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Global Random Optimization by Simultaneous
Perturbation Stochastic Approximation

John L. Maryak and Daniel C. Chin

Abstract—We examine the theoretical and numerical global convergence
properties of a certain “gradient free” stochastic approximation algorithm
called the “simultaneous perturbation stochastic approximation (SPSA)”
that has performed well in complex optimization problems. We establish
two theorems on the global convergence of SPSA, the first involving the well-
known method of injected noise. The second theorem establishes conditions
under which “basic” SPSA without injected noise can achieve convergence in
probability to a global optimum, a result with important practical benefits.

Index Terms—Global convergence, simulated annealing, simultaneous
perturbation stochastic approximation (SPSA), stochastic approximation
(SA), stochastic optimization.

I. INTRODUCTION

A problem of great practical importance is the problem of stochas-
tic optimization, which may be stated as the problem of finding a
minimum point, θ∗ ∈ Rp , of a real-valued function L(θ), called the
“loss function,” that is observed in the presence of noise. Many ap-
proaches have been devised for numerous applications over the long
history of this problem. A common desire in many applications is for
the algorithm to reach the global minimum rather than get stranded
at a local minimum value. In this paper, we consider the popular
stochastic optimization technique of stochastic approximation (SA),
in particular, the form that may be called “gradient-free” SA. This
refers to the case where the gradient, g(θ) = ∂L(θ)/∂θ, of the loss
function is not readily available or not directly measured (even with
noise). This is a common occurrence, for example, in complex sys-
tems where the exact functional relationship between the loss function
value and the parameters, θ, is not known and the loss function is
evaluated by measurements on the system (or by other means, such as
simulation). In such cases, one uses instead an approximation to g(θ)
(the well-known form of SA called the Kiefer–Wolfowitz type is an
example).

The usual form of this type of SA recursion is

θ̂k+1 = θ̂k − ak ĝk (θ̂k ) (1)

where ĝk (θ) is an approximation (at the kth step of the recursion) of the
gradient g(θ), and {ak } is a sequence of positive scalars that decreases
to zero (in the standard implementation) and satisfies other properties.
This form of SA has been extensively studied (e.g., [4], Chs. 1, 5, 6, and
others, and [8], Chs. 6 and 7 and the references therein), and is known
to converge to a local minimum of the loss function under various
conditions.

Several authors (e.g., [3], [5], and [11]) have examined the problem
of global optimization using various forms of gradient-free SA. The
usual version of this algorithm is based on using the standard “finite
difference” gradient approximation for ĝk (θ). It is known that carefully
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injecting noise into the recursion based on this standard gradient can
result in an algorithm that converges (in some sense) to the global
minimum. For a discussion of the conditions, results, and proofs, see,
e.g., [3] and [5]. These results are based on the intuitive idea that
promoting global convergence by the injection of extra noise terms
into the recursion may allow the algorithm to escape θ-neighborhoods
that produce local minimum points of L(θ), especially in the early
iterations of the algorithm.

A somewhat different version of SA is obtained by using a “si-
multaneous perturbation” (SP) gradient approximation, as described
in [10] for multivariable (p > 1) problems. Using SPSA often re-
sults in a recursion that is much more economical, in terms of loss-
function evaluations, than the standard version of SA (see [10]). The
loss function evaluations can be the most expensive part of an opti-
mization, especially if computing the loss function requires making
measurements on the physical system. Many studies (e.g., [1] and
[10]) have shown SPSA to be very effective in complex optimization
problems.

The main goal of this paper is to establish two theorems on the
global convergence of SPSA. A considerable body of theory has been
developed for SPSA (e.g., [1], [2], [9], and [10], and the references
therein). This theory does not include global convergence results. As
mentioned earlier, global convergence theory does exist for standard
implementations of SA. However, because of the particular form of
SPSA’s gradient approximation, the existing theory on global conver-
gence of standard SA algorithms is not directly applicable to SPSA. In
Section II of this paper, we present a theorem showing that SPSA can
achieve global convergence (in probability) by the technique of inject-
ing noise. The “convergence in probability” results of our Theorem 1
(Section II) and Theorem 2 (Section III) are standard types of global
convergence results (see, e.g., [3], [5], and [12]).

To overcome drawbacks associated with the noise-injection method
(see Section III), we present in Section III a theorem showing that,
under conditions different from those in Section II, the basic version of
SPSA can perform as a global optimizer without the need for injected
noise. Section IV is a summary. The proof of Theorem 2 is given in the
Appendix.

II. SPSA WITH INJECTED NOISE AS A GLOBAL OPTIMIZER

Our first theorem applies to the following algorithm, which is the
basic SPSA recursion indicated in (1), modified by the addition of extra
noise terms

θ̂k+1 = θ̂k − ak ĝk (θ̂k ) + qk ωk (2)

where ωk ∈ Rp is independent identically distributed (i.i.d.) N (0, I)
injected noise, ak = a/k, q2

k = q/k log log(k), a > 0, q > 0, and
ĝk (•) is the “SP” gradient defined as follows:

ĝk (θ) ≡ (2ck ∆k )−1
[
L(θ + ck ∆k ) − L(θ − ck ∆k )

+ ε
(+ )
k − ε

(−)
k

]
(3)

where ck , ε
(±)
k are scalars, ∆k ∈ Rp , and the inverse of a vector is

defined to be the vector of inverses. This gradient definition follows
that given in [10]. The εk terms represent (unknown) additive noise that
may contaminate the loss function observation, ck are parameters of the
algorithm, the ck sequence decreases to zero, and the ∆k l components
of ∆k are chosen randomly according to the conditions in [10], usually
(but not necessarily) from the Bernoulli (±1) distribution.

Our theorem on global convergence of SPSA using injected noise
is based on a result in [3]. In order to state the theorem, we need
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to develop some notation (from [3]), starting with the definition of
a key probability measure,Pη , used in hypothesis H7 next. Define
Pη for any η > 0 by the Radon–Nikodym derivative: dPη (θ)/dθ =
exp(−2L(θ)/η2 )/Zη , where Zη =

∫
R p exp(−2L(θ)/η2 ) dθ. Next,

define an important constant, C0 , for convergence theory as follows
([3]). For t ∈R and υ1 , υ2 ∈ Rp , let I(t, υ1 , υ2 ) = infφ

1
2

∫ t

0 |dφ
(s)/ds + g(φ(s))|2ds, where the inf is taken over all absolutely
continuous functions φ : [0,∞) → Rp such that φ(0) = υ1 and
φ(t) = υ2 , g(•) is the gradient, and | • | is the Euclidean norm. Let
V (υ1 , υ2 ) = limt→∞ I(t, υ1 , υ2 ), and S0 = {θ : g(θ) = 0}. Then,
C0 ≡ 3

2 supυ 1 ,υ 2 ∈S 0
(V (υ1 , υ2 ) − 2L(υ2 )). We will also need the fol-

lowing definition of tightness. If {Xk } is a sequence of random p-
dimensional vectors, then {Xk } is tight if for any ε > 0, there exists
a compact subset Kε ⊂ Rp such that P (Xk ∈ Kε ) > 1 − ε, ∀k > 0.
Finally, let ζ∗

k ≡ ĝk (θ̂k ) − g(θ̂k ) and let superscript prime (′) denote
transpose.

The following are the hypotheses used in Theorem 1.

H1. Let ∆k ∈ Rp be a vector of p mutually independent zero-mean
random variables {∆k 1 , ∆k 2 , . . . , ∆k p}′ such that {∆k } is a mutu-
ally independent sequence that is also independent of the sequences
{θ̂1 , . . . , θ̂k−1}, {ε(±)

1 , . . . , ε
(±)
k−1}, and {ω1 , . . . , ωk−1}, and such

that ∆k i is symmetrically distributed about zero, |∆k i | ≤ α1 < ∞
a.s. and E|∆−2

k i | ≤ α2 < ∞, a.s. ∀ i, k.

H2. Let ε
(+ )
k and ε

(−)
k represent random measurement noise terms

that satisfy Ek [(ε(+ )
k − ε

(−)
k )|∆k ] = 0 a.s. ∀k, where Ek de-

notes the conditional expectation given �k ≡ the sigma alge-
bra induced by {θ̂0 , ω1 , . . . , ωk−1 , ∆1 , . . . , ∆k−1 , ε

(±)
1 , . . . , ε

(±)
k−1}.

The {ε(±)
k } sequences are not assumed independent. Assume that

Ek [(ε(±)
k )2 |∆k ] ≤ α3 < ∞ a.s. ∀k.

H3. L(θ) is a thrice continuously differentiable map from Rp into R;
L(θ) attains the minimum value of zero; as |θ| → ∞, we have
L(θ) → ∞ and |g(θ)| → ∞; inf(|g(θ)|2 − Lap(L(θ))) > −∞
(Lap here is the Laplacian, i.e., the sum of the elements of the
Hessian matrix (∂g(θ)/dθ′) of L(θ)); the individual elements of
L(3) (θ) ≡ ∂3L(θ)/∂θ′∂θ′∂θ′ satisfy |L(3)

i1 i2 i3
(θ)| ≤ α5 < ∞.

H4. The algorithm parameters have the form ak = a/k, ck = c/kγ ,
for k = 1, 2, . . . , where a, c > 0, q/a > C0 , and 0 < γ < 1/2.

H5. [(4p − 4)/(4p − 3)]1/2 < lim|θ |→∞ inf(g(θ)′θ/(|g(θ)||θ|).
H6. Let {ωk } be an i.i.d. N (0, I) sequence, independent of the se-

quences {θ̂k }, {ε(±)
k }, and {∆k }.

H7. For any η > 0, Zη < ∞; Pη has a unique weak limit P as η → 0.
H8. The sequence{θ̂k } is tight.

Comments:
1) It is well known (e.g., [3]) that, under the above conditions, the

measure P is concentrated on the set of global minima of L(θ).
2) Assumptions H3, H5, and H7 correspond to assumptions (A1)

through (A3) of [3]; assumptions H4 and H8 supply hypotheses
stated in [3, Th. 2]; and the definitions of ak and qk given in (2)
correspond to those used in [3]. Since we show that assumption
(A4) of [3] is satisfied by our algorithm, this allows us to use the
conclusion of their Theorem 2.

3) Hypotheses H1 and H2 and the domain of γ given in H4 are
commonly assumed for convergence results (e.g., [10]). Suffi-
cient conditions for assumption H8 are given in [3, Th. 3].

We can now state our first theorem as follows:
Theorem 1: Under hypotheses H1 through H8, θ̂k [in (2)] converges

in probability to the set of global minima of L(θ).
Proof: See [7], and the remark on convergence in probability in [3],

p. 1003.

III. SPSA WITHOUT INJECTED NOISE

AS A GLOBAL OPTIMIZER

The injection of noise into an algorithm, while providing for global
optimization, introduces some difficulties such as the need for more
“tuning” (i.e., selecting the coefficients) of the extra terms and re-
tarded convergence in the vicinity of the solution, due to the continued
addition of noise. Using results in [12], it can be shown ([6]) that the
injection of noise has the potential to dramatically slow the rate of
convergence of the SPSA algorithm.

The definition of SPSA gradient approximation suggests that SPSA
might not need to use injected noise for global convergence. Although
SPSA gradient approximation tends to work very well in an SA recur-
sion, the SP gradient, evaluated at any single point in θ-space, obviously
tends to be less accurate than the standard finite-difference gradient ap-
proximation evaluated at θ. So, one is led to consider whether the
effective noise introduced (automatically) into the recursion by this
inaccuracy is sufficient to provide for global convergence without a
further injection of additive noise. It turns out that basic SPSA (i.e.,
without injected noise) does indeed achieve the same type of global
convergence as in Theorem 1, but under a different set of conditions.
The major difference in conditions is the addition of assumption J10
(which, although technical, is considered reasonable—see Note 2 next
in this section) used in Theorem 2 next. Also, the condition H5 is
replaced by J5, which is somewhat less restrictive.

In this section, we are working with the basic SPSA algorithm having
the same form as (1)

θ̂k+1 = θ̂k − ak ĝk (θ̂k ) (4)

where ĝk (•) is the SP approximate gradient defined in Section II, and
now (obviously) no extra noise is injected into the algorithm. For use
in the subsequent discussion, it will be convenient to define

bk (θ̂k ) ≡ E(ĝk (θ̂k ) − g(θ̂k )|Gk ), and ek (θ̂k )

≡ ĝk (θ̂k ) − E(ĝk (θ̂k )|Gk )

where Gk denotes the sigma-algebra generated by {θ̂1 , θ̂2 ,
. . . , θ̂k }, which allows us to write (4) as

θ̂k+1 = θ̂k − ak [g(θ̂k ) + ek (θ̂k ) + bk (θ̂k )]. (5)

Another key element in the subsequent discussion is the ordinary
differential equation (ODE)

θ̇ = g(θ) (6)

which, in [6, Lemma 1] is shown to be the “limit mean ODE” for the
algorithm (4).

Now we can state our assumptions for Theorem 2, as follows:

J1. Let ∆k ∈ Rp be a vector of p mutually independent mean-zero
random variables [∆k 1 , ∆k 2 , . . . , ∆k p ]′ such that {∆k } is a mu-
tually independent sequence and ∆k is independent of the se-
quences {θ̂1 , . . . , θ̂k−1} and {ε(±)

1 , . . . , ε
(±)
k−1}, and such that ∆k i

is symmetrically distributed about zero, |∆k i | ≤ α1 < ∞ a.s. and
E|∆−2

k i | ≤ α2 < ∞ ∀ i, k.

J2. Let
∫ χ

0 H1 (ψ1 (s), ψ2 (s)) ds = lim supm ,n
∆
m

log E exp[
∑χ/∆−1

i=0

ψ ′
1 (i∆)

∑im +m −1
j= im

bn + j (θ̂n + j )]. Let ε(+ ) and ε
(−)
k rep-

resent random measurement noise terms that satisfy
E((ε(+ )

k − ε
(−)
k )|Gk ) = 0 a.s. ∀k. The {ε(±)

k } sequences need not

be assumed independent. Assume that E((ε(±)
k )2 |Gk ) ≤ α3 < ∞

a.s. ∀k.
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J3(a). L(θ) is thrice continuously differentiable in Θ, where Θ ⊂ Rp

denotes the θ-region (assumed to be open) under consideration, and
the individual elements of the third derivative satisfy |L(3)

i1 i2 i3
(θ)| ≤

α5 < ∞.
(b). |L(θ)| → ∞ as |θ| → ∞. This is required by the theory in [5],
and is usually satisfied even if Θ is a finite region.

J4. The algorithm parameters satisfy the following: the gains ak > 0,
ak → 0 as k → ∞, and

∑∞
k=1 ak = ∞ (unlike Theorem 1, we do

not require ak = a/k). The sequence {ck } is of form ck = c/kγ ,
where c > 0 and 0 < γ < 1/2, and

∑∞
k=0 (ak /ck )2 < ∞.

J5. The gradient g(θ) is Lipschitz continuous, and |g(θ)| < ∞,
∀θ ∈ Θ.

J6. The ODE (6) has a unique solution for each initial condition.
J7. For the ODE (6), suppose that there exists a finite set of limit

points in Θ of the ODE, and each limit point is contained in one
of a collection of disjoint compact stable invariant sets (see [5])
K1 , K2 , . . . , Km . These are closed sets containing all local (includ-
ing global) minima of the loss function.

J8. For any η > 0, Zη < ∞; Pη has a unique weak limit P as η → 0
(Zη & Pη are defined in Section 2).

J9. E|
∑k

i=1 ei (θ̂i )| < ∞∀k.
J10. For any asymptotically stable (in the sense of Liapunov) point,

θ̄, of the ODE (6), there exists a neighborhood of the origin in
Rp such that the closure, Q2 , of that neighborhood satisfies θ̄ +
Q2 ≡ {θ̄ + y : y ∈ Q2} ⊂ Θ. There is a neighborhood, Q1 , of the
origin in Rp and a real-valued function H1 (ψ1 , ψ2 ), continuous
in Q1 × Q2 , whose ψ1 -derivative is continuous on Q1 for each
fixed ψ2 ∈ Q2 , and such that the following limit holds. For any
χ, ∆ > 0, with χ being an integral multiple of ∆, and any functions
(ψ1 (•), ψ2 (•)) taking values in Q1 × Q2 and being constant on the
intervals [i∆, i∆ + ∆), i∆ < χ, we have∫ χ

0

H1 (ψ1 (s), ψ2 (s)) ds = lim sup
m ,n

∆
m

log E exp

[
(χ/∆ )−1∑

i=0

ψ ′
1 (i∆)

im +m −1∑
j= im

bn + j (θ̄ + ψ2 (i∆)).

]
(7)

Also, there is a real-valued function H2 (ψ3 ) that is continuous
and differentiable in a neighborhood of the origin in Rp , and such
that ∫ χ

0

H2 (ψ1 (s)) ds = lim sup
m ,n

∆
m

log E exp

×

[
(χ/∆ )−1∑

i=0

ψ ′
1 (i∆)

im +m −1∑
j= im

en + j (θ̂n + j )

]
. (8)

A bit more notation is needed. Let T > 0 be interpreted such that
[0, T ] is the total time period under consideration in the ODE (6).
Let

H̄(ψ1 , ψ2 ) = 0.5[H1 (2ψ1 , ψ2 ) + H2 (2ψ1 )],

L̄(β, ψ2 ) = sup
ψ 1

[ψ ′
1 (β − g(ψ2 )) − H̄(ψ1 , ψ2 )].

If φ(•) is a real-valued absolutely-continuous function on [0, T ]
with φ(0) = x ∈ R, define the function

S(T, φ) =
∫ T

0 L̄(φ̇(s), φ(s)) ds; otherwise define S(T, φ) =
∞. S(T, φ) is the usual action functional of the theory of large
deviations (adapted to our context). Define tn ≡

∑n−1
i=0 ai , and

tn
k =

∑k−1
i=0 an + i . Define {θ̂n

k } and θn (•) by θ̂n
0 = x ∈ Θ, θ̂n

k+1 =
θ̂n

k − an + k ĝn + k (θ̂n
k ), and θn (t) = θ̂n

k for t ∈ [tn
k , tn

k+1 ).
Now we can state the last two assumptions for Theorem 2:

J11. For each δ > 0 and i = 1, 2, . . . , m, there is a ρ-neighborhood
of Ki , denoted Nρ (Ki ), and δρ > 0, Tρ < ∞ such that, for each
x, y ∈ Nρ (Ki ), there is a path, φ(•), with φ(0) = x, φ(Ty ) = y,
where Ty ≤ Tρ and S(Tρ , φ) ≤ δ.

J12. There is a sphere, D1 , such that D1 contains
⋃

i
Ki in its interior,

and the trajectories of θn (•) stay in D1 . All paths of the ODE (6)
starting in D1 stay in D1 .

Note 1. Assumptions J1, J2, and J3(a) are from [10], and are used
here to characterize the noise terms bk (θ̂k ) and ek (θ̂k ). Assump-
tion J3(b) is used in [5, p. 178]. Assumption J4 expresses standard
conditions on the algorithm parameters (see [10]), and implies hy-
pothesis (A10.2) in [4, p. 174]. Assumptions J5 and J6 correspond
to hypothesis (A10.1) in [4, p. 174]. Assumption J7 is from [5,
p. 175]. Assumption J8 is a standard hypothesis (see [3]) used to
establish the limiting distribution to which θ̂k will be shown to con-
verge. Assumption J9 is used to establish the “mean” criterion for
the martingale sequence mentioned in Note 2 next. Since the bound
in J9 is not required to be uniform, the assumption is satisfied if
E|ei (θ̂i )| < ∞, ∀i. Assumptions J11 and J12 are the “controllabil-
ity” hypothesis A4.1 and the hypothesis A4.2, respectively, of [5, p.
176].
Note 2. Assumption J10 corresponds to hypotheses (A10.5) and
(A10.6) in [4, pp. 179–181. Although these hypotheses are standard
“textbook” forms for this type of large deviation analysis, it is useful
to note that they are reasonable in our setting. The first part [(7),
involving noise terms bk (θ̂k )] of J10, is discussed in [4, p. 174],
which states that the results of their Section 6.10 are valid if the noise
terms (that they denote ξn ) are bounded. So, our (7) hypothesis looks
reasonable in light of the result [10] that the bk (θ̂k ) noise terms are
O(c2

k )(ck → 0). The second part [(8), involving noise terms ek (θ̂k )]
is justified by the discussion in [4, p. 174], which notes that the
results in their Section 6.10 (used in the Lemma in the Appendix
next) are valid if the noise terms they denote δMn [corresponding
to our noise terms ek (θ̂k )] satisfy the martingale difference property
that we have established in [6, Lemma 2].

Now we can state our main theorem (for the proof, see the Ap-
pendix).
Theorem 2: Under assumptions J1 through J12, θ̂k converges in
probability to the set of global minima of L(θ).

IV. SUMMARY

SPSA is an efficient gradient-free SA algorithm that has per-
formed well on a variety of complex optimization problems. In
Section II, we gave conditions under which (as with some standard
SA algorithms) adding injected noise to the basic SPSA algorithm
can result in a global optimizer. More significantly, in Section III and
the Appendix, we established that, under certain conditions, the basic
SPSA recursion can achieve global convergence without the need for
injected noise. The use of basic SPSA as a global optimizer can ease
the implementation of the global optimizer (no need to tune the injected
noise) and result in a much faster rate of convergence (no extra noise
corrupting the algorithm in the vicinity of the solution). In numerical
studies reported in [6], we found significantly better performance of
SPSA as a global optimizer than for the popular simulated annealing
and genetic algorithm methods, which are often recommended for
global optimization.
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APPENDIX (LEMMA RELATED TO THEOREM 2 AND PROOF

OF THEOREM 2)

In this Appendix, we are working with the basic SPSA algorithm as
defined in (4): θ̂k+1 = θ̂k − ak ĝk (θ̂k ). We first establish an important
Lemma that is needed in order to apply the results from [4] and [5] in
the proof of Theorem 2. Let Bx be a set of continuous functions on
[0, T ] taking values in Θ and with initial value x. Let B0

x denote the
interior of Bx , and B̄x denote the closure (using L1 norm).

Lemma. Under assumptions J4, J5, J6, and J10, we have

− inf
φ∈B 0

x

S(T, φ) ≤ lim inf
n

log P n
x {θn (•) ∈ Bx}

≤ lim sup
n

log P n
x {θn (•) ∈ Bx}

≤ − inf
φ∈B̄ x

S(T, φ), (9)

where P n
x denotes the probability under the condition that θn (0) = x,

and S(T, φ) is defined after hypothesis J10.
Proof: This result is a straightforward application of Theorems 10.1

and 10.4 in [4, p. 178] and [4, p. 181], respectively. The aforementioned
fact that the ODE (6) is the “limit mean ODE” for algorithm (4) allows
us to apply the analysis in [4] to our algorithm in (4). Note that our
assumption J10 is a modified form of assumptions (A10.5) and (A10.6)
in [4], using “equals” signs rather than inequalities. The two-sided
inequality in (9) follows from J10 by essentially the same argument as
in the proof of Theorem 10.1 in [4, p. 178], which uses an “equality”
assumption [(A10. 4), p. 174] to arrive at a two-sided large deviation
result analogous to (9) given earlier. Q.E.D.

Proof of Theorem 2: This theorem follows immediately from a result
in [5], once we establish that the injected noise in [5] can be replaced
by the “effective noise” in the SPSA algorithm. We can write the SA
algorithm in [5] (his (1.1), taking σ(Xn ) = 1 without loss) in our
notation as θ̂k+1 = θ̂k − ak [g(θ̂k ) + ζk ], where ζk is i.i.d. Gaussian
(injected) noise. The key result for us is [5, Th. 2, p. 177]. In the proof
of this Theorem 2, [5] uses the i.i.d. Gaussian assumption only to arrive
at a large-deviation result exactly analogous to our aforesaid Lemma.
The theorem [5, Th. 2] and its subsequent discussion are then based
on the large-deviation result. Obviously, the SPSA algorithm without
injected noise can be written as θ̂k+1 = θ̂k − ak [g(θ̂k ) + ζ∗

k ]. Since
we have established the aforesaid Lemma for SPSA, the results of [5]
hold for the SPSA algorithm with its “effective” noise {ζ∗

k } replacing
the {ζk }sequence used in [5].

Let us restate this fact, since it is a key step in our proof. Of course,
our definitions and hypotheses were made specifically to reproduce
the setting in [5] (see the Notes at the end of Section III). Inspection of
the proofs involving [5, Th. 2] and its subsequent discussion show that
the “i.i.d. Gaussian” assumption in [5] was used only to establish his
large-deviation inequality (2.6). We have established in our Lemma
the same large-deviation result with SPSA effective noise replacing the
i.i.d. Gaussian injected noise. This means that the theorem [5, Th. 2]
and its relevant subsequent discussion now hold true word-for-word
for SPSA, since (of course, under our hypotheses) the nature of
the noise is the only difference between our development and the
development in [5].

In particular, the discussion in [5, pp. 178–179], of corollary results
to his Theorem 2 is relevant to our Theorem 2 context (SPSA without
injected noise). In a section of [5] on “The potential case,” the author
notes that when b(x, ξ) = b̄(x) in his notation, the result he is dis-
cussing applies to his (1.1), which corresponds to our SPSA setup in
(4). The relevant result in this discussion in [5] can be stated as: The
difference between the measure of (his) Xn (which corresponds to our

θ̂k ) and the invariant measure (which we have denoted Pη ) converges
asymptotically (n, k → ∞, η → 0) to the zero measure weakly. It fol-
lows easily that, in the limit as k → ∞, θ̂k is equivalent to P in the
same sense as in [3, Th. 2] and (as in the proof of Theorem 1 earlier)
the desired convergence in probability follows. Q.E.D.
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