
ABSTRACT

NINAN, BOBBY M. Resource Pricing for Connection-Oriented Networks. (Under the di-

rection of Associate Professor Michael Devetsikiotis).

Network pricing has important implications in the revenue generation, resource

management, system optimization and congestion control of computer networks. We depart

from the prevalent idea of marginal cost pricing and provide a holistic, bi-level optimiza-

tion framework to model the interaction between network entities in a connection oriented

network. Users are treated as utility maximizing entities who allocate the available band-

width among themselves by playing a distributed, noncooperative rate game. The ensuing

Nash equilibrium is analyzed for the single link Erlang network and the multi-link prod-

uct form networks. Variants based on the upper bound of the blocking are also studied

owing to their role in reducing computational complexity. Theoretical results are then val-

idated using numerical simulation for varying network scenarios. An extension of the rate

adaptation game based on Recursive Least Squares is proposed for dealing with the imper-

fect information scenario. These exhibited favorable convergence, accuracy and scalability

properties. Gradient-free schemes are then developed for revenue maximization. These

are based on novel stochastic approximation techniques such as Finite Difference Stochastic

Approximation (FDSA) and Simultaneous Perturbation Stochastic Approximation (SPSA).

It is observed that the network employed price discrimination for optimizing its objective

function and partitioning its available capacity among competing users.
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Chapter 1

Introduction

The meteoric rise of Internet companies and their concomitant meltdown have

brought renewed attention to the concept of network pricing. It has been advanced as a

possible panacea for the ills plaguing the networking sector ranging from revenue generation,

congestion control to enabling Quality of Service criteria for network traffic. The success

of microeconomic policies in controlling a noisy, distributed system like the global markets

quite akin to the Internet bears testimony to this notion. Efforts are ongoing to hasten

and render seamless the transition from a simple, flat pricing scheme to a socially efficient,

usage based regime.

The motivation behind the pricing of computer networks is closely interlinked

with their history, service architecture and future expansion. Although connection oriented

networks1 had their beginning in the public telephone network, the communication arena

has been revolutionized by the advent of the Internet. It has popularized the notion of packet

switching and spawned a number of technical and commercial innovations. Its pervasive

influence has also managed to alter the field of connection oriented networks which in

their latest incarnation supplement and coexist with the Internet. Thus any decision to

radically alter the makeup and philosophy of the “Net” will also have serious implications

to connection oriented networks and vice versa.

In this chapter, we provide a brief introduction of the evolution of pricing and

its relation with Quality of Service and the ensuing debate between flat and usage based
1In this dissertation, they are alternatively referred to as “circuit switched networks” or “loss networks”.
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pricing. We argue that price differentiation is the key to asset recovery and profits in the

beleaguered telecommunications sector. Related work in the academic literature is reviewed

for illustrating the development of pricing algorithms for network resource management. We

then enumerate the contributions of this dissertation towards this objective and conclude

with a road map for the rest of this work.

1.1 The Evolution of Network Pricing

The Public Switched Telephone Network (PSTN), the precursor of the current

Internet, was built and regulated by monopolies all over the world. PSTN is an example of

a circuit switched network where a physical path is dedicated for transmission between two

end points for the duration of the transmission. It offered a single type of service namely

telephony which in turn led to a uniform network architecture. Since nationwide telephony

networks were operated either by government agencies or private monopolies, they ensured

a homogeneity in service and the possibility of centralized control. This in turn led to a

simplified, uniform tariff structure and billing policy. It also ushered in a regime where

intelligence in the form of circuit reservation and routing was concentrated in the network

while the endpoints (telephone sets) were relegated to the role of passive players.

In contrast, the connectionless datagram principle was developed mainly to en-

sure network reliability, a key concern for Advanced Research Project Agency Network’s

(ARPANET) survivability in the face of a nuclear war. But it was also driven by the evolv-

ing economics of transmission costs and switching devices. When faced with the prospect of

cheap transmission lines relative to switches, the telephone industry came up with connec-

tion oriented networks where a large number of lines interfaced with few switches to create

end-to-end circuits. However as routers became inexpensive and bandwidth prices soared

it made more sense to increase utilization by means of statistical multiplexing. This led to

the development of packet switched networks like the present Internet.

The Internet has come a long way from its humble beginning of a defense controlled

research network. Today it spans the globe and has made a successful transition into a

vibrant social and commercial infrastructure. This spectacular success can be attributed to

a combination of open standards, interoperable architectures and the “end-to-end” principle.

For the sake of scalability, the complexity of the network has now been pushed to the edges
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leading to a “dumb” network populated with intelligent end points.

Government funding of the Internet came to an end when on December 23rd 1992,

the National Science Foundation expressed its intention to stop supporting the ANS T3

backbone in the near future. Telecom companies like Sprint and AT&T soon jumped into

the infrastructure bandwagon hoping to garner a slice of the Internet backbone pie. Several

business plans based on future earnings were proposed and lapped up in the exuberant

investment climate predating the ‘bubble’. The projected demand never materialized and

when the bubble broke, the companies were straddled with large quantities of dark fibre.

Surprisingly as of 2003, the $80 billion revenues from wireless far outstrip the $35 billion

from Internet [36, 37]. This illustrates one of the principal reasons for Internet pricing

namely the imperative for drawing up a feasible revenue generation plan for mitigating the

cross subsidization of data traffic by voice traffic.

1.1.1 The QoS Paradigm versus Overprovisioning

While telecom companies were driven by the objectives of price discrimination

and thereby return on investments, academia’s interest was piqued by the relevance of

pricing as a tool for network control. The fledgling Internet experienced its first severe

congestion in 1987 prompting the development of a congestion control algorithm as part of

the Transmission Control Protocol (TCP) suite. It was realized that such problems would

be exacerbated by the rise of applications with ever increasing appetite for bandwidth.

The severe delay problems in NSFNET during November 1992 due to some audio/video

broadcasts served to illustrate these concerns. The need of the hour was a mechanism

designed to encourage a socially optimal solution wherein high value bits (e.g., telemedicine

packets carrying life saving information) would be given preference over others. The field

of providing Quality of Service (QoS) in the Internet was thus born.

Taking a cue from PSTN, the Internet was designed as a best effort system with

the network not providing any guarantees on the timeliness or even the arrival of packets.

The QoS paradigm however required a network that could carry out service differentiation

with packets serviced depending upon their value. But incentives were necessary to prevent

users from inflating their packet values and requesting for better service. Price discrim-

ination of services was found to be ideal for encouraging service differentiation with the

associated revenues paying for any needed network expansions. The prevalence of inelastic
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applications like interactive audio/video necessitated the introduction of admission control

schemes akin to those deployed in telephony. The need for extending the service model

with users explicitly requesting service is detailed in [42]. It was also suggested that the

basic best-effort architecture be left intact with QoS schemes solely reserved for resource

intensive high quality real-time services.

Since the notion of differentiated services demanded changes to the prevailing

network architecture, a section of the networking community offered overprovisioning as

a possible panacea for congestion. Bandwidth was becoming increasingly cheap due to

economies of size as more and more users were joining the Internet. Further the advent of

novel optical technologies like DWDM could squeeze more and more bandwidth into the

same fibre. Under the assumption of “almost free” bandwidth, it was believed that huge

overprovisioning would be economically feasible. The startling implications of measurements

from the BellCore network [25] pointed to the high variability and possible self-similarity

of data traffic. This burstiness thus indicated that any overprovisioning of capacity based

on peak characteristics would be far costlier than the usual average based allocation.

1.1.2 Flat versus Usage Pricing

As the Internet was a public good, the academic community tried to follow the

footsteps of economists by resolving to maximize the social welfare of its users. Congestion

was seen as the playing out of the classic “tragedy of commons” where individual users

with unrestricted access overgrazed the system to the detriment of others. This could be

alleviated by a usage based scheme with users getting charged for the amount of traffic they

consume. For maintaining social optimality these charges would have to be set equal to

the marginal cost of usage. Since bandwidth scarcity occurs only during congestion, this

marginal cost is essentially the same as the congestion cost.

The notion of congestion pricing was developed to account for the social costs

imposed by the user on the rest of the population during periods of congestion. Several

usage based schemes [10] were introduced to promote social optimality. One of the schemes

which caught attention was the Vickrey auction based ‘smart market’ developed by MacKie-

Mason and Varian [27]. This required that each user indicate the value of her packets by

incorporating a bid in the packet header. The routers would then allow all packets whose

bid exceeded the marginal cost to enter the network. This marginal cost would be equal
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to the congestion cost imposed by the next arriving packet. The router would however

charge all the admitted packets only the marginal cost maintaining optimality. Users have

no incentive to under-report their bids as admission on the network depends on an unknown

and possibly higher price. Packets which were rejected could wait for transmission at a less

congested period thereby trading dollars for delay.

On the other end of the spectrum was the idea of flat pricing with users en-

joying unlimited access after paying an access fee. This scheme though suboptimal was

conceptually simpler to usage based pricing as it was compatible with the existing architec-

ture obviating the need for extensive monitoring and accounting mechanisms. It is argued

that usage based schemes ran counter to the risk aversion and need for predictability of

consumers. Odlyzko cites examples involving several networks like mail, telegraph and tele-

phone services [35], railroad and highways [38] to argue for the inexorable march towards

simplicity. When prices are kept simple and low, more and more users migrate leading to

profits from increased revenues. The increase in user population increases the value of the

network as expounded by Metcalfe’s law thus leading to a positive spiral.

A critique of the optimality paradigm pervading the pricing literature was provided

by Shenker in [43]. Most of the Internet backbone is owned by profit maximizing companies

with little inteest in socially optimal schemes. Since most of the costs for maintaining the

infrastructure consisted of fixed costs, it is not clear whether marginal costs would be able

to recover the operating costs. The utility derived by users from individual packets depend

on the delay faced by them, a variable inherently difficult to predict. If they are part of a

flow, their individual utilities would be influenced by the delivery of the rest of the flow. The

inaccessibility of marginal cost severely curtail the implementation of schemes like the ‘smart

market’ forcing researchers to look for alternative schemes. Any optimal pricing mechanism

would need to be deployed globally, an idea which would require extensive standardization

and runs counter to the idea of Internet being a collection of heterogenous networks. Edge

pricing proposes to reduce complexity by shifting the mechanisms to the edge. Monitoring

and billing policies are simplified by employing a scheme based on expected congestion (like

time-of-day pricing) and expected path. It rejects the perceived dichotomy of usage and

flat pricing by considering them as competing design choices for pricing at the edge.
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1.2 The Case for Differential Pricing

An economic system is considered Pareto efficient if the allocation of resources

has reached such a point where there is no way to make an entity better off without making

some one else worse off. Pareto efficiency is achieved by maximizing the social surplus which

is defined as the sum of the total utilities of the users and provider minus costs. There could

be more than one Pareto efficient outcomes as discussed below.

The prevalent theme in network pricing has been economically efficient schemes

obtained by setting the price equal to that of the marginal cost in delivering the service.

Here we define marginal cost as the cost of providing an incremental unit of the good. The

rationale for marginal cost pricing revolved around the idea of a provider who was able to

deliver as many units as long as it was profitable for him to do so. Under perfect competition,

only those companies who would be able to sell their goods with razor thin profit margins

would succeed. This would enable the customers to obtain services at the cheapest possible

price. The outcome is thus Pareto efficient with the users getting all the social surplus

and the provider making zero profit. Such a business model makes sense only when the

sunken charges are lower in comparison to the marginal cost of providing the service. This

paradigm may not be feasible in the telecommunications and networking industry [47] since

they involve large fixed costs for setting up the infrastructure, economies of scale and near

zero incremental cost in servicing an additional customer. Thus setting efficient prices

would lead to negligible service charges for offsetting the variable costs incurred. However,

this would not be sufficient for paying for the billions of dollars sunk in setting up the

communications network in the first place.

Differential pricing is a natural charging scheme with the network charging users

based on their willingness to pay. Price differentiation can be classified into:

• First-degree price discrimination often referred to as perfect price discrimination,

where the producer varies her selling price depending upon the user and lot size. Each

unit of good is sold to the user who values it most highly and at the maximum price

she is willing to pay for it. Although this would ensure that the producer ends up

getting all the surplus, it requires her to know the willingness-to-pay of her customers.

This coupled with the ability to prevent resale of goods prevent the adoption of this

stratagem in the real world.
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• Second-degree price discrimination where the producer varies her selling price

depending upon the lot size only. Thus all users buying the same amount of good pays

the same price. Volume discounts fall into this category. The rationale behind this

approach is the potential difficulty to distinguish between customers with differing

willingness-to-pay. Instead users are presented with multiple price-quantity packages

of differing quality levels providing an incentive for them to self-select. Quality vari-

ation could also be be a direct result of the pricing policy as evident in Paris Metro

Pricing [34].

• Third-degree price discrimination where the producer varies her selling price de-

pending upon the user only. For any given user, every unit of the good is sold at

the same price. This is the most prevalent form in the telecommunication industry

as exemplified by lifeline pricing and differential pricing for individuals and business.

Acknowledging its ubiquity, in this dissertation, we employ third-degree price discrim-

ination to maximize network revenue.

The INDEX study [9] gave a fillip to pricing research by providing empirical proof

that users were willing to pay based on usage for genuinely better (and strictly guaranteed)

Quality of Service under certain circumstances. The advantages of differential pricing are

three fold. First, the resultant surplus garnered by the service provider can be used to pay

for sunken costs and future expansion. It is hence ubiquitous in industries which possess

high fixed costs such as airlines, publishing and telecommunications. Second, is its abil-

ity to expand the customer base using cross subsidies. Frequently technological advances

require a large amount of investment in research and development. Companies try to re-

cover their costs by heavily charging the early adopters for exclusive access. Later as the

products mature, the prices are lowered to include small businesses and individuals. Sim-

ilarly when telecom companies are required to provide mandatory services for low-income

households, they could either be provided with government subsidies or allowed to carry

out price discrimination. Subsidies and handouts are often inefficient and encourage cor-

ruption. Providers could then avoid losses by cross-subsidizing emergency with appropriate

charges on businesses and high-income households. Third, it creates incentives for the users

to regulate their service requirements by trading off performance to monetary benefits. In a

shared resource network like the Internet, end users should cooperate and adjust transmis-

sion rates to avoid congestion collapse. Although the development of Transmission Control
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Protocol (TCP) friendly rate adaptation protocols [39] has received considerable interest,

there currently exists no incentive for users to deploy them. Further, the advent of Linux

and its myriad variants has given more freedom for end users to override the defaults and

manipulate their hosts to be less cooperative with their peers. In such a scenario, differential

pricing remains one of the very few options to shape user behavior.

1.3 Related Work

The pioneering work of Kelly [18] laid the foundation for analyzing the role of

bandwidth pricing in network optimization. A communication network was visualized as

a system striving to maximize the utilities of its users while working within its capacity

constraints. It was demonstrated that this could be decomposed into several user utility

maximization problems mediated by a price per unit bandwidth. The notion of social

fairness was popularized by introducing the concepts of max-min and proportional fairness.

A feasible allocation vector is termed max-min fair if any increase individual user rates are

permitted only if they do not adversely affect those of others. Hence this idea is akin to the

idea of Nash equilibrium where an absolute priority is provided to all users, big and small.

The fairness criterion was incorporated in the design of rate control strategies for

ATM Available Bit Rate service by Hernandez-Valencia et al. [14]. Proportional fairness on

the other hand favors smaller flows less aggressively by permitting modifications to the rate

vector whose sum of proportional changes in nonpositive. This criterion was employed by the

network to allocate bandwidth to users who explicitly declared their desired bandwidth price

or “willingness to pay”. It was shown that solution was proportionally fair if the user utilities

were logarithmic functions of bandwidth. In [19], this model was applied in conjunction

with Additive Increase/ Multiplicative Decrease (AIMD) rate control algorithms similar to

the one employed by the TCP in the current Internet. The network’s objective function

was shown to be a Lyapunov function to the dynamic system composed of such AIMD

algorithms thereby demonstrating the stability of the system optima. The primal and dual

versions of the problem were analyzed and feedback based control strategies developed for

their solution. System optimization was carried out by the primal algorithm modifying the

rates and the dual algorithm adjusting the resource prices.

Modifications to the existing TCP/IP were proposed in [13] to provide incentives
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for users to modify their transmission rates. While the current TCP versions deduce con-

gestion from round trip times and packet drops, the authors favored the use of Explicit

Congestion Notifications (ECN) to users. Such implementations of ECN in routers are

becoming prevalent after its introduction by Floyd in [12]. Overloaded links convey their

state information by marking and charging packets passing flowing through them. The

packets are marked in proportion to the marginal cost incurred on the network. This is the

probability that the removal of a random packet would reduce the number of packet losses

in the link by one. The performance of this scheme was studied for elastic, intermittent

users and file transfers.

Low et al. in [26] offered another take on congestion pricing with users modifying

their transmission rates in the face of varying bandwidth prices. A decentralized, dual algo-

rithm based on gradient projection was developed enabling individual links to independently

set their link prices. Convergence results were established and an asynchronous variant was

proposed to counter the effects of time varying feedback delays. Signalling overheads re-

sulting from network-user interactions were minimized in [17] with the network conveying

only the number of congested links on the user’s path. Thus a single byte of data would

be adequate in communicating the system information and that too only in the presence

of congestion. When there is no congestion, the users would increase their rates according

to the derivative of their utility function. On receiving the congestion notification from the

network, it would decrease its sending rate proportional to the number of congested links.

Since a subgradient based optimization method was proposed to maximize total user utility,

utilities could encompass the wider ambit of continuous functions.

Economists have traditionally employed game theory to analyze the the behavior

of users in markets regulated by supply and demand. The users are modeled as rational

agents striving to maximize their individual utility functions while competing/cooperating

with their counterparts. Such assumptions appear much more reasonable for a collection of

computing machines interacting with each other through dedicated communication channels

as in the case of the Internet. Cocchi et al. [5] was among the first to bring network pricing

under the purview of noncooperative game theory. Our work has been influenced by their

game based model of user dynamics and emphasis on service class sensitive pricing titled

“priority pricing”. However the emphasis was on promoting user efficiency without taking

into account the relationship network pricing and user elasticity to price.

A charge sensitive TCP [24] was investigated by La et al. as a likely candidate for
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a rate control strategy compatible with the present Internet. It does not require any explicit

feedbacks from the network and hence can be incrementally deployed on the Internet by

modifying only the end hosts. The network decides on a bandwidth price reflecting the

queuing delay imposed by each user on others. In the framework of Kelly, users modify

their willingness to pay for a given network price. Since packet delay and hence network

price is in turn a function of the user rates, this leads to a noncooperative game between the

users. The existence of the subsequent Nash equilibrium was proved for a single bottleneck.

Recently this work was generalized in [2] with users implicitly maximizing the net

benefit accrued from data transmission and the subsequent queuing delay faced. Using an

idealized fluid model of the network and queues, the global stability of the algorithm in a

general network was proved under delay.

Stackelberg games are those in which a leader or supervisor (typically the network)

participates in the game typically to steer the users (followers) to some desired behavior.

Stackelberg games for communication networks were used in [7, 8] where the game’s leader

was itself a selfish user of network. In [22], the authors consider a Stackelberg game in which

users choose routes in a wired network after the leader has chosen routes for its own traffic;

in choosing, the leader controls user behavior to optimize some network utility or to achieve

some other “global” goal. Their problem formulation admits a closed-form expression for

the equilibrium points which can then be steered by the leader to a preordained operating

point (incentive compatibility).

In [41], the authors modeled wireless customers by formulating a CDMA power

data-rate control games for which the equilibrium point was studied. The game theoretic

framework of resource allocation was formalized by Yäiche et al. [50] and extended to include

the idea of Nash Bargaining Solutions (NBS) from cooperative game theory. Assumptions

on maximizing the aggregate user utilities and resulting proportionally fair solutions were

shown to be a special case of the NBS model. Since the utility information is often always not

available, the authors proposed an algorithm based on the users’ maximum and minimum

rates as well as the allocated bandwidth. A dual-based distributed algorithm was then shown

to achieve fair bandwidth allocation between users. Proofs of convergence was shown to

hold even when the utility functions were not second order differentiable (C2).
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1.4 Contributions of This Dissertation

A significant portion of the literature has been devoted to the application of pricing

to networks running the Internet Protocol (IP). Thus most of the schemes seek to influence

transmission rates by modifying the TCP window size. Paralleling the ascendancy of re-

source pricing has been the growing awareness of the shortcomings of the current Internet

in combating congestion and supporting differentiated services and novel traffic streams.

Multi Protocol Label Switching (MPLS) [49] and its optical analogue Generalized Multi

Protocol Lambda Switching (GMPλS) have been proposed to be the foundation of the net-

work of the future. These protocols use labels to set up Label Switched Paths which are

similar to virtual circuits in a circuit switched network. A MPLS-enabled router examines

only the label of the packet while forwarding it. This reduced processing delay is crucial

for next generation networks where Gigabits of data are handled every second. Connection

oriented networks are thus back in vogue with the realization that any next generation

network would need to be a hybrid of packet and circuit switched networks. Integration of

a feasible pricing strategy into such an architecture entails modeling the benefits accrued

and possible repercussions on user behavior and network stability.

This dissertation investigates the interplay between the two components of a con-

nection oriented system – the service provider referred to as the “network” and the collection

of users utilizing the system. The contribution can be summarized as follows:

• In the framework of Cocchi et al., we developed a user model based on noncooperative

game theory and third degree price discrimination. User requests for bandwidth were

mapped onto the set of call request rates.

• Investigated the corresponding Nash Equilibrium Point of the user game for a single

link and a multi-link network using Erlang’s blocking formula and Erlang’s fixed

point approximation respectively. The convergence to the fixed point and the impact

of maximal rates on the equilibrium were also studied. Theoretical conditions for its

uniqueness were derived for the Erlang network.

• Looked into upper bounds such as the ones proposed by Farago and Martinez for

reducing the computational complexity for a single link network. The bifurcation

point for the Farago system was calculated for finding the operating region of interest.
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• Extended the Erlang game to include the imperfect information regime where mea-

surements are corrupted by noise and delay. Three algorithms based on Recursive

Least Squares were proposed and their convergence, accuracy and scalability was val-

idated by simulation results.

• Introduced a bi-level optimization model to describe the interaction between the net-

work and its users. Conditions were developed for the maximization of total user

utility, its distributed variant and the network revenue maximization problem.

• Two gradient-free algorithms based on the novel idea of stochastic approximation

were advanced for solving the network optimization problem. The superiority of the

Simultaneous Perturbation variant was demonstrated vis-a-vis its Finite Difference

counterpart. Numerical simulations of the network-user complex illustrated revenue

maximization and price differentiation.

In addition to the above mentioned MPLS/GMPλS combine, other possible ap-

plications of this work include Virtual Private Networks overlaid over the public Internet,

Wireless/PCS networks. The advent of broadband Internet services over Digital Subscriber

Lines (DSL) and cable has sparked interest in access networks such as in Fig 1.1. For this

single bottleneck link, Fig. 1.2 illustrates the logical circuits of multiple users.

1.5 Outline

The rest of the thesis is organized as follows:

In the next chapter, we introduce the formal problem statement of the network-user in-

teraction. This includes an abstract version of the user rate adaptation game. Chapter 3

studies this formulation in the setting of bandwidth sharing in circuit-switched networks.

The single link Erlang system, its upper bound variants and multi-link counterpart are

then treated in detail. We then present our foray into the imperfect information scenario in

Chapter 4 where adaptive algorithms modify their rates in the presence of noisy measure-

ments. The bi-level optimization model unifying the rate and price optimization paradigm

is formulated in Chapter 5. Stochastic Approximation schemes for revenue maximization

are presented in Chapter 6. Finally in Chapter 7, we present our conclusion and suggest

avenues for future work.
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Figure 1.1: Access Network.

The following notation is used throughout this thesis. Vectors are represented in

upper case. For example, if Θ is a vector, Θ(k) represents its kth iterate, θk its kth compo-

nent. Both optimal (Θ∗) and equilibrium (Θeqm) values are represented by superscripts.
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Figure 1.2: Network pipe with circuits.
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Chapter 2

Problem Statement

Traditionally the dimensioning of connection-oriented networks has been imple-

mented after taking into account the long term demand, available capacity and the required

QoS as per the service level agreements (SLA) with its customers. This arrangement was

then coupled with a Connection Admission and Control (CAC) mechanism which regu-

lated the incident traffic into the network. One of the major reasons for the scalability of

the current Internet has been its reliance on a dumb network populated with intelligent

endpoints. This approach differs from that of connection-oriented networks like the Public

Switched Telephone Network (PSTN) wherein the intelligence in terms of CAC and routing

are concentrated in the network.

Our model envisages a network wherein noncooperative users allocate resources

among themselves in the absence of a centralized CAC scheme. Knowledge of the utility

function of a user is considered private and is not exchanged with other users or the network.

The performance metric of any user would thus be a function of those of other users as well1.

We envisage resource allocation as the result of a two stage process:

• Price Optimization: The network chooses a price to maximize its revenue, the product

of total bandwidth consumed and market price.

• Rate Optimization: For a given fixed network charge $M ≡ [M1, . . . , M|R|], the users

1Again, we emphasize that we use the term “users” in an abstract way to denote any entity, physical or
virtual, individual or aggregate, that accesses the network resources as one unit from the point of view of
pricing and QoS.
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Figure 2.1: Network-User system interaction.

allocate the bandwidth among themselves by modifying their call request rates.

Fig. 2.1 illustrates this interaction between the network and users mediated through

the exchange of price and bandwidth information. In reality, this exchange will pass through

several iterations before attaining optimality. While the next chapter deals with rate opti-

mization, we present price optimization in chapter 5.

2.1 Model Formulation

We consider a multi-link, multi-service connection oriented network composed of

regular or virtual circuits. The links are labeled 1, 2, . . . , J , with link j having a capacity

of Cj circuits. We denote the set of all routes by R where a route r corresponds to a vector

a.,r . An element aj,r of this vector indicates the number of circuits required by a call

through route r from link j2. The routing matrix is assumed to be fixed and is defined as

A = (Arj , r ∈ R, j ∈ J) where Arj = 1 if user r employs link j and Arj = 0 otherwise.

Calls requesting route r arrive as a Poisson process of rate λr. A call requires

one circuit in each of the links present in its route r implying aj,r = 1 ∀ j ∈ r. The call

is connected and held for the call duration if there is a circuit free in all the links on its
2Corresponding to our abstract notion of “users”, we also use the term “calls” generically, to signify

connections, transactions, bursts or flows generated by one of our users, and that occupy a virtual circuit
for a period of time.
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route, else it is blocked and lost. The call holding times are independent and identically

distributed random variables with a mean duration of µr.

The calls from a user r pass through route r and request a QoS of θr. The network

charges user r a rate of $Mr per circuit per unit-time. Since the market price is user specific,

this is an example of third-degree price discrimination. The utility function Ur(θr) of user

r is assumed to be continuous and strictly concave and depends only on its QoS θr. In

practice, each user will try to choose its performance metric θ so as to maximize its net

benefit (i.e., utility minus cost), Ur(θr)−Mrθr. The optimal QoS is thus obtained as

θ∗r(Mr) = arg max
θr

Ur(θr)−Mrθr = (U ′)−1(Mr). (2.1)

Depending on traffic conditions, individual calls from a user r would issue a con-

nection set-up request at a rate λr. The QoS function F(·) expresses the dependence of

the performance metric (e.g., average number of circuits held, blocking probability, over-

flow probability, etc.) on the network capacity and the connection request rate vector

Λ ≡ [λ1, . . . , λ|R|]T where |R| denotes the cardinality of the route set R. For notational sim-

plicity, the cardinality of R is often denoted by N in this dissertation. Information about

the call arrival rate vector Λ is considered common knowledge and may be disseminated

either by the users or the network.

Now suppose that the current arrival rate vector is Λ(k). The rth user will choose

a new arrival rate λr(k + 1) so as to attain its desired θ∗r using the current arrival rates of

the other users3, λj(k) for all j 6= r. The rth user will choose λr(k + 1) that satisfies

θ∗r = Fr(λr(k + 1),Λ−r(k), C),

where (λr(k + 1),Λ−r(k)) represents a vector equal to Λ(r) except that the rth entry is

λr(k +1) instead of λr(k). If no such λr(k +1) exists in Sr ≡ [0, λmax
r ], the user will instead

choose the maximum possible rate λr(k+1) = λmax
r . Therefore, a more compact expression

is

λr(k + 1) = min{(F̃r)−1(θ∗r), λ
max
r } ∀ r ∈ R (2.2)

where F̃r(·) ≡ Fr((·, Λ−r(k)), C). We define the set S ≡ ×r∈RSr, which is a nonempty,

compact, convex subset of <|R|. When the function F̃ ≡ [F̃1, . . . , F̃|R|]T is a continuous

3This assumption may not always hold, as in the context of imperfect information or arbitrary delays.
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mapping from S to S, Brouwer’s fixed point theorem [4] establishes the existence of a fixed

point Λeqm ∈ S,

λeqm
r = min{(F̃r)−1(θ∗r), λ

max
r } ∀ r ∈ R. (2.3)

In general, these fixed points may not be unique. The users thus allocate the

available bandwidth among themselves in a distributed fashion through a noncooperative

game. This bandwidth allocation game (BAG) can be formally expressed as

(BAG) max
λr∈Sr

Ur(θr(λr, Λ−r))−Mr(θr(λr, Λ−r)) (2.4)

Furthermore, the convexity and compactness of the decision set Sr coupled with the con-

cavity of the utility functions Ur(.) establish that the above equilibrium (2.3) is also a Nash

Equilibrium Point (NEP) for the bandwidth allocation game. At the Nash equilibrium, no

user can improve her QoS by unilaterally varying her call arrival rates.

The rate information of (2.2) may be exchanged with other users for a perfect

information game as in the next chapter. Alternatively, it could be inferred by other users

from their measured blocking probability as in chapter 4. We envisage these interactions

to be performed by intelligent agents [28] to hide the complexity of difficult tasks from

humans as well as provide rapid response to network variations. When all the agents

employ some equation based model of the blocking probability, it may be possible to reduce

the impact of user adaptation on network performance. Users will then exchange their rate

vectors and carry out the computations without modifying their real arrival rates. Once the

rate vectors stabilize to their equilibrium value (2.3), the users could then change their call

request rates to attain the NEP. Undesirable performance fluctuations due to uncoordinated

user adaptations can thus be avoided.
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Chapter 3

Bandwidth Sharing in Circuit

Switched Networks

In this chapter, we look at a specific application of our general model namely band-

width sharing in circuit-switched networks fed by Poisson traffic. Unlike packet switched IP

networks, their end-to-end behavior is well understood. Explicit formulae exist for blocking

probabilities experienced by a single link. In the case of multi-link networks, techniques

like the Erlang fixed approximation provide computationally feasible methods to estimate

blocking.

Consider a mutli-link circuit switched network with 1, . . . , J links with capacity

C circuits shared by a pool of users. The users could be classes having the different origin

- destination pair Label Switched Paths (LSPs) in a MPLS network or processes sharing

pathways in a microprocessor. The QoS parameter Θ of concern here is the average number

of circuits captured by each user. For the rth user with a blocking probability of Br(Λ), the

net arrival rate per user is

λr(1−Br(Λ)).

This blocking probability may be obtained analytically or estimated through online mea-

surements. By Little’s formula, the mean number of occupied circuits for the rth user
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is

θr(Λ) ≡ λr

µr
(1−Br(Λ))

where we have explicitly shown the dependence of θr on all of the arrival rates Λ. The

arrival rates reach the Nash equilibrium (2.3)

λeqm
r = min{ µrθ

∗
r

1−Br(Λeqm)
, λmax

r } ∀ r ∈ R. (3.1)

The equilibrium allocation Θeqm can be expressed as

θeqm
r =

λeqm
r

µr
(1−Br(Λeqm)) (3.2)

= min{ µrθ
∗
r

1−Br(Λeqm)
· 1−Br(Λeqm)

µr
, λmax

r · 1−Br(Λeqm)
µr

}

= min{θ∗r ,
λmax(1−Br(Λeqm))

µr
}

≤ θ∗r

since 0 ≤ Br(·) ≤ 1, µr ≥ 0. The final allocation is suboptimal compared to the desired

allocation, θeqm
r < θ∗r when

λmax
r <

θ∗rµr

1−Br(Λeqm)
. (3.3)

This occurs whenever the rate vector is stuck at the boundary due to the constraint box

being too small or the capacity being insufficient to meet the demand. Thus for all the users,

equilibrium allocation is never greater than the desired allocation. This fairness criterion

ensures that no user receives less than he desired because of somebody receiving more than

his due.

In the rest of this chapter, we extend the model from a single link to any general

multi-link network. The implications in using upper bounds for approximating blocking

probabilities is also considered. The real world applications include circuit switched optical

networks, LSPs in MPLS and ATM networks. Virtual Private Networks built over the

existing public Internet infrastructure are another potential candidate.

3.1 Erlang System

We begin by looking into the case of a single pool of resources, such as a single

link, single virtual path or single class of traffic. The system of users and the network is
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modeled as a stationary multi-class M/GI/K/K queue with total traffic intensity

ρ =
N∑

n=1

λn

µn
.

An interesting application of this model would be in the case of optical networks switching

wavelengths using MPλS [33]. The aggregate and per-class connection blocking probability

in steady state is then given by Erlang’s formula [48],

E(ρ,K) ≡ ρK/K!∑K
k=0 ρk/k!

. (3.4)

We obtain the classical Erlang system when the user arrival rates follow a Poisson pro-

cess. The system of users and the network can then be modeled as a stationary multirate

M/GI/C/C queue with total traffic intensity

ρ =
∑

r∈R

λr

µr
.

The aggregate and per-class connection blocking probability in steady state is given by

Erlang’s formula [48],

E(ρ,C) ≡ ρC/C!∑C
r=0 ρr/r!

.

The user equilibrium call arrival rates (3.1) can then be computed as

λeqm
r = min

{
µr θ∗r

1− E(ρ(Λeqm), C)
, λmax

r

}
. (3.5)

In general, the equilibrium rate vector Λeqm would be dependent on the starting point Λ0.

The presence of multiple Nash equilibria would make it difficult to predict the equilibrium

rate and bandwidth allocation vectors. We now present a result to ensure the uniqueness

of the equilibrium when there is no restriction on the user call request rates.

Lemma 1.

ρ(1− E(ρ,C)) ≤ C (3.6)

Proof. From [16,29], the Erlang blocking probability E is convex for all real positive values

of C. Expressing E(ρ,C) simply as E in order to simplify the notation,

d2E
dρ2

≥ 0
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The slope of the Erlang blocking probability is thus monotonically nondecreasing.

dE
dρ

= ((
C

ρ
− 1)E + E2)

=
C − ρ(1− E)

ρ
E

=
C +

∑C−1
j=1 (C

j! − 1
(j−1)!)ρ

j

ρ
∑C

j=0
ρj

j!

ρC

C!∑C
j=0

ρj

j!

=
C +

∑C−1
j=1 (C

j! − 1
(j−1)!)ρ

j

∑C
j=0

ρj

j!

ρC−1

C!∑C
j=0

ρj

j!

=⇒ dE(0, C)
dρ

= 0

From the monotonicity property,

dE
dρ

≥ 0 ∀ ρ ∈ [0,∞).

(
C

ρ
− 1)E + E2 ≥ 0

(
C

ρ
− 1) ≥ −E

1− E ≤ C

ρ

ρ(1− E) ≤ C

When there are no restrictions on arrival rates (λmax
r = ∞ ∀ r ∈ R), the equilib-

rium (3.5) becomes,

λeqm
r =

µr θ∗r
1− E(ρeqm, C)

∀ r ∈ R (3.7)

∑

r∈R

λeqm
r

µr
=

∑
r∈R θ∗r

1− E(ρeqm, C)
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ρeqm(1− E(ρeqm, C)) =
∑

r∈R

θ∗r . (3.8)

As a consequence, Lemma 1 indicates that (3.8) has a solution only if the total

demand is no greater than the total supply:

N∑

r=1

θ∗r ≤ C (3.9)

Theorem 1. Under the stability assumption (3.9) and no restrictions on the maximal

arrival rates, there exists a unique nonnegative Nash equilibrium for the noncooperative

bandwidth allocation game (2.4).

Proof. From (3.7) we obtain the following equivalent system of equations by expressing λr

in terms of λ1 as

λr =
µrθr

µ1θ1
λ1 ∀ r ∈ R\{1}. (3.10)

Summation leads to

ρ(1− E(ρ)) =
N∑

r=1

θr. (3.11)

Λeqm can be reconstructed from ρeqm as

ρeqm =
N∑

r=1

λeqm
r

µr

=
λeqm

1

µ1θ∗1

N∑

r=1

θ∗r

=⇒ λeqm
1 =

µ1θ
∗
1ρ

eqm

∑N
r=1 θ∗r

.

Once λeqm
1 is computed, the remaining call request rates can be computed from (3.10) .

Thus solving the |R| dimensional system has been reduced to finding the roots of a one
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dimensional problem. Expanding the terms of E(ρ), (3.11) can be rewritten as a Cth degree

polynomial with real coefficients:

C∑

r=0

arρ
r = 0

where

ar ≡ 1
r!

(D − r) r = 0, . . . , C

and

D ≡
∑

r∈R

θ∗r , 0 ≤ D ≤ C

Let j = bDc and note that 0 ≤ j ≤ C. Then the coefficients a0 to aj are positive

and aj+1 to aC are negative. There is only a single sign change of coefficients at j + 1. For

a polynomial with real coefficients, Descartes’ Sign Rule states that the number of positive

real roots is equal to the number of variations in the sign of the coefficients or is less then

that by an even integer. Thus, there exists a unique positive root to (3.11) and, by the

nonnegativity of µr, θr, a unique nonnegative Nash equilibrium.

Fig. 3.5 illustrates how the roots of the above fixed point vary as the user demand

is changed. As proved in the lemma, the equation has a solution only when the user demand

can be satisfied by the network.

3.2 Speeding up Computations

The Erlang-B formula computes the blocking probability through a recursive pro-

cedure. The total number of recursion calls is equal to the number of circuits present in

the link. This could be prohibitive for large capacities thereby hampering the deployment



25

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

Traffic Intensity (ρ)

Traffic Intensity
Demand < Supply
Demand = Supply
Demand > Supply

Figure 3.1: Roots for Erlang B system.

of our rate control algorithm in real time scenarios. Instead, a nonrecursive formula is

preferable, which could approximate and provide an upper bound for the blocking probabil-

ity. While the performance of such a bound is independent of the capacity C, thus leading

to fewer computations, their nonrecursive nature does away with the storage of previously

computed values. We study two such bounds here, one proposed by Farago [11] and another

by Martinez [6] which, henceforth in this paper, will be referred to as the Farago bound

and Martinez bound respectively.

First, we present a result below on the effect of using upper bounds on the equi-

librium arrival rates.

Lemma 2. Consider the fixed point systems

x = f(x) (3.12)

x = g(x) (3.13)

where f(·) and g(·) are continuous and nondecreasing functions of scalar x. Furthermore,
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Figure 3.2: Graphical illustration of Lemma 2.

g(.) is an upper bound of f(.), f(x) ≤ g(x) ∀ x ∈ <. Let x∗ and x∗∗ be the fixed points of

eqns. 3.12 and 3.13 respectively. Then x∗∗ is an upper bound of x∗, x∗ ≤ x∗∗.

Proof. First g(x∗) ≥ f(x∗) = x∗. Since g(·) is nondecreasing, it will therefore cross the line

y = x at a point x∗∗ ≥ x∗, see Fig. 3.2.

Thus, replacing blocking probabilities with their upper bounds leads to an equi-

librium where the arrival rates are no lower than those with the true blocking probabilities.

However, the equilibrium demands on the users are not affected when the network has

adequate capacity and call request rates are unrestricted.

3.2.1 Farago Bound

We now detail the implications of using the Farago bound in our bandwidth game.

Following Farago’s convention, we define the time varying instantaneous bandwidth demand
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of a traffic flow as ξt. The set of active flows is denoted by At = {ξ[r]
t | ξ[r]

t > 0} with indices

r ∈ < At > where < At >= {r | ξ
[r]
t > 0}. The offered load φ(t) to the link is a function

of all the active calls through it,

φ(t) =
∑

r∈<At>

ξ
[r]
t .

Here we make the assumption that the offered load is the sum of the individual active

flow bandwidth demands. Given the expected value of the offered load Ft = E[φ(At)] and

the link capacity C satisfying the stability condition (3.9), the link blocking probability is

bounded as

P (φ(At) ≥ C) ≤ (
Ft

C
)CeC−Ft

Note that the bound tends to unity as the demand approaches the resource capacity. Fur-

ther, the bound is meaningful only when the traffic intensity is less than C. The fixed point

relation (3.1) thus reduces to

λeqm
r = min

{
µr θ∗r

1−B(Λeqm, C)
, λmax

r

}
, (3.14)

where

B(Λeqm, C) = (
ρeqm

C
)CeC−ρeqm

Theorem 2. Under the assumptions of stability and unrestricted maximal rates, the equilib-

rium arrival rates of the Farago system (3.14) is an upper bound on the equilibrium arrival

rates obtained from (3.5).

Proof. By definition, B(ρ) is an upper bound of the Erlang blocking probability. From

lemma 1, the Erlang-B blocking is a monotonic nondecreasing function. The slope of the

Farago bound can be computed as

B′(ρ) = (
C

ρ
− 1)B(ρ)

≥ 0 0 ≤ ρ ≤ C,
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thereby satisfying the conditions of Lemma 2.

In the absence of rate constraints, there may exist none, one or two solutions to the

fixed point (3.14). Fig. 3.3 illustrates a saddle point bifurcation for C = 10. The bifurcation

occurs at the critical demand Db which satisfies the condition that demand curve is tangent

to the graph of the traffic intensity. The following conditions involving the zeroth and first

derivative are satisfied, namely,

Db

1−B(ρb)
= ρ

d

dρ
(

Db

1−B(ρb)
) = 1.

Simplifying,

1−B(ρb) =
Db

ρ
(3.15)

B′(ρb) =
Db

ρ2
b

. (3.16)
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Figure 3.4: Comparison of bounds with blocking probability.

Dividing (3.16) by (3.15),

B′(ρb)
1−B(ρb)

=
1
ρb

The critical traffic intensity (ρb) can then be obtained by solving

B(ρb)ρb −B(ρb)(ρb + 1) + 1 = 0 (3.17)

The bifurcation demand Db can then by computed from (3.15).

3.2.2 Martinez Bound

Martinez [6] introduced a strict upper bound on the blocking given by Erlang-B

formula.

E(ρ,C) <
1
2ρ

(
√

(1 + C − ρ)2 + 4ρ− (1 + C − ρ))

A comparison of the Farago and Martinez bounds with respect to the Erlang blocking

probability for C = 100 is illustrated in Fig. 3.4. While the Farago bound provides a better
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approximation for low intensities, the Martinez bound tightly bounds the Erlang blocking

probability for higher intensities. With the bound surrogating for the blocking, the fixed

point (3.1) thus becomes

λeqm
r = min

{
µr θ∗r

1−B(Λeqm, C)
, λmax

r

}
, (3.18)

where

B(Λeqm, C) =
1

2ρeqm
(
√

(1 + C − ρeqm)2 + 4ρeqm − (1 + C − ρeqm))

In the absence of rate constraints, there may exist one or no solutions to the fixed

point (3.18).

Theorem 3. In the absence of restrictions on maximal rates, the equilibrium arrival rates

of the Martinez system (3.18) is an upper bound on the equilibrium arrival rates for the

Erlang system.

Proof. By definition, B(ρ) is an upper bound of the Erlang blocking probability. From

lemma 1, the Erlang-B blocking is a monotonic nondecreasing function. The slope of the

Martinez bound can be computed as

B′(ρ) =
−2ρ + (C + 1)(

√
(1 + C − ρ)2 + 4ρ− (1 + C − ρ))

2ρ2
√

(1 + C − ρ)2 + 4ρ

For nonnegative ρ,C, the denominator is always positive. We proceed to prove the nonneg-

ativity of the numerator.

−Cρ

(C + 1)2
≤ 0

⇒ 1 +
ρ

C + 1
−C

C + 1
≤ 1

⇒ 1 +
ρ

C + 1
(

1
C + 1

− 1) ≤ 1

⇒ 1 +
ρ

(C + 1)2
− ρ

C + 1
≤ 1

⇒ ρ

(C + 1)2
+

C + 1− ρ

C + 1
≤ 1
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Multiplying by 4ρ and then adding (1 + C − ρ)2,

⇒ ((1 + C − ρ) +
2ρ

C + 1
)2 ≤ (1 + C − ρ)2 + 4ρ

Taking square roots,

⇒ ((1 + C − ρ) +
2ρ

C + 1
) ≤

√
(1 + C − ρ)2 + 4ρ

⇒ −2ρ + (C + 1)(
√

(1 + C − ρ)2 + 4ρ− (1 + C − ρ)) ≤ 0,

thereby indicating the nonnegativity of the numerator. The Martinez bound is thus a

monotonic nondecreasing function satisfying the conditions of lemma 2.

3.3 Product Form Networks

We now proceed to the general case of a multi-link network with fixed routing.

Without loss of generality, we assume that the holding periods of calls on route r are

identically distributed with unit mean. The routing matrix A ≡ (ajr, j = 1, . . . , J, r ∈ R)

with a route r identified with a subset of the set of links {1, . . . , J}. Let nr(t) be the number

of calls in progress at time t on route r, and define the vector n(t) ≡ (nr(t), r ∈ R). The

continuous-time Markov chain (n(t), t ≥ 0) takes values in S(C) ≡ {n ∈ ZR
+ : An ≤ C} and

has a unique stationary distribution given by

π(n) = G(C)−1
∏

r∈R

λnr
r

nr!
, n ∈ S(C), (3.19)

where G(C) is the normalizing constant

G(C) =
∑

n∈S(C)

∏

r∈R

λnr
r

nr!
. (3.20)

This model has wide applicability in telephone networks, multiprocessor intercon-

nection architectures, database structures, mobile radio and broadband packet networks. In

modern computer communication and telephony networks, the circuits are often “virtual”
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as in the case of a fixed proportion of the transmission capacity of a communication chan-

nel. Various generalizations may be incorporated into the above model to enlarge its scope.

Note that if calls requesting route r arrive at rate λr/µr and have holding periods µr, then

the resulting stationary distribution π remains unaltered from (3.19). Further if the arrival

rate of calls in route r depends on the calls in progress nr as in the Engset model with a

finite source population, then the corresponding distribution is given by a minor variant of

(3.19).

Note that the time average of the number of occupied circuits is provided by (3.19).

This is in general not the same as the event average of the blocking observed by incoming

calls. When the arrivals are obtained from a Poisson process, these two numbers coincide

owing to the PASTA (Poisson Arrivals See Time Averages) property.

The stationary probability that a route r call is blocked is given by

Lr = 1− G(C −Aer)
G(C)

,

where er is the unit vector from S(C) describing just one call in progress on route r. Unfor-

tunately, the computation of the normalizing constant G(C) cannot usually be computed

in polynomial time. This is because the number of routes |R| may grow exponentially with

the number of links J . Consider the trivial case where route r corresponds to a single link

r with Cj = C ∀ j. Then the number of routes equals the number of links (|R| = J , A

= I). Clearly, the size of the state space |S(C)| = ∏J
j=1 Cj = CJ illustrating the exponen-

tial growth. Thus it is imperative to develop approximations to reduce the computational

complexity as well as provide deeper insights to the problem.

We now detail the celebrated Erlang Fixed Point Approximation for tackling this

conundrum. For a loss network with fixed routing and a 0−1 routing matrix, let B1, . . . , Bj

be a solution of the system of equations

Bj = E(ρj , Cj), j = 1, . . . , J (3.21)

ρj =
∑

r

λrΠi∈r−{j}(1−Bi), j = 1, . . . , J (3.22)

where the function E(·) is the Erlang formula (3.4). Kelly [20] showed that there exists a

unique vector (B1, . . . , BJ) ∈ [0, 1]J satisfying (3.21)-(3.22), which we term the Erlang fixed

point. Then an approximation for the loss probability on route r is given by

Lr
∼= 1−

∏

i

(1−Bi)air , r ∈ R (3.23)
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Employing the Erlang fixed point approximation, the Nash equilibrium of our multi-link,

multi-user game is obtained as

λeqm
r = min

{
θ∗r

1− Lr(Λeqm, C)
, λmax

r

}
. (3.24)

The rationale behind the approximation is as follows. If the links in route r

were blocked independently (which they clearly are not) and if Bj were the link-blocking

probability, then Lr would be the route r blocking probability

Lr = 1−
∏

i∈r

(1−Bi) = 1−
∏

i

(1−Bi)air .

The traffic offered to link j would then be Poisson at rate ρj and the carried traffic on link

j would be

∑
r

ajrλr(1− Lr) = ρj(1−Bj).

The Erlang Fixed Point Approximation requires that the blocking probabilities (B1, . . . , BJ)

should be consistent with this level of carried traffic. The expression (3.22) is often referred

to as the reduced load on link j.

Such an approximation was shown to be exact under the limiting regimes of mod-

erate loading [20] and diverse routing [15]. The rates regulated by the Erlang fixed point

approximation have the desired property that the corresponding bandwidth allocations re-

main feasible.

Theorem 4. The bandwidth allocation vector Θeqm corresponding to the Nash equilibrium

point under the Erlang fixed point approximation is feasible, i.e, AΘeqm < C.

Proof. Let the Nash equilibrium point of the user game be denoted as Λeqm. Define Rj

as the set of all routes passing through link j. For a certain link j, the total bandwidth
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allocated to all the routes would be

∑

r∈Rj

θeqm
r =

∑

r∈Rj

λ∗r(1− Lr)

=
∑

r∈Rj

λ∗r
∏

i∈r

(1−Bi)

= (1−Bj)
∑

r∈Rj

λ∗r
∏

i∈r−{j}
(1−Bi)

= (1−Bj)ρj

= (1− E(ρj , Cj))ρj

≤ Cj ∀ j = 1, . . . , J,

by lemma 1.

3.4 Results and Discussion

We present the results of our investigation into the dynamics of a two-class game

for resource sharing in a single link. Each user has a utility function of the form

Ur(θr) = br log(1 + θr), br > 0,

where we denote br as the utility coefficient of user r. Thus the optimal bandwidth of each

user is given by

θ∗r =
br

Mr
− 1.

We can observe that the optimal bandwidth is thus proportional to the utility coefficient.

Unless otherwise specified, the users analyzed were identical with b = 10, λmax = [20 20]T

and µ = [1 1]T .

While computing the arrival rates using the Erlang formula (3.5), we experimented

with two termination criteria - one based on the deviation between successive call request

rates (∆Λ) and another between successive bandwidth allocations (∆Θ). Fig. 3.5 compares

the termination criteria with respect to the total number of iterations required to attain

equilibrium. While the number of iterations for the ∆Λ increase linearly with respect to a
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decrease in the tolerance δ, the convergence under ∆Θ criterion remains almost unchanged.

This is due to the lower sensitivity of the bandwidth (θ) to changes in call request rates.

All our calculations were thus terminated using the ∆Θ benchmark.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

5

10

15

20

25

30

35

40

45

50

Tolerance (δ)

Ite
ra

tio
ns

∆Λ
∆Θ

Figure 3.5: Comparison of termination criteria.

3.4.1 Convergence of Arrival Rates

The convergence of the call arrival rates to the Nash equilibrium is influenced by

the demand-supply gap and the size of the bounding box of maximal arrival rates. Fig. 3.6

illustrates a system where the total user demand D = 9 is less than the supply C = 10.

The unrestricted Nash equilibrium Λeqm = [11.01 5.51]T is infeasible when the maximal

rates are too restrictive. Thus the arrival rates become stuck at the boundary of the box.

However when the box size is increased, the system converges to its unrestricted equilibrium

Λeqm. Increasing the maximum rates further has no effect on the convergence. There exists

no unrestricted Nash equilibrium when the user demand D = 12 is more than the network

capacity C = 10 as in Fig. 3.7. Thus the arrival rates eventually converge to the box

boundary irrespective of the maximum arrival rates.
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Figure 3.8: Convergence to NEP.

For the single link scenario, the convergence of the user game to a unique equilib-

rium under sufficient capacity and maximal rates was proved in theorem 1. Fig. 3.8 shows

the convergence of the Erlang fixed point iteration (3.5) for various starting values of the

user arrival rates, Λ. The Λ state space was also exhaustively scanned for other prospective

candidates. It was observed that all the iterations converged to the same Nash equilibrium

point irrespective of their starting values.

For a sequence {xr} converging to x∗ in <n, the Q-rate convergence is linear if

there exists q > 0 and β ∈ (0, 1) such that for all r

‖xr − x∗‖ ≤ qβr.

Figure 3.9 indicates that the rate of convergence for (3.5) is linear. The linear rate of

convergence and the absence of alternative equilibria indicate that the starting vector was

chosen within the region of contraction.
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Figure 3.9: Speed of convergence to NEP.

3.4.2 Effect of Bounds on Nash Equilibrium

Although employing upper bounds may lead to computational efficiency, Fig. 3.10

illustrates that the resulting equilibrium call request rates are higher than those obtained

using the Erlang-B formula. Whenever the maximum arrival rates are low enough, these

run the risk of being rendered infeasible. The iterations then are caught on the maximal

rate boundary leading to a suboptimal bandwidth allocation (3.3).

3.4.3 Triangle Network

As an example of product form networks, we consider the three link, triangle

network of Fig. 3.11. It possesses two user flows flowing through routes 1 and 2 respectively.

Route 1 consists of links 1 and 3 while route 2 is composed of links 2 and 3. Thus a11 =

1, a31 = 1, a22 = 1, a32 = 1. The link capacity vector is C = [10, 10, 20]T . Letting the service
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rate to be identically unity, the Erlang fixed point equations (3.21)-(3.22) become

B1 = E(ρ1, C1)

B2 = E(ρ2, C2)

B3 = E(ρ3, C3)

ρ1 = λ1(1−B3)

ρ2 = λ2(1−B3)

ρ3 = λ1(1−B1) + λ2(1−B2).

The initial reduced load vector ρ(0) is chosen as [1, 1, 1]. After computing the new reduced

load vector, we calculate the new B iterate. Once the iterations converge to obtain the final

[B∗
1 , B∗

2 , B∗
3 ], the route blocking probabilities are computed as

L1 = 1− (1−B1)(1−B3)

L2 = 1− (1−B2)(1−B3)

where L1, L2 are the approximate blocking probabilities for routes 1 and 2 respectively.

As in the single link case, we are interested in the partitioning of the link capacities

between competing users under various maximal rates and user demand characteristics. The

bandwidth price is fixed at M = [1 1]T and the iterations were initiated at Λ(0) = [1 1]T .

First, we consider the resource surplus case wherein user utility coefficients are b = [5 10]T

leading to user demands Θ∗ = [4 9]T . A bandwidth surplus of 6, 1 and 7 occurs at links

1, 2 and 3 respectively. For a triangle network, the convergence of the user rates to the

Nash equilibrium is illustrated in Fig. 3.12. The corresponding equilibrium bandwidth

allocations Θeqm are shown in Fig. 3.13. It can be seen that the convergence of the user

game is dependent on the maximal rates. When they are too restrictive as in the case of

Λmax = [10 10]T , the iterations are stuck at the boundary. This causes the allocation of

user 2 to be below her desired value θ∗2 = 9 even though the network has surplus capacity.

The more interesting case occurs when the user demands for bandwidth are more

than that could be satisfied by the network. In chapter 6, we discuss how the network

would modify its network price whenever user demand outstrips capacity. The user utility

coefficients are fixed at b = [10 20]T leading to user demands of Θ∗ = [9 19]T . User 2’s

appetite for bandwidth leads to a resource deficit of 9, 8 in links 2 and 3 respectively. This

pits user 1 in direct competition to user 2 for the scarce resources at link 3. Since the
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Figure 3.12: Arrival rates under resource surplus in a triangle network.

situation is clearly unsustainable, the user game does not converge to a finite equilibrium.

The rates thus continue to increase till they hit the maximal rate boundary as indicated in

Fig. 3.14. Also user 2 enhances her rates much more than user 1 due to her higher demand.

From Fig. 3.15, it can be observed that the network tries to satisfy user 2 while being fair

to user 1. Thus user 1 receives her desired 9 units of bandwidth with the rest allocated to

user 2. As the maximal rates are increased, the network allocates more and more of the

leftover capacity to user 2.
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Chapter 4

Imperfect Information Regime

The existence of Nash equilibria in an environment populated by self-interested

users rests on the assumption of perfect information. This requires every user to be aware

of the state of all others at any point in time. Errors in measurement coupled with delay

in information propagation can violate this condition. Users might also try to conceal

their behavior so as to deny competitors of any unfair advantage. Another subtle cause

for imperfection is the assumption made while deriving the Erlang blocking formula and

the Erlang fixed point approximation. These require that the user rates be independent of

one another. While this assumption will be satisfied at the Nash equilibrium Λeqm, that

may not be the case when the users are far from the fixed point. User rates based on the

observed blocking in the network are implicitly dependent on the behavior of others and

hence stochastically not independent of each others’ arrival rates. Hence any application of

game theory based flow control strategies in a real world setting would have to address the

issue of imperfect information. Alpcan et al. in [2] acknowledge the inherent restrictions of

implementing cost functions in Internet-style networks and propose a scheme based on the

variations in queuing delay of the individual user. In contrast, we derive our inspiration

from optimal estimation based adaptive control techniques for stochastic dynamical systems

[44, 45]. An analogous approach involving the Kalman filter was employed by Alouf et al.

in [1] for the on-line estimation of dynamic multicast groups.

In this chapter, we extend our bandwidth allocation model developed for connec-

tion oriented networks in [31,33] to encompass an imperfect information regime, character-
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istic of real world settings. In [3], we propose a distributed adaptive algorithm to be used by

each user to attain her desired optimum in the presence of uncertainty. The instantaneous

bandwidth utilization observed while entering the network is employed to infer the system

state through recursive estimations. Users then modify their arrival rates to maximize their

individual utilities. We also develop two variants of the original algorithm to account for the

curvilinearity of the input-output response. These adaptive control schemes were simulated

for making comparisons of scalability and performance under various system parameters.

Results indicate the algorithms converge even in the presence of uncertainty about the num-

ber of other players and their strategies. Applications of this algorithm include teletraffic,

wireless and optical networks, enabling users to partition bandwidth without the need of a

centralized synchronizing entity.

4.1 Erlang System

We consider a loss network scenario where N users compete for a finite amount

of bandwidth K as expostulated in [31,33]. Each user has a utility function Ui(θ) which is

maximized at an optimal bandwidth θ∗i . Requests for bandwidth arrive as a Poisson process

with rate λi. Queuing is not a concern here as unfulfilled user requests depart the system

immediately. The behavior of competing users can then be modelled as a noncooperative

game wherein each player strives to attain her optimal θ∗i by regulating her sending rate

λi. Under the assumption that total demand for bandwidth is not greater than supply
∑N

i=1 θ∗i ≤ K, the mean bandwidth allocated to the ith user is given by Little’s formula as

θi(Λ) =
λi

µi
(1− E(ρ(Λ))). (4.1)

Here Λ is the user arrival rate vector [λ1, . . . , λN ] and µi is the exponential service rate

for user i. The traffic intensity is defined as ρ ≡ ∑N
i=1

λi
µi

and blocking probability as

E(ρ,K) ≡ ρK/K!∑K
k=0 ρk/k!

. As derived in [31], in a perfect information regime where each user

is aware of every other’s sending rates, the user arrival rate vector converges to the non-

cooperative Nash equilibrium Λeqm

λ∗i ≡
µiθ

∗
i

1− E(ρ(Λeqm))
∀ i = 1, . . . , N (4.2)

The postulation of perfect information is often violated in real networks. The requirement

that all the players need to be updated with the current information simultaneously places
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an enormous onus on the system. A distributed version of such an update protocol would

involve O(N2) packets to be exchanged. Centralized broadcast of updates can reduce this

to O(N) but at the cost of increased synchronicity. Propagation and queuing delays cause

staleness of information when user behaviors are highly variable. Internet connections are

very often bursty and short lived thereby forcing us to examine the less tractable imperfect

information scenario.

4.2 Feedback Based Rate Control
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Figure 4.1: Feedback based user rate adaptation.
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We now detail an observer based control scheme for the bandwidth allocation

model system defined above. Under imperfect information, each user i is aware of only her

individual tuple of variables - (µi, λi, θi(k)). While the service rate µi is characteristic to the

user, the mean bandwidth consumed θi can be ascertained from its instantaneous value θi(k)

at the kth time step. Since the information about the available bandwidth is obtained only

when a new arrival enters the network, the system is modeled using difference equations.

Each user sees the network as a dynamical system evolving in time with ρ as the system

state. She tries to estimate the state using observations θi(k) which she employs to compute

an observer based feedback control λi designed to attain her optimal bandwidth θ∗i . This

feedback mechanism is illustrated in Fig. 4.1. The effect of other users on the system is

modeled as noise which can be observed as perturbations of ρ from the hypothesized value.

The state equation thus becomes

ρ(k + 1) = ρ(k)− λi(k)
µ

+
λi(k + 1)

µ
+ v(ρ(k)) (4.3)

where v(ρ(k)) is the state dependent noise. Note that the noise is not statistically indepen-

dent and hence cannot be modeled as Gaussian. In the absence of estimation errors due to

uncertainty, the measured output can be related to the state and control using (4.1). The

user calculates her new feedback control using the estimate of state ρ̂(k + 1),

λk+1
i =

αi(k + 1)θ∗i µi

1− E(ρ̂(k + 1))
(4.4)

Since αi determines how fast each user tries to capture her optimal bandwidth, it can be

considered as an indicator of user “aggressiveness”. We thus define

αi(k) ≡ 1− (βi)k, 0 ≤ βi < 1. (4.5)

In a perfect information scenario, the user would eventually attain her optimal bandwidth

as limi→∞ αi = 1.

If the solution of the fixed point equation (4.2) is known to all the users, the user

rates get decoupled. Thus the players move to the Nash equilibrium by the modified state

equation

λi(k + 1) = λi(k) + η(λ∗i − λi(k)), 0 < η ≤ 1 (4.6)

However in a decentralized game, each user is only aware of the dynamics of his individual

state and observer equations. Thus the final equilibrium if attained may not be the Nash

Equilibrium Point (NEP) as above.
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4.3 Dynamic Estimation

The key ingredient in calculating an observer based feedback control is the estima-

tion algorithm which provides an accurate estimate of the system state with minimal com-

putational and storage requirements. The user collects observations {θ(0), θ(1), . . . , θ(k)}
which she employs to estimate the time varying system state ρk. A recursive estimation

procedure is vital in reducing the observation history to be maintained at each point in time.

We make a first order approximation of the relationship between the inputs and measured

outputs by assuming θ to be linear in ρ i.e θ(k) ' h(k)ρ(k) + w(k) where h(k) is the design

parameter and w(k) is the unknown noise value. Each user then strives to reduce her least

squares error

L(ρ, k) =
1
2k

k∑

j=1

γk−j(θ(j)− h(j)ρ(j))2 (4.7)

for the weight 0 ≤ γ < 1. Eqn. (4.7) exponentially de-weights past measurements indicating

that greater importance is placed on current measurements. L(ρ, k) is minimized by the

classic Recursive Least Squares (RLS) algorithm which produces a time-varying estimate

of the system state ρ [44] as

ρ̂(k) = ρ̂(k − 1)−Kk(λ(k)ρ̂(k − 1)− θ(k)) (4.8)

where Kk = Pkλ(k) and Pk = Pk−1

γ (1 − P 2
k−1(λ(k))2

γ+(λ(k))2Pk−1
). The algorithm is initiated with

ρ̂(0) = 0, P0 À 0.

4.4 Rate Adaptation Algorithms

We detail three algorithms below which would then be compared with respect to

their convergence and accuracy among others.

4.4.1 Original Algorithm

This method estimates system state using (4.8) while the control is calculated by

approximating (4.4) as

λi(k + 1) =
αi(k + 1)θ∗i µi

1− E(ρ̂(k))
(4.9)

We denote it as the “original algorithm”.
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Figure 4.2: Comparison of measured and estimated outputs for 2 users.

4.4.2 Logarithmic Variant

In microeconomics, the relationship between an economic output (y) and its inputs

(x) is often described by a Cobb-Douglas type of production function y = C
∏n

i=1 xai
i . Thus

there exists a linear relationship between the logarithmic values of input and output namely

log y = log C +
∑n

i=1 ai log xi. The correspondence between user inputs and observations for

a two player scenario was analyzed as follows. For symmetric users, we collected multiple

input-output data and computed the exponents for equation θ = Cλa1
1 λa2

2 by least squares

fitting.

Fig. 4.2 illustrates the sup-norm of the error between the measured and estimated

outputs for various values of K. It is clear that the input-output relationship can be

approximated by a log-linear one. The state estimation equation can then be rewritten as

log ρ̂(k) = log ρ̂(k − 1)−Kk(λ(k) log ρ̂(k − 1)− log θ(k))

The time varying feedback control is computed using (4.9). We denote the above algorithm

as the “logarithmic variant”.
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4.4.3 Newton-Raphson Variant

Another approximation of (4.4) could be carried out by ignoring the effect of the

external noise v(ρ(k)) on the evolution of system state. Thus

ρ(k + 1) = ρ̂(k)− λ(k)
µ

+
λ(k + 1)

µ
(4.10)

Substituting (4.10) in (4.4), we obtain

λ(k + 1) =
α(k + 1)θ∗µ

1− E( ˆρ(k)− λ(k)
µ + λ(k+1)

µ )

The task of computing the new control thus reduces to finding the root of g(λ(k + 1))

g(λ(k + 1)) ≡ λ(k + 1)− α(k + 1)θ∗µ

1− E(ρ̂(k)− λ(k)
µ + λ(k+1)

µ )
.

We employ the damped Newton-Raphson method for this purpose. Denoting δ(n) as the

nth iterate of λ(k + 1) and κ (0 ≤ κ < 1) as the damping coefficient, the iterations are

δ(n + 1) = δ(n)− κ g′(δ(n))−1g(δ(n)) (4.11)

where

g′(δ(n)) = 1− α(k + 1)θ∗[((
K

ρ̂(k)− λ(k)
µ + δ(n)

µ

− 1)E(ρ̂(k)

−λ(k)
µ

+
δ(n)
µ

) + E2(ρ̂(k)− λ(k)
µ

+
δ(n)
µ

)]/(1− E(ρ̂(k)

−λ(k)
µ

+
δ(n)
µ

))2

and

g(δ(n)) = δ(n)− α(k + 1)θ∗µ

1− E(ρ̂(k)− λ(k)
µ + δ(n)

µ )

Starting from δ(0) = α(k+1)θ∗µ
1−E(ρ̂(k)) , we compute the successive approximations of

λ(k + 1) using (4.11). Termination of the iterations is contingent on the condition of the

error falling below the tolerance threshold ξ i.e |δ(n+1)−δ(n)| ≤ ξ. The “Newton-Raphson

variant” thus estimates system state using (4.10) and computes the corresponding control

by (4.11).
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4.4.4 Simulation Results

Computer simulation was employed to investigate the behavior of the algorithm

under several scenarios. For ease of analysis, the system considered was composed of a

homogenous population of identical users. Unless mentioned otherwise, the default values

used throughout the simulation were: θ∗ = 20, µ = 1, β = 0.1, P0 = 103, ξ = 10−3, κ = 0.1.

Each different scenario was executed for 1000 repetitions to obtain statistically significant

results. For stochastic optimization methods like the ones used above, measurement noise

makes it unrealistic to expect the algorithms to converge to a single value. We thus employed

the following stopping criterion in our experiments. The algorithm is presumed to have

stabilized at iteration n when 10 successive values of the system state are at most 0.1 apart

from each other

|ρ(n)− ρ(n− j)| ≤ 0.1 ∀ 1 ≤ j ≤ 10

The maximum number of iterations until convergence was set to 105 beyond which it was

terminated and considered as not converging.

The cardinal outcome of the experiments was the convergence of the algorithms in

a noisy environment, ruling out the occurrence of system instabilities such as oscillations

and finite time singularities. This is impressive considering the fact that each user pursues

her utility optimization oblivious to the number of competitors or the algorithms adopted

by them to attain their objectives. Further the equilibria under uncertainty are close to the

Nash equilibrium in a perfect information regime. Other characteristics of the algorithms

are detailed below.

4.4.5 Scalability

The scalability of an algorithm determines the speed at which it stabilizes the

system for increasing number of users. The original algorithm does not scale well and does

not converge when the number of users are greater than 5. Further as seen in Fig. 4.5, the

number of iterations required for convergence are two orders of magnitude more than the

two variants. This instability thus rules out its deployment in a real world setting forcing

us to exclude it from further consideration. The logarithmic and Newton-Raphson variants

scale well with N and are compared in Fig. 4.3 indicating the superiority of the former over

the latter. The effect of other users on the constitution of system state becomes prominent
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as the number of users proliferate. This affects the validity of assumption (4.10) and the

scalability of the Newton-Raphson version.
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Figure 4.3: Iterations vs Number of users: Logarithmic and Newton-Raphson.

4.4.6 Accuracy

The effect of noise and delay in an imperfect regime is to move the system away

from the non-cooperative Nash equilibrium. Hence a suitable metric to quantify the su-

periority of the algorithms would be the deviation of their equilibria (Λ′) from zero in

the fixed point iteration of (4.2). Accuracy is then quantified by computing the residuals

||Λ′ − F (Λ′)||∞

Fi(Λ′) ≡ µiθ
∗
i

1− E(ρ(Λ′))
∀ i = 1, . . . , N

The error is proportional to the residuals and is depicted in Fig. 4.4. The error values

indicate that the variants provide a reasonable approximation to the Nash Equilibrium

point. As opposed to the Newton-Raphson version, the logarithmic algorithm displays

increasing accuracy with respect to number of users . This is due to the progressively better
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log-linear approximation to the control-observation function as evident in Fig. 4.2. The

increasing accuracy leads us to suspect that the logarithmic variant might asymptotically

converge to the Nash equilibrium under certain limits.
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Figure 4.4: Error vs Number of users: Logarithmic and Newton-Raphson variants.

4.4.7 Effect of Aggressiveness on System Convergence

User aggressiveness is characterized by β as defined in (4.5). It modifies the rate

of user aggression as

dαi

dk
= −βk log(β)

Hence as it approaches zero, players try to attain their optimal bandwidth more aggressively

and in fewer time steps. The effect of aggression on system convergence for the three

algorithms is shown in figs. 4.5, 4.6, 4.7. The number of iterations required for convergence

increase as the variants become less aggressive, causing them to move slowly towards their

equilibrium points.
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Figure 4.5: Iterations vs β, Original algorithm.

4.4.8 Impact of User Demand on System Convergence

User demand is characterized using ε defined as ε ≡ 1−
∑N

i=1 θ∗i
K . As we vary ε from

1 to 0, user demand approaches the supply limit. We investigated the effect of ε on system

convergence for the Logarithmic variant and N = 2,5 and 10 users as illustrated in Fig. 4.8.

The Newton-Raphson version also displayed analogous behavior. As the demand for band-

width increase, it restricts the adaptability of each user. Any slight perturbation in demand

due to noise becomes amplified slowing the convergence of the distributed algorithm.
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Figure 4.6: Iterations vs β, Logarithmic variant.
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Figure 4.7: Iterations vs β, Newton-Raphson variant.
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Chapter 5

Bi-level Optimization

The previous chapters mentioned in detail the application of the user rate game

for bandwidth allocation in a single and multi-link circuit switched networks. We now take

another look at the problem [32] and show that the distributed game paradigm can be

viewed as a mapping from the vector of user desired bandwidths Θ∗ to a feasible bandwidth

allocation vector Θeqm. We then try to relate the noncooperative game to the problem

involving the maximization of total user utilities. However, this user optimization is not

done in isolation from the resource provider. Depending on the outputs received from its

users, the network concurrently tries to solve its revenue maximization problem.

5.1 Rate Optimization

From a social welfare point of view, the ideal resource allocation among competing

users should ensure that the total user utility is maximized. For the single link scenario of

3.1, the optimal bandwidth allocation is obtained by solving Problem A:

max
Θ

N∑

i=1

Ui(θi)

N∑

i=1

θi ≤ C
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This is a constrained optimization problem with feasible vectors allocating bandwidth no

greater than the available capacity C. Employing Lagrangian multipliers, we convert it into

the following unconstrained problem:

max
Θ,L

N∑

i=1

Ui(θi)− L(
N∑

i=1

θi − C)

where L is the Lagrange multiplier for the constraint. The additive nature of the objective

function indicates that this problem is separable. The linearity of the supply-demand con-

straint lends an economic interpretation to the Lagrangian L being the shadow price for

the available bandwidth. The corresponding Karush-Kuhn-Tucker (KKT) conditions for

optimality are:

∂Ui(θi)
∂θi

= L (5.1)

L ≥ 0,
N∑

i=1

θi ≤ C (5.2)

L(
N∑

i=1

θi − C) = 0. (5.3)

If the optimal price L† is nonzero, by the above conditions it is also the market clearing

price where all the capacity is utilized,

N∑

i=1

θ†i = C (5.4)

where θ†i is the ith user’s optimal bandwidth. The resulting microeconomic love story -

supply meets demand is illustrated in Fig. 5.1.

However the noncooperative setting precludes any computation of the objective

function or its derivative as it requires knowledge about the utilities of individual users.

We thus need to devise a distributed algorithm which can be used by each user to update

her allocation without divulging utility information to other users or the network. The

separability of the objective function suggests that individual users can instead try to solve

the simpler one dimensional problem B

max
θi

Ui(θi)− Lθi ∀ i ∈ N

This is the classic utility maximization problem of the individual user with L being a usage

based bandwidth price.
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In the previous chapters, we had modeled user behavior using this profit maxi-

mization paradigm. Each user tried to maximize his/her net benefit which is the difference

between the utility derived from bandwidth and the price paid to the network for its use.

By appropriately choosing their call request rates, users then strived to attain their opti-

mal bandwidths θ∗ computed from (2.1). The strict concavity of the user utility functions

ensures that the resulting optimal bandwidth vector Θ∗ is unique. Although the objective

function of problem A depends only on the bandwidth consumed by the user, we need to

ensure that the user bandwidth vector Θ lies in the constraint set

S ≡ {Θ ∈ <N |
N∑

i=1

θi ≤ C}.

for the allocation to be feasible.

While playing the noncooperative rate game in (2.4), the user rates converge to

a Nash equilibrium point Λeqm. The desired bandwidth vector Θ∗ is thus mapped to an

arrival vector Λeqm in the feasible rate set S . However this mapping is only defined

implicitly using (3.1). It may not be one-to-one and is dependent on the maximal rates.

At the rate equilibrium, the corresponding bandwidth allocation vector is computed using
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(3.2). This mapping from Λeqm to Θeqm is however one-to-one. Further it maps the vector

to the feasible region as proved by lemma 1 for the single link case and theorem 4 for

the multi-link network. Thus the user game in effect maps the possibly infeasible optimal

allocation vector to the feasible bandwidth allocation space.

Fig. 5.2 illustrates this mapping from Θ∗ to Θeqm. Three different scenarios are

possible during this feasibility transformation namely

• Case I: When the optimal vector is feasible and the maximal rates are large enough,

the equilibrium and optimal bandwidth vectors become equal.

λeqm
r = min{ µrθ

∗
r

1−Br(Λeqm)
, λmax

r } =
µrθ

∗
r

1−Br(Λeqm)

⇒ θeqm
r =

λeqm
r (1−Br(Λeqm))

µr
= θ∗r

• Case II: When the optimal vector is feasible and the maximal rates are not large

enough to include the Nash equilibrium point, the fixed point iterations end up at the
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maximal rate boundary. Then the equilibrium and optimal bandwidth vectors will

not be equal.

∃ r s.t λeqm
r = min{ µrθ

∗
r

1−Br(Λeqm)
, λmax

r } = λmax
r

⇒ θeqm
r =

λeqm
r (1−Br(Λeqm))

µr
=

λmax
r (1−Br(Λeqm))

µr
6= θ∗r

• Case III: When the optimal vector is not feasible, the Nash equilibrium always ends

up at the maximal rate boundary. Analogous to case II, the equilibrium and optimal

bandwidth vectors will then not be the same.

Let (Θ†, L†) be the optimal solution-Lagrange pair to problem A. Since they satisfy

the optimality conditions (5.1), the allocation Θ† is feasible. When the maximal rates are

not restrictive, case I in Fig. 5.2 applies leading to Θeqm = Θ∗. Thus the mapping does not

disrupt the optimal solution to problem A. Similarly in problem B if the users are charged

a positive market clearing price (5.4), the equilibrium allocation and bandwidth price also

solve problem A due to their satisfying the KKT conditions (5.1).

5.2 Price Optimization

The emphasis in pricing literature has been on charging users a usage cost per

bandwidth unit consumed, fixed at the marginal cost of production. While this is a Pareto

efficient outcome which maximizes the benefit of all the users, it provides no venue for the

network to recover its sunken costs. The paradox of an economically efficient outcome which

is inimical to the provider’s interests can be explained as follows. The efficiency criterion

only mandates that the marginal unit be sold at marginal cost. Thus units produced before

the marginal unit can be sold at a higher price and still maintain efficiency. But when all

goods are sold at the same price, the provider is forced to sell them at the untenable marginal

cost. The solution is thus to nudge the system to another Pareto efficient equilibrium using

nonlinear and/or customer specific charging schemes. When the service provider is a profit

maximizing entity, it would carry out price discrimination by charging a usage based fee such

that the marginal willingness to pay equals the marginal cost. Here, marginal willingness

to pay is defined as the willingness of a customer to pay for an incremental unit of the

good. This implies that if a customer valued an additional unit of the good at more than
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its production cost, she would be better off by purchasing the good. The provider will

also profit from this transaction. Due to the law of diminishing marginal utility, the user’s

marginal willingness to pay will decrease as she accrues more and more goods. The network

would then sell its last unit at a price equal to its marginal cost. At this equilibrium point,

the marginal benefit accrued by both the producer and user is zero. This operating point

also exhibits Pareto efficiency wherein the network garners all the social surplus.

We now demonstrate the relevance of differential pricing for advancing the net-

work’s objective. The network is a revenue maximizing entity with a revenue function

T (M, Θeqm) ≡
N∑

i=1

Mi θeqm
i ,

which is a function of the market price and the equilibrium bandwidth allocated to the

various users. The network chooses an appropriate market price to solve the optimization

Problem C :

max
M

T (M, Θeqm)

M ≥ 0, AΘeqm ≤ C,

namely maximizing its revenue while satisfying capacity constraints. For the single link sce-

nario, we convert it into the following unconstrained problem using Lagrangian multipliers.

max
M,α,β

MT Θeqm − α(
∑N

i=1 θeqm
i − C) + βT M

The KKT conditions for Problem C can then be shown as:

θeqm
r + Mr

∂θeqm
r

∂Mr
− α

∂θeqm
r

∂Mr
+ βr = 0 (5.5)

α ≥ 0,
N∑

i=1

θeqm
i ≤ C,α(

N∑

i=1

θeqm
i − C) = 0 (5.6)

β ≥ 0,M ≥ 0, βT M = 0 (5.7)

The network would thus charge its users differently depending on their demand elasticity to

price. The network cannot explicitly carry out this optimization as it is not cognizant of the

dependence between the equilibrium allocation and the market price. The noncooperative

users may loathe to part with this information or could even be unaware of it themselves.

The scenario thus reduces to a bi-level optimization scheme.
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Alternately the system could be viewed as a Stackelberg game [7,8] with the net-

work being the leader and the users acting as followers. Such a formulation has been studied

to model networking routing and subsequent user behavior in [22]. The network initializes

its algorithm by assigning an initial price M(0) randomly or based on historical data. Note

that while the initial conditions do not alter the final solution, they can significantly affect

the number of iterations needed to reach the optimum. The users then treat the market

price as given and compute the equilibrium bandwidth vector Θeqm by solving the user

problem B and the bandwidth game. The network infers this allocation vector by observing

the amount of bandwidth consumed, which is then employed to solve problem C with the

updated Θeqm. Fig 5.3 illustrates this bi-level, network-user interaction.

In general the optimal market price M∗ of problem C would not be the solution to

the total utility maximization problem A. Since the network does not possess the derivative

information for its objective function, we employ gradient-free algorithms to attain the

optimal revenue. Stochastic approximation based schemes discussed in chapter 6 were

chosen for this purpose owing to their excellent resilience to noisy measurements.
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Chapter 6

Stochastic Approximation

We now present a brief introduction of the method of stochastic approximation

(SA) for solving nonlinear root-finding problems in the presence of noisy measurements.

Stochastic approximation is a stochastic analogue to the deterministic root finding tech-

niques like steepest descent or Newton-Raphson algorithms. Often referred to as the

Robbins-Monro algorithm, SA provides a general framework for analyzing the convergence

properties of a wide variety of algorithms such as least-mean-squares (LMS), recursive-

least-squares (RLS) and gradient-free SA. Root finding SA was introduced by Robbins and

Monro in 1951 [40] with generalizations provided by Kiefer and Wolfowitz [21], Nevel’son

and Has’minskii [30], Kushner and Clark [23].

Let X be the domain of allowable values for the decision variable x. We are

interested in finding the values of x ∈ X that are the roots of some vector-valued function

g(x). The root-finding function g(x) is usually encountered while calculating the gradient

for minimizing an objective function T (x), i.e,

g(x) =
∂T (x)

∂x
,

Denote x̂(k) as the estimate for x at the kth iteration of the algorithm under consideration.

Noisy measurements of the gradient g at an estimate x̂(k) are represented as

Y (x̂(k)) ≡ g(x̂(k)) + e(x̂(k)).

where e represents the noise term of dimension N . Observe that the noise is dependent

on the state estimate x̂(k) indicating that the common assumption of independent and
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identically distributed (i.i.d) noise will not apply since x̂(k) will be changing as the search

process proceeds in time.

Our focus is in finding at least one root x∗ ∈ X∗ ⊆ X ⊆ <N . Consider the steepest

descent algorithm where

x(k + 1) = x(k)− a(k)g(x(k)),

a(k) > 0 being the step size. An obvious stochastic extension would be to approximate

g(x(k)) using multiple values of Y (x̂(k)). Robbins and Monro showed this to be a wasteful

use of the measurements since g(x̂(k)) is merely an intermediate step in the process of

attaining the desired x∗. Instead, they suggested a form of averaging across iterations which

leads to a more effective use of the input information. We present below the unconstrained

and constrained versions of the Robbins-Monro SA algorithm. Let ak be a nonnegative

“gain” value and Ψx[·] a mapping from a point outside X to a new point inside X.

Unconstrained:

x̂(k + 1) = x̂(k)− a(k)Y (x̂(k)) (6.1)

Constrained:

x̂(k + 1) = Ψx[x̂(k)− a(k)Y (x̂(k))] (6.2)

SA is thus derived from the steepest descent algorithm with g(x̂(k)) being replaced

with the noisy measurement Y (x̂(k)). The contribution of SA however lies in the specifica-

tion of the gain coefficients ak to ensure proper across-iteration averaging and convergence

to the root x∗. While these conditions may differ from those of its deterministic cousins,

they also apply to steepest descent as it is a special case of SA.

6.1 Convergence of Stochastic Approximation

Most of the convergence results for SA are sufficient conditions and in the almost

sure (a.s) sense. They have evolved out of two general settings - “statistics” conditions which

impose statistical conditions on the gradient function g(·) and noise e(·) and “engineering”

conditions based on Ordinary Differential Equation (ODE) theory. The latter is derived
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from an ODE which roughly emulates the SA algorithm for large k as random effects

disappear. The convergence properties of this deterministic differential equation are closely

related to the convergence properties of (6.1). Neither of these conditions are special cases

of each other and thus necessarily weaker. They apply when there is a unique root x∗ to

g(·) or when the objective function has local minima not different from the global minimum.

The convergence conditions for the two settings have been taken from Spall [44].

6.1.1 “Statistics” conditions

The “statistics” conditions for the strong (a.s) convergence of the SA iterate x̂(k))

are:

A.1 (Gain sequence) a(k) > 0, a(k) → 0,
∑∞

k=0 a(k) = ∞, and
∑∞

k=0 a(k)2 < ∞.

A.2 (Search direction) For some symmetric, positive definite matrix B and every 0 < η < 1,

inf
η<||x−x∗||<1/η

(x− x∗)T Bg(x) > 0.

One may choose any convenient B such as the identity matrix Ip.

A.3 (Mean-zero noise) E[e(k, x)] = 0 for all x and k.

A.4 (Growth and variance bounds) ||g(x)||2 + E(||e(k, x)||2) ≤ c(1 + ||x||2) for all x and k

and some c > 0.

These conditions are used for finding the appropriate convergence limits for the

Finite Difference Stochastic Approximation in the next section. Condition A.1 is the most

relevant since it indicates that the gain should be chosen with care so that its decay is

neither too slow nor too fast. Thus as the iterate approaches the solution x∗, the gain

should approach zero sufficiently fast (a(k) → 0,
∑∞

k=0 a(k)2 < ∞) to damp out the noise

effects. However it should also degrade at a sufficiently slow rate (
∑∞

k=0 a(k) = ∞) to avoid

premature convergence of the algorithm. Given the desirability for a gain sequence that

balances algorithm stability in the earlier iterations with nonnegligible step sizes in the later

iterations, a recommended gain form is

a(k) =
a

(k + 1 + A)α
, (6.3)
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where A ≥ 0 is the stability constant. When A = 0 and a large a is chosen to induce large

steps in the later iterates, it may lead to unstable behavior in the beginning. However if

a is chosen to be small, performance in the latter cases is sacrificed for robust behavior at

the onset of SA. Thus a positive value of A is often preferred. For values of 0.5 < α ≤ 1, A

is chosen to be approximately 5 to 10 percent of the total number of expected or allowed

iterations.

6.1.2 “Engineering” conditions

For the ODE approach mentioned above, conditions for the “engineering” type

are given below. These are used for finding the appropriate convergence limits for the

Simultaneous Perturbation Stochastic Approximation (SPSA) in the next section.

B.1 (Gain sequence) ak > 0, ak → 0,
∑∞

k=0 ak = ∞.

B.2 (Relationship to ODE) Let g(x) be continuous on <p. With Z(t) ∈ <N representing a

time-varying function, suppose that the differential equation given by

dZ(t)
dt

= −g(Z(t))

has an asymptotically stable equilibrium point at x∗.

B.3 (Iterate boundedness) supk≥0 ||x̂(k)|| < ∞ a.s. Further x̂(k) lies in a compact subset

of the domain of attraction for the differential equation in B.2 infinitely often.

B.4 (Bounded variance property of measurement error) Let =k ≡ {x̂(0), . . . , x̂(k)}. Let

the bias for the kth iterate be b(k) = E[e(k, x̂(k))|=k. Then E[||∑∞
k=0 a(k)(e(k) −

b(k))||2] < ∞.

B.5 (Disappearing bias) supk≥0 ||b(k)|| < ∞ a.s and b(k) → 0 a.s as k →∞.

Unlike the “statistics” conditions, it is assumed that the gradient function g(x)

is continuous. The boundedness condition B.3 has been somewhat controversial in the

literature as it imposes a requirement on the very iterate that one is trying to analyze.

Condition B.4 ensures that the martingale convergence theorem from probability theory

can be used to cope up with the noise effects in the SA recursion. B.5 generalizes the mean-

zero noise restriction imposed by A.3 by considering noise functions whose mean converges
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to zero as well. This extension is essential for analyzing the convergence of gradient free SA

methods like SPSA.

6.2 Gradient-Free Algorithms

In our bi-level optimization strategy, the exchange of information between users

and the network follows the schema of Fig. 5.3. Thus, for a particular market price M , the

network can only observe the corresponding bandwidth allocation Θ(M) among the users.

Since the utility information of the users are considered private, the network provider is

unable to obtain the higher derivatives (∂nθeqm
i /∂Mn

i ) of the bandwidth allocated with

respect to the market price. Only the revenue measurements y(M) = T (M, Θeqm(M)) +

ε(M) are available for various values of the market price M . We thus resort to gradient-

free algorithms which are based on an approximation to the gradient formed from noisy

measurements of the objective function. Note that the notion of “gradient-free” is applicable

only to the implementation of the algorithm. It does not refer to the absence of a gradient,

which is required to guarantee convergence.

6.2.1 Finite Difference SA (FDSA)

Based on the seminal work by Robbins and Monro, an SA algorithm based on the

Finite Difference (FD) gradient approximation was introduced for the scalar and multivari-

ate cases by Kiefer-Wolfowitz and Blum respectively. Gradient approximation is carried

out by the finite difference method using small one-at-a-time changes on each of the indi-

vidual elements of M . The possibly noisy value of the network revenue function T (M) (see

Section 5.2) is then measured after each change. Once the measurements of the objective

function have been collected for perturbations in each element of M , the gradient approxi-

mation may be calculated. This is motivated directly from the definition of the gradient as

a collection of derivatives for each of the components in M , holding all other components

fixed.

gi(M) =
∂T

∂Mi
= lim

∆→0

T (M1, . . . ,Mi−1,Mi + ∆, Mi+1, . . . , MN )− T (M)
∆

.

The network tries to solve its revenue maximization Problem C by recursively
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updating its market prices in the general SA form:

M̂(k + 1) = M̂(k)− a(k) ĝ(k, M̂(k)), (6.4)

where ĝ(k, M̂(k)) is the estimate of the gradient ∇T at the iterate M̂(k) based on mea-

surements of the revenue function. Thus (6.4) is analogous to the basic Robbins-Monro

algorithm (6.1) with the gradient estimate ĝ(k, M̂(k)) replacing the gradient g(k, M̂(k)).

The crucial component of (6.4) is the gradient approximation which may be obtained from

the measurements of y(M̂(k)) and y(M̂(k)+perturbation) or from two measurements of

y(M̂(k)± perturbation), called one-sided and two-sided approximations, respectively. We

employ the latter to approximate the gradient as

ĝ(k, M̂(k)) =




y(M̂(k)+c(k)η1)−y(M̂(k)−c(k)η1)
2c(k)

...
y(M̂(k)+c(k)ηN )−y(M̂(k)−c(k)ηN )

2c(k)


 , (6.5)

where ηi denotes a vector with a 1 in the ith place and 0’s elsewhere and c(k) > 0 defines the

difference magnitude. The pairs {a(k), c(k)} are the gain sequences for the FDSA algorithm.

Thus the gradient approximation is formed by perturbing the components of the market

price M̂(k) one a time and collecting a revenue measurement at each of the perturbations.

This requires a total of 2N measurements for a two sided gradient approximation.

This algorithm relies only on revenue computations to optimize the network ob-

jective. In fact, we need to find only the difference between the two values of the revenue

function. However, this method would be costly for higher dimensional problems since a

measurement has to be obtained for each element of M . Because a typical implementation

for optimization requires several iterations with approximations at each step, this measure-

ment cost could be prohibitive. Every time the network declares a new set of bandwidth

prices, the users are forced to play a bandwidth game which eventually converges to a Nash

equilibrium. Chapter 4 indicates that the number of iterations required for convergence will

increase as measurement noise and user population goes up.

The convergence theory of the FDSA algorithm is similar to that of the root

finding SA detailed in Section 6.1. However an additional difficulty arises due to the bias in

ĝ(k, M̂(k)) as an estimator of g(k, M̂(k)) and the need to control the extra gain sequence

c(k). This is because the “statistics” conditions (A.1-A.4) are based on unbiased estimates

of g(·) for all k. The introduction of the estimate leads to an additional bias of O(c2
k) in
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the computation of E[g(k, M̂(k))|=k]. Further ĝ(k, M̂(k)) is an unbiased estimator of the

gradient in the special case where the objective function is quadratic.

Some guidelines have been provided for specific choices of the gain sequences

namely,

a(k) =
a

(k + 1 + A)α
, c(k) =

c

(k + 1)γ
(6.6)

where a, c, α and γ are strictly positive. Practical values of α and γ that are effectively as low

as possible while satisfying A.1′ are 0.602 and 0.101, respectively. To cope with noise effects,

c is set at a level approximately equal to the standard deviation of the measurement noise.

This helps keep the elements of the gradient estimate from growing excessively large before

a(k) stabilizes the search process. A is then chosen to be around 10 percent of the maximum

number of iterations. We then choose the most critical coefficient a. In making this choice,

we initially picked atemp,i, i = 1, . . . , N such that [atemp
i /(A + 1)0.602] when multiplied with

the corresponding element of the initial gradient g(0) is approximately equal to the desired

change in magnitude of the Mi in the early iterations. We then repeated this process for

several replications and chose a as the minimum of all atemp
i .

6.2.2 Simultaneous Perturbation SA (SPSA)

Compared to FDSA, the main benefit of Simultaneous Perturbation Stochastic

Approximation is a reduction in the number of loss measurements required to achieve a

given level of accuracy in the optimization process. SPSA has found applications in areas

as varied as queuing systems, simulation-based optimization, aircraft design and neural

network training. The basic algorithm (6.4) is augmented with an innovative method to

compute the gradient approximation. While a two sided FDSA requires a total of 2N

measurements per iteration, SPSA computes the gradient using just two measurements.

The two-sided simultaneous perturbation gradient approximation is obtained by randomly

perturbing all the elements of M̂(k) leading to

ĝ(k, M̂(k)) =




y(M̂(k)+c(k)∆k)−y(M̂(k)−c(k)∆k)
2c(k)∆k1

...
y(M̂(k)+c(k)∆k)−y(M̂(k)−c(k)∆k)

2c(k)∆kN


 , (6.7)

where the mean-zero N -dimensional random perturbation vector ∆k = [∆k1, . . . , ∆kN ]T has

a symmetric Bernoulli ±1 distribution and c(k) is a positive scalar.
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Since the numerator is the same in all N components of ĝ(k, M̂(k)), only 2 loss

measurements are needed to estimate the gradient in SPSA regardless of the number of users

N . This measurement savings per iteration provides a potential way to achieve considerable

advantage over FDSA in the total number of measurements required to estimate M when p is

large. This potential is realized if the number of iterations required for effective convergence

to an optimum M∗ does not increase in a way to negate the measurement savings per

gradient iteration at each iteration. It is clear that the FD approximation (6.4) will generally

be superior to that obtained through (6.7). Under reasonably general conditions, the SPSA

and FDSA recursions attain the same level of statistical accuracy for a given number of

iterations even though SPSA uses only 1/N times the number of function evaluations of

FDSA.

number of y(·) values in SPSA
number of y(·) values in FDSA

→ 1
N

(6.8)

as the number of loss measurements in both procedures gets large. This implies that the

N -fold savings per iteration for gradient approximation translates directly into a N -fold

savings in the overall optimization process. Note that this is under the assumption that

both FDSA and SPSA use the same gain sequences a(k) and c(k).

6.3 SPSA Pricing algorithm

In this section we present a step-by-step summary of a pricing algorithm based on

SPSA.

Step 0 (Initialization and coefficient selection) Initialize iteration index k = 0. Pick

initial price M̂(0) and set α = 0.602, γ = 0.101. The coefficients a,A and c are

determined by guidelines in Section 6.1.

Step 1 (Generation of the simultaneous perturbation vector) Generate by Monte

Carlo a p-dimensional perturbation vector ∆k, where each of the p components of ∆k

are independently generated from a Bernoulli ±1 distribution with probability of 1/2

for each outcome.

Step 2 (Objective function evaluations) Obtain two measurements of the objective

function based on the simultaneous perturbation around the current price M̂(k).
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Step 3 (Gradient approximation) Generate the simultaneous perturbation approxi-

mation to the unknown gradient g(M̂(k)) according to (6.7). When the noise effects

ε(k) are relatively large, several gradient approximations computed at M̂(k) could be

averaged.

Step 4 (Price updating) Use (6.2) to update the network price M̂(k) to a new value

M̂(k + 1). The mapping function ΨM (·) ≡ max(·,0) is employed to maintain feasi-

bility. The SA formula (6.2) was designed to minimize the objective function. Since

our objective is revenue maximization, we update the prices as follows

M̂(k + 1) = max(M̂(k) + a(k)ĝ(k, M̂(k)),0).

Step 5 (Iteration or Termination) Replace k with k + 1 and go to step 1. Terminate

the algorithm if there is little change in several successive iterates or if the maximum

allowable number of iterations has been reached.

The choice of the gain sequences is critical to the performance. With α, γ specified

in step 0 of the algorithm above, it is found that in a high-noise setting it is necessary to

pick a smaller a and larger c than those employed in a low-noise setting.

6.4 Numerical Results

We ran numerical experiments for the perfect information regime. All users were

updated with the latest rate vector while adapting their respective individual call request

rates. In this case due to the presence of noise-free measurements, FDSA is the same as the

classic Finite Difference gradient-free algorithm. However the corresponding sample paths

generated by SPSA would not be the same due to the influence of random perturbations

used in gradient approximation. We ran 50 runs to obtain statistically significant results.

The 95% confidence intervals (C.I) were calculated using

C.I = M̄ ± z0.025
s√
n

= M̄ ± 1.96
s√
n

(6.9)

where M̄ is the sample average, z0.025 is the, s is the sample standard deviation and n is

the total number of runs.
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Figure 6.1: Comparison of efficiency for FDSA and SPSA.

6.4.1 Efficiency of SPSA

The efficiency and scalability of algorithms are key issues in solving any problem of

interest. Performance may be measured in terms of computer run time, number of algorithm

iterations, and number of objective function evaluations. We employ the latter criterion

to compare the FDSA and SPSA algorithms. This is because computer run times are

dependent on the specific machine employed, operating system in place and the processes

running in memory while the simulation is in motion. Thus the results may not readily

transfer from one setting to another. Iterations can also be misleading, as some algorithms

may have iterations which are much more computationally intensive than others. Hence

an algorithm converging in fewer iterations may not have lesser computational cost than

others which use more iterations but with lower per-iteration demands. Thus we compare

the performance of our algorithms with respect to the number of revenue evaluations. The

motivation behind this approach is that in practice the T (·) measurements are usually the

dominant cost in the optimization process especially as the number of users N becomes

large.
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Fig. 6.1 compares the two algorithms while coordinating a a single link network

comprising of 10 identical users and 100 circuits. Note that FDSA and SPSA compare

favorably on an iteration-by-iteration basis. However, SPSA uses only two revenue mea-

surements per iteration while FDSA uses 20. This 10-fold average savings per iteration leads

to the large savings in total measurements for the full number of iterations. Due to the

superior performance of SPSA, we henceforth employed is as our primary price adjustment

algorithm.

6.4.2 Impact of Number of Users on Revenue Generation

10 20 30 40 50 60 70 80 90 100
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50
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5 users
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Figure 6.2: Revenue generation for varying number of users using FDSA.

The network adjusted its prices for a single link comprising of 100 circuits and

users ranging from 2, 5 and 10. The users had identical utility functions with coefficient b

set as 10. From the KKT conditions (5.5) for the revenue maximization problem, we obtain

N(
b

M∗ − 1) = 100.

Thus the optimal market revenue turns out to be

T (M∗) = NM(
b

M
− 1) = 100

bN

100 + N
,
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Figure 6.3: Revenue generation for varying number of users using SPSA.

which are tabulated below. In the case of a 10 user system, the market clearing effects near

the optimal revenue are illustrated in Fig. 6.4.

No. of Users T (M∗)
2 19.61
5 47.62
10 90.91

Fig. 6.2 and 6.3 illustrate the network revenue for varying iterations and number

of users. In both cases, we observe that the network objective approaches the optimal

values tabulated above. The earnings accrued by the network can be seen to increase with

increasing number of users. This is because a larger population of users leads to a larger

demand for resources which encourages the provider to sell her goods at a higher price.

6.4.3 Effect of Initial Price on Convergence

Our numerical studies indicated that the SPSA algorithm converges to an equilib-

rium irrespective of the initial price vector M(0). However, the starting price is a critical

factor in the convergence to the equilibrium network price. Fig. 6.5 depicts these facts in

the case of two identical users sharing a single link.
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Figure 6.4: Market clearing effects for a system of 10 users.

6.4.4 Triangle Network

We now turn our attention to the triangle network of Fig. 3.11. Users 1 and 2 with

utility coefficients b1 = 10, b2 = 50 demand 9 and 49 circuits from the network respectively.

A link capacity vector C = [10 10 10]T was chosen to simulate a bottleneck in link 3. Unlike

the scenario in 3.4.3, both the network and users were involved in this bilevel adaptation

scheme. The system eventually settled down to an equilibrium with the capacity of link 3

allocated as per Fig. 6.6. The resource provider maximized her revenue by employing price

discrimination. User 2 with its higher demand was willing to pay more for the resource than

user 1. The network thus charged her 43% more than user 1 (see Fig. 6.7) and allocated

83% of link 3 capacity.

In the presence of competition for scarce resources, users may try to modify their

parameters to capture a large portion of the available capacity. In our triangle network,

the bone of contention is the bottle neck link 3. In our numerical experiment, user 2

modified her maximum arrival rate λmax
2 while user 1 maintained a static maximal rate.

The aspect ratio λmax
2 /λmax

1 was varied from 1 to 10. We maintained the market price at

a constant M = [1 1]T . Since the bandwidth price is lower than the market clearing price,
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Figure 6.5: Effect of Initial Price on Convergence.

user demands outstrip the available link capacity. The equilibrium rates thus settle at the

boundary of the maximal rate box. As λmax
2 is increased, the component of user 2 in the

final arrival rate dwarfs that of user 1. This in turn leads to a higher bandwidth allocation

in favor of the second user. Fig. 6.8 confirms this analysis with respect to the bottle neck

link. User 1 gets a better deal when her maximal rate is raised from 10 to 100. This has

serious implications for fairness in real world situations. The maximal arrival rates could

be an inherent property of computing power of the network processor and transmission

capacity. Hence, by boosting its maximum rate, any entity with superior processing power

and technology could gain an upper hand over its less fortunate peers.
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Chapter 7

Conclusion

This dissertation has presented a unified pricing model for regulating the inter-

action between a connection oriented network and its users. This chapter summarizes the

work and suggests extensions for future work.

7.1 Summary

We envisage the future Internet to be composed of MPLS/GMPλS networks run-

ning over optical networks enabled with Dense Wavelength Division Multiplexing technol-

ogy. The implications of such a scenario are two-fold. Firstly, they portend the resur-

gence of connection oriented networks albeit in conjunction with IP networks. Secondly,

their Gigabit speeds would foster the development of bandwidth intensive applications like

Video-on-Demand and online, 3D gaming. These would require a higher quality of service

different from the current best effort service model. To regulate such QoS-aware applica-

tions, network providers will have to introduce class sensitive pricing into the Internet. In

this work, we have tried to provide an answer to the problems posed above.

We developed an integrated model to incorporate the interaction between users

and the network in a connection oriented setting. A noncooperative community of users

that shared a network was studied using the tools of game theory. The resultant Nash

equilibrium was studied for the single link and multi-link cases.The convergence to the fixed
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point and the impact of maximal rates on the equilibrium were also studied. Upper bound

based variants helped speed up the computations in exchange for higher equilibrium rates.

The user game was then extended to encompass the imperfect information regime where

users adapted their rates based on feedback from the system. Three algorithms based on

Recursive Least Squares were proposed and their convergence, accuracy and scalability was

validated by simulation results. We then obtained a different perspective of the rate game

where it was portrayed as a mapping to impose feasibility. This was then tied together with

a bi-level optimization model where the network is the leader and the users are followers in

a Stackelberg game. Novel gradient free Stochastic Approximation algorithms for revenue

maximization were proposed and validated for the single link and triangle network. Thus

a comprehensive suite of user and network models and algorithms were developed, tested

and validated for varying price and network scenarios.

7.2 Future Work

A possible avenue for future work would be the extension of algorithms developed

in Chapter 4 to operate in a general, multi-link network. However the route blocking

probability experienced by any user is a complicated function of the blocking probabilities

of other users as well as the network capacity. Thus for any feedback based algorithm to be

stable, the observability of the state space has to be enhanced. This could be possible only

if the users exchange their rate information or blocking information to other users. Such an

arrangement may lead to an erosion of privacy as well as additional signalling burden and

delay.

Further more the linear RLS algorithms could be replaced by their nonlinear coun-

terparts like stochastic gradient based techniques. Preliminary forays in this direction were

not successful as they were unable to outperform the logarithmic RLS variant for the single

link case. Still, an algorithm suite encompassing an general network with arbitrary number

of links and users would be a significant achievement in the field of telecommunications. The

robustness of such schemes in the presence of artificially injected randomness offers scope

for further study. As the randomness in the measurement data increase, the distributed

optimization algorithms may push the system into a chaotic orbit.

In the real world, the network objective function T (M, Θ) could often represent
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the total profit garnered. The network would then have to price its resources at a value

higher than the cost to produce them. It would be interesting to see how the profit max-

imization and revenue maximization cases differ in terms of the bandwidth allocation. In

this dissertation, we have only considered users with logarithmic utility functions. Ideally

user utilities should be empirically calculated from real world demand data.

The algorithms in this dissertation could be incorporated into intelligent agents

which could be tested in a controlled lab experiment. Human users would allocate a daily

budget and the agent would have to decide on a QoS vector to optimize the net benefit under

a rolling horizon. They should thus have the ability to interface with users and exchange

messages over the network with other agents possibly using Session Initiation Protocol.

Another dimension of the agent negotiation approach discussed in Chapter 2 is the

effect of asynchrony on system performance. When rate information is transmitted over the

network, delays are inevitable due to packet losses, processing and propagation. The fixed

point computation in 2.3 should be robust to such delays to ensure fast convergence to the

Nash equilibrium. Each agent could follow a variety of approaches to adapt to information

delays. It could wait for all the updated information (N − 1 updates) to arrive prior to

processing or alternatively let the computation proceed as and when any new updates occur.

Such asynchronous computations [46] are commonly implemented by operating systems and

microprocessors for deciding new allocation and scheduling policies.
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