand side
of equation (15) are constant on the interval[kT, (k + 2)T ]
because they are determined from the equilibrium state at
t = kT (see equations (5), (4), (7)). Also note that the inner
product ofdd(t) with constant signals is zero on the interval
[kT, t]. For this reason, we exclude∇J(kT ) from the integral
and remove constant terms from equation (16).

The integration in equation (16) constitutes demodulation as
well as an inner product ofJ(t) anddd(t). Through this inner
product, we obtain the information of directional derivative
alongdk. Recall that the recursive SPSA algorithm has an inner
product term. Substituting the inner product of equation (16),
gives an algorithm/network that can be applied to solve contin-
uous time dynamic optimization problems. A block diagram of
the simultaneous perturbation extremum network is shown in
Figure 1.

The network is described by the equations,

xk(t) = xk, kT ≤ t < (k + 2)T (17)

y(t) = J(t) + v(t) (18)

∇̂J(kT )
∣∣
u=xk(t)

= sk + wk (19)

sk = 2(1− λ)TckdT
k∇J(kT )dk

wk = ∆tr(t)dk
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Fig. 1. A simultaneous perturbation extremum seeking network.

+

(∫ (k+2)T

kT

v(t)dd(t)dt

)
dk

xk+1 = xk − γk(sk + wk), (20)

where γk = ak/2ck constitutes parameter update gain,
∇̂J(kT )

∣∣
u=xk

is a descent direction vector of the dynamic
cost functionJ(kT ) due to inputu = xk(t) corrupted by the
measurement noisev(t) and by the computational errors,sk is
the pseudo-gradient vector,−sk is the descent direction vector,
andwk lumps both the effect of the measurement noise andδtr

from equation (16).
Remark 2: It was mentioned earlier that the perturbation

method used here can be viewed as a single-frequency pertur-
bation ofn-variables. This approach differs from the existing
extremum-seeking methods (for example, in [1], [6]) which em-
ploy multi-frequency sinusoidal signals. Using only one single-
frequency wave generator significantly simplifies the design
process as well as the resulting network implementation.

IV. CONVERGENCEANALYSIS

In this section, we analyze convergence properties of the
proposed algorithm. The algorithm convergence is shown in two
stages. First, we show that the method is capable of extracting
the pseudo-gradient from the dynamic cost function. Next, we
show that the discrete-time recursive parameter update gener-
ates a sequence such thatxk approaches a stationary point, that
is, limk→∞ xk = xo, where∇J(xo) = 0.

Proposition 1: (Pseudo-Gradient Extraction)If ck is se-
lected so thatck‖∇J(kT )T dk‖ > εtr

2(1−λ)T
, then the demod-

ulation, or the inner-product, ofJ(xk(t) + ckdkdm(t)) with
dd(t)dk yields a pseudo-gradient vector.
Proof: See [5]

Proposition 1 indicates the minimum value ofck for a
suitable pseudo-gradient generation. When this condition is
violated, the demodulation process does not yield a descent
direction. It is also important to note that asxk approaches
the neighborhood of{xo : ∇J(xo) = 0}, εtr also decreases.
Theorems on stochastic approximation problems in [8], [10],
[15], generally require that asxk → xo, ck → 0. This
implies that the gainck should not be too large for the sake
of convergence, yet at the same time, it should not be too small
for the sake of generating a descent direction.

We can perform the convergence analysis of the recursive
parameter update using the results from the field of stochas-
tic approximation. Convergence in a recursive stochastic-
approximation is determined by proper selection of gains for

perturbation as well as parameter update under the influence of
the measurement noise/error. Convergence results of stochastic
approximation methods require that diminishing gains should
be used. Only under certain circumstances, constant update gain
is appropriate.

The proposition below gives conditions that guarantee the
convergence of the proposed method. The result is of determin-
istic nature and it is adapted from the deterministic analysis of
convergence of the gradient method with the error as presented
in [2]. The results in [14], [15] also provide a deterministic
convergence analysis of the recursive stochastic approximation
algorithms.

Proposition 2: (SPES Convergence Using Sequence of De-
creasing Gains)In a simultaneous perturbation extremum seek-
ing method with continuous measurements given by equa-
tions (17)–(20) used to minimize the dynamic performance
surfaceJ(t), if

1) Jk = J(xk) = J(t)|t=2kT , ∇Jk = ∇J(xk) =
∇J(t)

∣∣
t=2kT

,
2) ‖∇J(xk)−∇J(xk+1)‖ ≤ L‖xk − xx+1‖,
3) c1‖∇J(xk)‖2 ≤ ∇J(xk)T sk,
4) ‖sk‖ ≤ c2(1 + ‖∇J(xk)‖),
5) the update gainγk is positive and satisfies

∑∞
k=0

γk =
∞,

∑∞
k=0

γ2
k < ∞,

then the network generates a sequence ofxk such that either
J(xk) → −∞ or elseJ(xk) converges to a finite value and
limk→∞∇J(xk) = 0. Furthermore, every limit point ofxk is
a stationary point ofJ(xk).
Proof: See [5]

We next consider a special case where the magnitude ofwk

is bounded by the magnitude of∇J(xk), for which we can use
constant gainγk = γ.

Proposition 3: (SPES Convergence Using Constant Gain)In
a simultaneous perturbation extremum seeking method with
continuous measurements given by (17)–(20),γk = γ, used
to minimize the dynamic performance surfaceJ(xk(t)), if
conditions 1–3 from Proposition 2 hold and

4) ‖sk‖ ≤ c2(‖∇J(xk)‖),
5) ‖wk‖ < c3‖∇J(xk)‖, c3 < c1,
6) the update gainγ satisfies0 < γ ≤ c1−c3

(c22+c23)L
,

then the network generates (i) a descent direction, and (ii)
a sequence ofxk such that eitherJ(xk) → −∞ or else
J(xk) converges to a finite value andlimk→∞∇J(xk) = 0.
Furthermore, every limit point ofxk is a stationary point of
J(xk).
Proof: See [5]

V. NUMERICAL EXPERIMENTS

In this section, we present two numerical experiments, both
involving nonlinear dynamic problems, to illustrate the use of
the SPES method to solving dynamic optimization problems.
The first example illustrates the design process. The second
example shows the use of the SPES method when applied to
a large scale dynamic optimization problem.

The first problem uses the nonlinear dynamic system de-
scribed by equations (5) in [12]. The system state vector is
denotedξ ∈ R4 with inputsx ∈ R2 and an outputy ∈ R.
For fixedx1, x2, and any initial condition such thatξ3(0) 6=
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0 and ξ4(0) 6= 0, the states of the system converge to the
attractorA = {ξ ∈ R4 : ξ1 = 1

2
x1, ξ2 = x2, ξ

2
3 +

ξ2
4 =

(
1
4
x2

1 + x2
2 − 20

)
+ 9} which constitutes level sets.

The set of minimizers for the performance surface is given by
C =

{
(x1, x2) ∈ R2 : 1

4
x2

1 + x2 = 20
}

. The objective of the
design process is to build an optimizing network that generates
sequences of variablesx1, x2 that will drive the output of the
nonlinear dynamical system to its minimal set.

To proceed with the design, we first characterize transient
properties of the dynamic system. After collecting several step
responses, we can determine that the period ofdd(t) is T = 4,
the period ofdm(t) and the update rate ofxk satisfy2T = 8.
The signaldd(t) is designed in such a way that it annihilates
Jtr. The above observations indicate that the signal

dd(t) =





0, kT < t ≤ kT + 3
1, kT + 3 < t ≤ (k + 1)T
0, (k + 1)T < t ≤ (k + 1)T + 3
−1, (k + 1)T + 3 < t ≤ (k + 2)T

is appropriate for demodulation purposes.
To determine the update gainγk, we can employ a low gain

for γ and gradually increase it until we observe a satisfactory
outcome. In this experiment, a fixed gainγ = 1/300 is chosen
after several trials.

The gainck is determined asck = 0.1 because it gives
sufficient distinction in the steady state responses, which is
useful in determining the sign of the vectordk.

Using the above design parameters, we perform the closed-
loop simulation of the network depicted in Figure 1. As a
benchmark, we simulate the closed-loop dynamics using the
method of Krstíc and Wang [13]. Simulation results of this
experiment are summarized in Figure 2. In this figure, the traces
of signals generated with the SPES method are denoted using
solid lines with the label SPES, while those generated using the
method of Krstíc and Wang are denoted using the dash-dot lines
with the label Wang and Krstić.

The upper plot shows the paths of the parameters in the
parameter space starting from the initial condition (denoted “x”)

TABLE I
GAINS FOR DIFFERENT CASES IN THE SECOND EXPERIMENT.

n
∑n

i=1
xi(0) x0 ak ck T

2 0.5 3 1 0.1 10
10 0.5 3 1/5 0.1 10
30 0.5 3 1/15 0.1 10
100 0.5 3 1/50 0.1 10

towards the set of optimizing parameters (labelledC and marked
with the grey-color oval). Both methods generate sequences of
parameters that converge toC. However, it is noticeable that the
sequence generated using the method of Krstić and Wang takes
a longer path to arrive to the neighborhood ofC. The lower plot
shows the time history ofy(t) = J(t) as the search for the
optimizer progresses. As the sequence generated by the SPES
method takes a somewhat shorter path to reach the setC, the
corresponding value ofy(t) converges to the neighborhood of
the minimum faster.

The second example is concerned with the minimization of
the phase-portrait orbital size. This problem is discussed in
detail in [13]. The problem can also be viewed as the problem of
the limit-cycle amplitude minimization. We use a second-order
nonlinear system, known as the Van der Pol system, which is
described by the equation,

ẅ + ε
[
(w − w0)

2 − 1− f(x)
]
ẇ + µ2(w − w0) = 0,

wherex ∈ Rn, f(x) = (
∑n

i=1
xi + x0)

2. Four different cases
are investigatedn = 1, 2, 3, 4. The setup for this experiment for
each case is summarized in Table I.

The results of numerical experiments are plotted in Figures 3
and 4 for different cases with different dimension ofx. Simu-
lation results indicate that, as the number of the parameters in-
creases from2 to 100, the simultaneous perturbation extremum
network can minimize the limit cycle amplitude at a roughly
similar rate irrespective of the number of parameters. Figure 3
shows the evolution of the orbit size (in the phase-plane, that is,
thew-ẇ plane) as the search for the optimum progresses. Fig-
ure 4 shows the time history of the limit cycle amplitude,w(t).
As the number of the parameters increases, the smoothness of
the steady-state minimum limit cycle amplitude decreases when
a constant gain is used in the update mechanism. We conjecture
that a smoother result can be achieved with decreasing the
gain as the limit-cycle magnitude is in the neighborhood of its
minimum.
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