
Pergamon

CONTRIBUTED ARTICLE

0893-6080(94) 00084-0

Neural Networks, Vol. 8, No. 2, pp. 251-259, 1995
Copyright © 1995 Elsevier Science Ltd
Printed in the USA. All rights reserved

0893-6080/95 $9.50 + .00

A Learning Rule of Neural Networks via Simultaneous
Perturbation and Its Hardware Implementation

YUTAKA MAEDA, HIROAKI HIRANO, AND YAKICHI KANATA

Kansai University

(Received 6 May 1993; revised and accepted 29 August 1994)

Abstract--This paper describes a learning rule of neural networks via a simultaneous perturbation and an analog
feedforward neural network circuit using the learning rule. The learning rule used here is a stochastic gradient-like
algorithm via a simultaneous perturbation. The learning rule requires only forward operations o f the neural network.
Therefore, it is suitable for hardware implementation. First, we state the learning rule and show some computer
simulation results o f the learning rule. A comparison between the learning rule, the usual back-propagation method,
and a learning rule by a difference approximation is considered through the exclusive-OR problem and a simple
pattern recognition problem known as the TCLX problem. Moreover, 26 alphabetical characters' recognition is
handled to confirm a feasibility of the learning rule for large neural networks. Next, we describe details of the
fabricated neural network circuit with learning ability. The exclusive-OR problem and the TCLX problem are
considered. In a fabricated analog neural network circuit, input, output, and weights are realized by voltages.

Keywords--Analog feedforward neural network circuit, Simultaneous perturbation, Learning rule, Hardware imple-
mentation.

1. INTRODUCTION

Nowadays, we can implement artificial neural networks
using several media (De Gloria, 1989; Mead & Ismail,
1989). In such implementations, emulation by a digital
computer is the most widely used. The high-speed emu-
lation of neural networks becomes possible by the ad-
vance in digital computer technology. Typical examples
are digital processors designed to emulate neural net-
works (e.g., Neuro-07 by NEC or NEUROSIM/L by Fu-
jitsu). These approaches for neural networks' implemen-
tation will be developed much more. At the same time,
we also know that digital computer may not be the most
adequate medium for neural networks' implementation.

Implementation by hardware elements (e.g., electronic
element or optical elements, etc.) is profitable because of
parallel operations, even though such a neural network is
not flexible with respect to structure (number of cells,
number of layers or connections between cells, etc.) and
a learning rule. A hardware realization of neural network
is very important in that it operates very fast. To apply
neural networks to various areas, realizing the neural net-
work physically is an imperative issue.

Requests for reprints should be sent to Yutaka Maeda, Depart-
ment of Electrical Engineering, Kansai University, 3-3-35, Yamate-
cho, Suita, Osaka 564 Japan; E-mail: maedayuta@kansai-u.ac.jp

251

We consider an analog hardware implementation of
feedforward neural networks with learning ability. One
of the difficulties of implementing such neural networks
by physical elements is realization of its learning rule.
Usually, the back-propagation method (Rumelhart et al.,
1986) is the most widely used as a leaning rule of neural
networks in software emulation. To use the back-propa-
gation method, we must calculate the first-differential co-
efficient of the error function corresponding to all
weights. The calculation of this first derivative consists of
multiplications, additions, and the sigmoid functions.
Then, it is complicated to embody this calculation, elec-
trically. Moreover, if the circuit gets intricate, we must
take a dynamic range of the weights and the offset errors
into account more crucially (Eberhardt et al., 1992).

Such being the cases, the difficulties of implement-
ing neural networks with learning ability depend on the
learning rule. Accordingly, we must contrive a suitable
learning rule for the hardware implementation.

From this point of view, we propose a learning rule
via a simultaneous perturbation. In this learning rule,
we substitute a mechanism calculating first-differential
coefficient by a kind of a difference approximation of
the error function. By using the value of the error func-
tion with the perturbation and the value of the error
function without the perturbation, we can apply a kind
of a difference approximation to approximate the first-

252 Y. Maeda, H. Hirano, and Y. Kanata

differential coefficient. In this case, only forward op-
erations of the neural network give the modified quan-
tities of each weight. Therefore, configuration of the
circuit becomes simple.

Usually, the learning rule of neural networks via a
simple sequential parameter perturbation was proposed
and a hardware implementation was reported (Jabri &
Flower, 1992). Independently, the authors also pro-
posed and fabricated an analog neural network circuit
using the same learning rule (Maeda, Yamashita, &
Kanata, 1991) and investigated a usefulness of this type
of learning rule in an inverse problem (Maeda, 1992).
However, as pointed out in Maeda, Yamashita, and Ka-
nata (1991), the learning rule using the simple pertur-
bation requires n-times ~ forward operations of the neu-
ral network for one modification of all weights.
Therefore, if the neural network is too large, it is prac-
tically impossible to expect a feasibility of this learning
rule in the sense of the operation speed. Therefore, it
is imperative to devise a learning rule using a simul-
taneous perturbation-like method. In this simple per-
turbation technique, perturbations are added sequen-
tially to all weights. Cauwenberghs proposes a
stochastic version of this kind of learning rule (Can-
wenberghs, 1993). In his algorithm, a single weight is
selected randomly to add a perturbation. He analyzes
the convergence of his learning rule.

On the other hand, the learning rule via a sinusoidal
perturbation signal was proposed (Matsumoto & Koga,
1990). This learning rule uses multifrequency sinusoi-
dal perturbations simultaneously. Therefore, updating
of each weight is carried out simultaneously. However,
this multifrequency oscillation learning method needs
many detection units. Moreover, we must take cross
talk into account, because the method utilizes multifre-
quency.

In this paper, from another point of view, we pro-
pose a learning rule via a simultaneous perturbation.
Instead of the simple perturbation or the sinusoid per-
turbation, we introduce a simultaneous perturbation. As
a result, the described learning rule requires only twice
forward operations per one modification of all weights,
no matter how large the neural network is. Moreover,
the configuration of our rule becomes simpler. The
learning rule via the simultaneous perturbation is suit-
able to hardware implementation because there is no
need to carry out so-called backward calculation of the
back-propagation method and it makes the best use of
a feature of the parallel operation of neural networks.
The usefulness of this kind of learning rules in neuro-
control problem has been examined (Maeda & Kanata,
1993).

The basic idea of the simultaneous perturbation
method was proposed by Spall as an extension of the

J n denotes the total number of weights.

Kiefer-Wolfowitz stochastic approximation method
(Spall, 1992). He proved that his algorithm converges
to a minimum of a regression function with probability
1, under certain conditions. To guarantee theoretical
convergence, his algorithm requires strict conditions on
the perturbation, a gain coefficient, and a shape of the
regression function. However, our emphasis is on prac-
tical usefulness as a learning rule of neural networks:
practical convergence and/or feasibility for hardware
implementation. From these points, the algorithm de-
scribed here is simplified, compared with Spall's idea.
Alspector et al. (1993) propose a parallel gradient de-
scent method that is identical to ours. They describe
superiority of this kind of learning rule for hardware
implementation. Moreover, Fujita (1992) proposes
trial-and-error correlation learning of neural networks.
His learning rules include these learning rules in a
broad sense.

In this paper, we show some computer simulations
of the proposed learning rule and a comparison be-
tween this learning rule, back-propagation method, and
a learning rule using the simple perturbation. In addi-
tion, we fabricated an analog neural network circuit
using the learning rule. We describe details of the cir-
cuit and show some results by the circuit. This reveals
a proof of feasibility of the learning rule by hardware.

2. LEARNING RULE VIA SIMULTANEOUS
P E R T U R B A T I O N

We use the following nomenclature in this paper.

w~(i = 1,2 n): A weight at tth revision.
w ' = (w'~, w'2 W'~)T: A weight vector that consists

of all weights at the tth revision, w' contains thresh-
olds as weights with input value 1. T denotes trans-
pose.

w~ = (w'~ w~ + c w t)T : A weight vector at
tth revision with a perturbation c (c * 0) in the ith
weight.

s ' = (s~ S',)T: A sign vector, s~ = +-_1. The sign
of s~ is randomly determined. Moreover, the sign of
s~ is independent with the sign of the other s~ ; that
is, E(s~) = 0, E(s~s~) = 0 (i = j) . E denotes the
expectation.

• . An output of the j th cell in the kth layer for the Opj.
pth pattern. A superscript denotes the layer number.
Especially, out denotes the output layer. A subscript
represents the cell number in the layer.

de j: A teaching signal (i.e., desired output) of the j th
cell in the output layer for the pth pattern.

We define an error function for a certain pattern p
a s

1
= - opj) . (1) JAw') ~ Z (a~j oo,.~

J

Learning Rule Via SP and Its Implementation 253

oneepoch

pattern
p - 1

~.~ one revision
pattern

P

I I
W t'l- C S t - I w t + c S t ~ - C S t

>:

p a t t e r n
p+l

I
,,f"+c s t'l

FIGURE 1. Revision. One epoch means a revision of the
weight vector for all pa t t e rns .

Our problem is to find a value of the weight vector
that minimizes this error function for all pattern. The
gradient method, including the Newton method, is the
most fundamental approach for this problem. Basically,
this method needs the first derivative of the error func-
tion. Therefore, we must obtain OJp(wt) /Owi for all
i(= 1 n). The back-propagation method performs
this calculation using so-called backward error propa-
gation.

On the other hand, we can estimate the first-differ-
ential coefficient of the error function using a differ-
ence approximation:

O J , (w ') _ J~(w;) - JAw') (2)
OWl C

On the basis of this estimated first-differential coeffi-
cient, we can modify the weight vector as with the
back-propagation method.

However, to modify all the weights in the neural
network, we need (Jp(w~) - J p (W ')) / c for all i (= 1,
. . . . n) . This means that we need n times forward op-
erations of the neural network. This causes a decline of
an operating speed of the neural network.

In this paper, we introduce a simultaneous pertur-
bation. In eqn (2) , we added the perturbation to each
weight one by one. On the other hand, we add the per-
turbation to all weights simultaneously. However, the
sign of the perturbation is randomly determined as de-
scribed by the definition of the sign vector s ' in the
nomenclature. That is, by using the constant coefficient
c and the sign vector s ' , we consider the following
quantity:

Aw[J A w ' + cs ') - J , (w ' - c s ') = s;. (3)
2c

We expand the right-hand side of eqn (3) at the point
w' . Then, using Taylor expansion, there exist points w,]
and Wsz such that

cs~ ,T(O % (w ~ ,) ~ ,
Aw~= s[s'rOJ'(w')ow + 4 s ~ Ow 2) s

- 's 'r - - ~) s . (4)

We take an expectation of eqn (4) . From the conditions
of the sign vector s ' , we have

E(Aw~) - OJp(w') (5)
0wi

That is, Awl approximates O J (w ') / O w i in the sense of
the expectation. We can rewrite eqn (5) as

Aw; OJ,(w') = + ~ (6)
Owi

where ~ is a stochastic variable with zero mean. From
eqn (6) , we can find the learning rule a kind of a sto-
chastic gradient method.

As a result, we present the following learning rule

w'+l:= w' - a A w ' (7)

where the ith element of Aw ' is defined in eqn (3) .
We repeat this revision for the pattern number p .

s [(J p (w ' + c s ') - J p (w ' - c s ')) / (2 c) is an esti-
mated value of the first-differential coefficient at the tth
revision. On the other hand, the coefficient a is an ade-
quate positive number. This coefficient adjusts the
magnitude of the modification.

This learning rule carries on the modification of each
weight vector at every presentation of patterns. In other
words, revision number is renewed; t changes to t + 1,
when a new pattern is presented; p changes to p + 1
(see Figures 1 and 2). Basically, our algorithm updates
all weights after each pattern is presented. Related to
the work by Vogl et al. (1988), we can modify this
learning rule to update the weights after all patterns
have been presented. However, this modification needs
many more memories. In this paper, we adopt the basic
scheme. In this algorithm, there is no need to calculate
the first-differential coefficient of the error function an-
alytically. Moreover, this algorithm needs only twice
feedforward operations of the neural network. It is rel-
atively easy to realize the feedforward circuit electron-
ically. Thus, we can easily obtain an estimated value

for p:=l to Pmax do (* Pmax is a total number of patterns *)

begin
• Add the perturbation c s~ to the weight vector wl.

• Obtain a value of the error function Jp(wZ+cs').

• Subtract the perturbation cS'from the weight vector wt.

• Obtain a value of the error function ,Je (wt - cst).
• Calculate a difference between these values.

(* Jp(wt +cst)- jp(w'-cs') *)
for i:=1 t o n d o

begin
• Multiply this by oa~/c.

end; (* We obtained the modifying quantities for all weights. *)
• Update the weight vector. (* w'+]:=w t - otAw' *)
• Renew the iteration. (* t:=t+l *)

end.

FIGURE 2. Procedure of the learning rule. This shows the p r o -
cedure in each epoch. We need the values of J(w: + cs~ and
J (w t - cs~. Therefore, we require only twice forward o p e r a -
tions of the network in each modification of the weights.

254 Y. Maeda, H. Hirano, and E Kanata

T A B L E 1

Simulation Results for the Exclusive-OR Problem

Learning Rule via the Simultaneous
Perturbation Back Propagation

Learning Rule via the Difference
Approximation

Coefficients ~ = 0.8, c = 0.2 a = 0.4, c = 0.1 a = 0.8 ~ = 0.4 ~ = 0.8, c = 0.1 a = 0.4, c = 0.1
Convergence rate (%) 79.7 82.4 82.0 57.3 42.9 18.9
Average number of

epoch for
convergence 13591 16567 7809 15868 22499 25235

Total trial number is 2000 t imes. If the total error funct ion Zp Jp (-) < 0.001 or epoch was greater than 100,000, we s topped the trial.

of the first-differential coefficient using an electronic
circuit. Therefore, we expect the high-speed operation
and easy configuration.

Instead of the constant perturbation c, we can apply
random numbers (Maeda & Kanata, 1993). In this
modified version of the learning rule described here, a
random number sequence in an interval [- c c] is used
as the perturbation. However, in case of a hardware
implementation, we need a random numbers generator
and extra analog memories corresponding to all
weights. For a simplicity of the circuit configuration,
we used a constant as the perturbation.

3. S IMULATION RESULTS

We emulate the proposed learning rule via a digital
computer and compare results with those of the usual
back propagation and the simple perturbation learning
rule. The exclusive-OR problem, the TCLX problem,
and 26 alphabetical characters recognition problem as
a simple pattern recognition problem are considered.
Input-output characteristic of each neuron is the sig-
moid func t ion f (x) = 1/(1 + e-X). Initial values of all
weights were generated randomly on [0.1 - 0.1]. A
three-layered feedforward neural network is used.

First, we handle the exclusive-OR problem. Num-
bers of neurons in each layer are 2, 2, and 1. Table 1
shows the convergence rate to a global minimum and
the average convergence epoch by using the learning
rule (7) and (3) , the back-propagation method, and the
learning rule via the simple perturbation. One epoch
means modification of all weights for all patterns. In
this table, the average convergence epochs by the learn-

0.60

C I .

r,,,q ~- 0.40

0.20

0.00
1000 2000 3000 4000 5600 6000

epoch

FIGURE 3. A simulation result for the exclusive-OR problem
w i t h c = 0.1, a = 0.4.

ing rule described here are 13591 and 16567 with c~ =
0.8, c = 0.2 and a = 0.4, c = 0.1, respectively. Figure
3 shows a typical simulation result with a = 0.4, c =
O. 1. In the learning rule using the simple perturbation,
the right-hand side of eqn (2) is used as an ith com-
ponent of Aw' .

The back-propagation method with a = 0.8 is faster
than the other rules. On the other hand, for smaller
learning coefficient a = 0.4, the learning rule by the
simultaneous perturbation and the back-propagation
method need much the same number of epochs.

As concerned with the convergence rate to a global
minimum, the learning rule by the simple perturbation
has the worst results. Relatively, the learning rule by
the simultaneous perturbation had good results. It
seems possible to improve the convergence rate by ad-
justing the magnitude of the perturbation.

Next, we consider the TCLX problem. Numbers of
neurons in each layer are 9, 4, and 2 for the problem.
Nine input signals and the combination of the two cells
in the output layer represent T, C, L, and X (see Table

T A B L E 2
I npu t Signals and Output Signals. Nine input signals show

T, C, L, and X characters. The combination of the two
output signals represent T, C, L, and X

®

INPUT

SIGNALS

ii

i a:
i4
15
16
17
i8
ig

TEACH NG
SIGNALS

d l

C H A R A C T E R S
i

i
,

1 i 1
,

1 : 1
,
,

1 : 1

o i 1
,

1 : 0 i
,

0 : 0
,

0 i 1
1 : 1

,

0 i]

0 ! 0 i
i

0 : 1

- t - X i

I
i

I
I
i E
i i
i ,

: 1 : 1

: 0 : 0 i i

i i

, 0 , 1 * ,
* ,

: 1 : 0
i i

i

: 0 : 1
I i

: @ : 0

:] : 1 , ,
, ,

:] : 0
i i
, i

' 1 ' 1 , i

I I

' 1 ' 1 t
i ,

: 0 : 1
, q

Learning Rule Via SP and Its Implementation

TABLE 3
S imu la t ion Resul ts f o r the TCLX Prob lem

255

Learning Rule via the Simultaneous
Perturbation Back Propagation

Learning Rule via the Difference
Approximation

Coefficients e = 0.8, c = 0.2 a = 0.4, c = 0.1 a = 0.8 e = 0.4 a = 0.8, c = 0.1 e = 0.4, c = 0.1
Convergence rate (%) 96.4 100 100 100 100 100
Average number of

epoch for
convergence 3678 6077 4444 8076 2224 4279

Total trial number is 2000 t imes. If the total error funct ion Ep Jp (.) < 0.001 or epoch was greater than 100,000, we stopped the trial.

2). We obtained Table 3. Figure 4 shows a simulation
result with a = 0.4, c = 0.1.

For this example, we could not find the remarkable
difference between the back-propagation method and
the learning rule by the simultaneous perturbation.
However, the results by the simple perturbation were
good. Totally, the learning rule described here has an
equivalent capability to the back-propagation method.

Moreover, to confirm a usefulness of the learning
rule using the simultaneous perturbation, we apply it to
a larger neural network. We examine an alphabetical
characters recognition problem. Numbers of neurons in
each layer are 35 (5 x 7) , 26, and 26. The 26 output
neurons correspond to each alphabet letter. Figure 5
shows a result of a learning process with a -- 0.005, c
= 0.05. Average convergence epoch was 34,570 for 50
trials. Average convergence rate was 36.0%. In this
simulation, if epoch was greater than 50,000 or the total
error function was less than 0.1, we stopped the trial.

We could obtain a neural network learning the 26
characters by using our learning rule. The network has
over 1500 connections (i.e., weights). Even in this
case, we require only twice forward operations of the
network to obtain the modifying quantities correspond-
ing to all weights.

4. A FABRICATION OF A NEURAL
N E T W O R K C I R C U I T

We make an electronic neural network circuit using the
algorithm (7) and (3) in trial. Figure 6 shows a picture
of the fabricated neural network circuit system. Figure
7 shows a picture of a board for a weight part.

Firstly, we must decide by what we replace the in-
put, output, and weights. In our fabrication, we replace
the input, output, and the weights by voltage. The con-
figuration of our circuit is shown in Figure 8. The neu-
ral network circuit mainly consists of two units: a neu-
ron unit and a learning unit.

The neuron unit contains three parts: a weight part,
a summation part, and a function part (see Figure 9).
The weight part holds the weight value and the sign of
the perturbation. Moreover, a multiplication of the
weight value, which is stored in the sample hold circuit,
and the input, which is given by the previous layer, is
carded out. This part also contains a mechanism to re-
new the weight value. The summation part sums up all
outputs of the weight part. The function part realizes
the sigmoid function.

The learning unit gives the approximated value of
the first-differential coefficient and multiplies the esti-
mated value by c~/(2c). The result is delivered to all
weight parts in the neuron unit.

Of course, except these two units, we need a control
unit that controls all timing of the teaching signals, in-
put signals, and sample hold circuits. These signals are
generated by a personal computer.

An operation of the circuit is shown in Figure 10.
For a certain pattern p , the circuit operates as shown
in Figure 10. The circuit repeats this procedure for each
pattern.

4.1. Neuron Unit

The neuron unit embodies the forward operation of the
neural network totally and renews the weight value in-
dividually. The neuron unit is described in Figure 9.

1.20

..~ 1.00

r~cz 0.80

0 . 6 0

0.40

0.20

0.00 1000 2600 3doo 4600
epoch

FIGURE 4. A s imu la t ion resu l t f o r the TCLX p rob lem w i th c =
0.1, a = 0.4.

~ 4.005"00 ,~,_.., ~.

3.00

2.00

1.00

0.00 ~ -
10000 20000 30000 40000 50000

epoch

FIGURE 5. A s imu la t ion resu l t f o r the 26 alphabetical char-
acters' recognit ion problem with c = 0.05, a = 0.005.

256 Y. Maeda, H. Hirano, and Y. Kanata

FIGURE 6. A picture of the fabricated neural network system.

The weight part memorizes the value of each weight
and the sign of the perturbation in sample hold element
and D-FF, respectively.

In a forward operation mode, the multiplier in this
part multiplies an input that is from the previous layer
(or an input of the neural network) by the correspond-
ing weight value. This value is sent to the summation
part. The summation part is composed of the usual op-
erational amplifier. The part sums up all values. The
sigmoid function is realized by the saturation property
of diodes. The output of this part is connected to the
other neuron units or the output of the neural network.

In a learning mode, all weight parts in the unit up-
date the weight values in parallel by using the quantity
delivered from the learning unit and the sign of the
perturbation held in each D-FF. Therefore, concurrent
modifications of all weights are possible.

4.2. Learning Unit

The learning unit generates the quantity c t (J p (W t + c s t)

- J p (w ' - c s ')) / (2 c) and delivers the quantity to the
weight part in the neuron unit.

FIGURE 7. A picture of a board for weight part. In this 15 × 20 cm board, five weights are implemented.

Learning Rule Via SP and Its Implementation 257

f-~ NEURON U N I T S

INPUT =~ OUTPUT

S I G N A L S SIGNALS

.

LEARNING UNIT =::::::
FIGURE 8. The conf|g-~Uon of the analog ~ o ~ a r d n e u -
ral network circuit. The circuit consists of t w o units: a neuron
uni t and a l e a m i n g unit , w h e r e AJ(vl/) = Jp(W t + CS ~) -- Jp(W t

- CS~.

In usual back-propagation method, the learning of
neural networks is derived from so-called backward op-
erations of the neural network. However, in our algo-
rithm, only the forward operations of the neural net-
work give the quantity that is used to modify the
weights. Therefore, our constitution is relatively sim-
ple, compared with a straight implementation of the
ordinary back propagation. Figure 11 shows the con-
figuration of the learning unit.

Two forward operations for the weight (w' + cs ')
and (w ' - c s ') give the corresponding values Jp(w' +
c s ') and Jp (w t - - CS t) of the error function. To obtain
the quantity o feqn (3) , Jp(w' + c s ') and Jp(w' - c s ')
are stored in the sample hold element of this unit, tem-
porarily. After a calculation of a difference between

f - . ; . .~
i to next neuron un,t i .@ i . i

° ---::==::-:----i,~l SUIiIATION FUNGI'ION] ii
INPUT! I1141-I-"-~t bY 'PART PART! i
s l m s t ['11i4 i = r !OUTPUT

G ,, I l l i l F d ~ "L~II~/IO,.I I ! . . . ' ' .---~,'= , , i : ;NAL
I ,. • , lllll l 7 ' ? ,,i i sl
t I lii.-:---i- ____:llqGltT: ii I [

i i III H PART ,i' i i
! ' i o i I I I - i ~/L __. / I I l'
i , 2 3 - - - - ; i

CONTROL ~ I : " , i
i u~., '--- i SIGNALS i 3 ~ ' i i i

! i : : r - N E U R O N , ,

i UNIT '
i

J to next neuronunit NETWORK = L .

from learning unit

FIGURE 9. The configuration of the neuron unit . The neuron
unit consists of three parts: a weight pert, a summat ion part,
and a function part.

• A sign is generated by a random digits sequence in the controlling
computer. The sign is shifted and latched by each D-FF in Figure 9.
(* The generation of the sign vector s I. *)

for i:=1 to n do (* This loop is carried out simultaneously *)
begin
• On the basis of the sign of #i that is latched in D-FF, we add the

perturbation +c or -c to the weight w~i for all i simultaneously.
(* w'+c # *)

end;
• Perform the forward operation. Then, we get the value Jp(w%csr). This

value is memorized in a sample hold element.
for i:=1 to n do (* This loop is carried out simultaneously *)

begin
• On the basis of the sign of.C,, we subtract the perturbation +c or - c

from the weight w~i for all i simultaneously. (* wLc# *)
end;

• Perform the forward operation. Then, we get the value Je(w ~ -c#) .
This value is memorized in a sample hold element.

• CalculatethedifferencebetweenJp(w%cs~)andJe(w'-cs~).
(* J#wS+cY)- J#w'-cs ') *)

• Multiply Jp(w'+c#)-Jp(w~-cs t) by the voltage corresponding to ¢x/(2c).
(* ot(Jp(w'+c#)- Jp(wLc#))l(2c) *)

for i:=1 to n do (* This loop is carried out simultaneously *)
begin
• Multiply the value by the sign st~ for all i simultaneously. (* ot&M *)
• Subtract i-th component of Ot&w ~ from the previous value of the

weight.
e n d . (* ~+.,:__., ,s _ o t A w ' *)

FIGURE 10. Operation of the neural network circuit. The cir-
cuit repeats this procedure for each pattern.

Jp(w' + cs ') and Jp(W' - c s ') , we multiply the quan-
tity od(2c) by Jp(w' + c s ') - Jp(w' - c s ') . The result
is sent to the weight parts to update the weight values.

4.3. Control Unit

This circuit needs control signals that manage all timing
of sample hold elements and presentations of input sig-
nals and teaching signals and so on (see Figure 12).
The control unit is composed of a personal computer.

5. RESULTS

5 . 1 . T h e E x c l u s i v e - O R P r o b l e m

We get the neural network circuit to learn the exclu-
sive-OR problem. Figure 13 shows the waves of the

to neuron unit

i - ~ ~ ~^+ ,~OUTPUT
i .rE h S ICNALS
•

I , . I I ~ i z ~ ' I~ . ,+ :LTEACHING
i] ~ I] - ~ i SIGNALS

CONTROL I L~,_F~LI~ # #_ I I L i
SIGNALS i l -J ILl u ~ ~ G I I !

: \ / I I / i
41 LEARNING i

U N I T
FIGURE 11. The configuration of the learning unit. The learn-
ing uni t de tec t s the squared error and generates the quant i t y
• , (J ~ I w ' + c s ') - J ~ I w ' - c s ')) / (~) .

258 Y. Maeda, H. Hirano, and Y. Kanata

NEURON UNITS

II TEACHING
J l SIGNALS

FIGURE 12. The flow of the control signals. The control unit
generates timing signals of sample hold elements, input sig-
nals, teaching signals, and so on.

learning pattern (input signals and teaching signal) and
the observed output of our circuit. In a period T, the
control part gives the four patterns of the exclusive-OR
to this neural network circuit. The good agreement be-
tween the observed output of our neural network circuit
and the teaching signal shows that the circuit learned
the exclusive-OR problem.

In a period T/4, that is, in a period presenting a
certain pattern, there are nine modifications of the
weight.

In these results, T is about 11.1 ms. In other words,
it takes about 2.8 ms to learn one pattern in this case.
In Figure 13, the operation speed is approximately 3.2
kcups. On average, we need about 2 - 3 min to obtain
a stable result (for example, shown in Figure 13). This
time corresponds to 10,000-15,000 epochs.

Figure 14 shows that the circuit is captured in so-
called local minimum. With the difference between the
teaching signal and the practical output, the output of
this circuit is stable. Our neural network circuit learns
OR, though the teaching signal is the exclusive-OR.

In such a case, we adjust the values of coefficients.
Potentially, our leaning rule contains an ability to pass
through the local minimum. The modifying quantity
defined in eqn (3) consists of the first-differential co-
efficient and an another error as described in eqn (6) .

INPUT1

INPUT2

I I

1 r -]
l 1

I TEACHING
I I SIGNAL

OUTPUT m N I m B i r ~] IV/DIV

2msecJDiV

FIGURE 13. A result for the exclusive-OR problem. The agree-
ment between the teaching signal and the observed output
shows that the circuit learns the exclusive-OR problem.

INPUT1 ~ 1 F "

INPUT2 1

TEACHING [
SIGNAL

OUTPUT

t
[

2msec/DIV

1V/OtV

FIGURE 14. A local minimum. The circuit is captured in a local
minimum. The circuit learns the OR relation.

If the weight w, is located in the neighborhood of a
certain minimum point, from eqn (4) , the perturbation
c prescribes the magnitude of the error. Thus, the larger
c is, the larger the error is, and vice versa if c is smaller.
From this point of view, the learning rule has a property
like the simulated annealing. By adding an adequate
mechanism, we can obtain the neural network circuit
that passes through the local minimums in some mea-
sure. However, we need detailed discussions, analysis
and experiences for this point.

5.2. The TCLX Problem

Secondly, we consider the TCLX problem. The number
of cell in each layer is 9-4-2. The number of weights
including thresholds is 50.

Figure 15 shows the teaching signals and the ob-
served outputs for this problem. This figure shows that
the neural network circuit learns the TCLX patterns.
Also in this problem, the modifications of all weights
are performed for a period T/4. That is, 50 weights are
updated for 8.4 ms. In this case, we need 2 - 3 min to
obtain a result. This corresponds to 3500-5500 epochs.
The operation speed in this figure is approximately 6.0

- - T >;

I

I i] Y l J

OUTPUTI] J iiJi
OUTPUT2 J I I ~ ' ~ IV/DIV

10msecJDIV
FIGURE 15. A result for the TCLX problem. The circuit learns
the TCLX problem.

Learning Rule Via SP and Its Implementation 259

kcups. This speed depends on a clock frequency of the
circuit.

At this stage, we use individual parts, that is, oper-
ational amplifiers, sample hold ICs, switching ICs, and
so on. Basically, we can replace these devices by LSI.
Such an integration will contribute to the high-speed
operation and stability of our circuit.

6. C O N C L U S I O N

In this paper, we described the learning rule of neural
networks using the s imultaneous perturbation. We
showed some computer s imulat ions of the rule and a
comparison between this m e t h o d and the other meth-
ods. This learning rule needs only the forward opera-
tions of neural networks. Therefore, this learning rule
is superior to the convent ional back-propagation
method for large networks. Moreover, it is relatively
easy to realize it electrically. We fabricated the analog
feedforward neural network circuit with learning abil-
ity by using the proposed learning rule. The circuit
learned the exclusive-OR problem and the TCLX prob-
lem. We stated the details and the operation results of
the analog neural network circuit.

This learning rule is useful not only for mult i layer
feedforward neural networks but also for recurrent neu-
ral networks. However, a more detailed discussion and
experiences are needed.

REFERENCES

Alspector, J., Meir, R., Yuhas, B., Jayakumar, A., & Lippe, D.
(1993). A parallel gradient descent method for learning in analog
VLSI neural networks. In S. J. Hanson, J. D. Cowan, & C. Lee
(eds.), Advances in Neural Information Processing Systems 5
(pp. 836-844) San Mateo, CA: Morgan Kaufmann Publishers,
Inc.

Cauwenberghs, G. (1993). A fast stochastic error-descent algorithm
for supervised learning and optimization. In S. J. Hanson, J. D.
Cowan, & C. Lee (Eds.), Advances in Neural Information Pro-
cessing Systems 5 (pp. 244-251) San Mateo, CA: Morgan Kauf-
mann Publishers, Inc.

De Gloria, A. (1989). The VLSI technology and the design of neural
networks. In E. R. Caianiello (Ed.), Parallel Architectures and
Neural Networks. Teaneck, NJ: World Scientific.

Eberhardt, S. P., Tawel, R., Brown, T. X., Daud, T., & Thakoor,
A. P. (1992). Analog VLSI neural networks: Implementation is-
sues and examples in optimization and supervised learning. IEEE
Transactions on Industrial Electronics, 39, 552-564.

Fujita, O. (1993). Trial-and-error correlation learning. IEEE trans-
actions on Neural Networks, 4, 720-722.

Jabri, M., & Flower, B. (1992). Weight perturbation: An optimal
architecture and learning technique for analog VLSI feedforward
and recurrent multilayer networks. IEEE Transactions on Neural
Networks, 3, 154-157.

Maeda, Y. (1992). Learning rules of neural networks for inverse
systems. Transactions of The Institute of Electronics, Information
and Communication Engineers, J75-A, 1364-1369 (in Japa-
nese), English version of this paper is shown in Electronics and
Communications in Japan (1993), 76, 17-23.

Maeda, Y., & Kanata, Y. (1993). Learning rules for recurrent neural
networks using perturbation and their application to neuro-con-
trol. Transactions of The Institute of Electrical Engineers of Ja-
pan, 113-C, 402-408 (in Japanese).

Maeda, Y., Yamashita, H., & Kanata, Y. (1991). Learning rules for
multilayer neural networks using a difference approximation.
Proceedings of 1991 International Joint Conference on Neural
Networks Singapore, 1, 628-633.

Matsumoto, T., & Koga, M. (1990). Novel learning method for an-
alogue neural networks. Electronic Letters, 26, 1136-1137.

Mead, C., & Ismail, M. (Eds.) (1989). Analog VLSI implementation
of neural systems. New York: Kluwer Academic Publishers.

Rumelhart, D. E., McClelland, J. L., & The PDP group (1986). Par-
allel distributed processing. Cambridge, MA: The MIT Press.

Spall, J. C. (1992). Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE Trans-
actions on Automatic Control, 37(9), 332-341.

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., & Alkon,
D. L. (1988). Accelerating the convergence of the back-propa-
gation method. Biological Cybernetics, 59, 257-263.

