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Abstract 
This paper describes details of real-time control and 
real-time learning of neuro-controller for a flexible 
arm system using the simultaneous perturbation 
optimization method. 
The simultaneous perturbation optimization 
method is useful, especially when dimension of the 
parameters to be adjusted is large. Therefore, it is 
beneficial to utilize the simultaneous perturbation 
method for neural networks. 
On the other hand, when we use the ordinary 
gradient method as a learning rule of the 
neuro-controller, Jacobian of the plant is essential. 
However, the learning rule via the simultaneous 
perturbation does not require Jacobian of an 
objective plant so that the neural network uses only 
outputs of an objective system. Actual real-time 
control and real-time learning results of a real 
flexible arm system are described to confirm a 
feasibility of the proposed method.  
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1. Introduction 
Neural networks (NNs) are recently used in many 
fields. Especially, its non-linear information 
processing capability is intriguing. 
In the field of control, NNs are one of hopeful tools. 
Neuro-controller (NC) by a direct inverse control 
scheme(see Fig.1) is one of promising approaches in 
non-linear control problems. 
In order to use a NC as a direct controller, the NC 
must be an inverse system of an objective plant, that 
is, the NC must learn an inverse system in so-called 
indirect inverse modeling. Then, the learning rule 
plays a practical role, because it will be related to an 
arrangement of overall system. 
In the case of indirect inverse modeling, generally, 
we need a plant model or a sensitivity function of 
the plant to acquire the derivatives needed for 
learning such as the backpropagation(BP) method, 
because the error function is usually defined not by 
an output of the NN but by that of the plant(see 

Fig.1(a)). 
In this paper, we propose a NC using the 
simultaneous perturbation learning rule for a 
flexible arm system. This learning rule does not 
require a derivative of an error function but only 
values of the error function itself. Therefore, 
without knowing Jacobian of the objective arm 
system, we can design a direct neuro-controller. 
Then the neuro-controller can learn a changing 
environment about the system as well. 
Ordinarily, an error function J(w) is defined by a 
squared error of the plant. When we use a usual 
gradient method as a learning rule of the NC, we 
must know the quantity 
Then, we have 
 

(1) 
where   denotes the desired output of the plant. 
Therefore, (y-yd) is known. Moerover, we can 
calculate       like the back-propagation learning 
rule. However, we don’t know the sensitivity 
function. As a resutlt, we can not obtain a proper 
modifying quantities for weights in the NC. 
On the other hand, we can introduce an idea of the 
simultaneous perturbation learning rule. In this 
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(a)Learning by the back-propagation. 

(b)Learning by the SP method. 
Fig.1  A basic scheme for a direct 

neuro-controller. 
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case, there is no need to know the sensitivity 
function of the unknown plant. Only using the 
values of an error function, the learning rule can 
estimate a gradient of the error function with 
respect to adjustable parameters, weights of the NC 
in this case. 
Moreover, the algorithm of the simultaneous 
perturbation is very simple. This implies easy 
implementation and real-time learning of NCs. 
Actually, real-time learning of NC was achieved in 
this research. The NC learns an inverse system of 
an objective plant and controls the plant at the same 
time. 
Even if environment changes, e.g. change of mass of 
equipment, the NC can adapt new situation by the 
learning. In usual control scheme such as the state 
feedback control, if the environment changes, we 
have to recalculate parameters used in controller 
such as the feedback gain. 
From these points of view, NCs using the 
simultaneous perturbation is significant in the 
control problems. 
 
2. Simultaneous perturbation 
learning rule 
The idea of the simultaneous perturbation was 
proposed by J.C.Spall as an extension of 
Kiefer-Wolfowitz stochastic approximation[1][2]. 
J.Alespector et al. and G.Cauwenberghs also 
proposed the same idea[3][4]. Independently, 
Y.Maeda introduced the same algorithm as a 
learning rule of neural networks[5][6]. J.C.Spall et 
al. and Y.Maeda reported some applications of the 
simultaneous perturbation method in control 
problems[7][8][9]. 
Now, we describe the simultaneous perturbation 
leaning rule used in this paper. 
Define a weight vector and a sign vector as follows; 
 

(2) 
Where t denotes iteration, superscript T is 
transpose of a vector. s (t) is a sign vector whose 
components are +1 or −1. 
The i -th component of the modifying vector of the 
weights        is defined as follows; 
 

(3) 
 
Where c is a magnitude of the perturbation. The 
weights are updated as follows; 

(4) 
Where, α is positive learning coefficient. 
Note that only two values of the error function; 
J(w(t)) and J(w(t)+cs(t)) are used to update the 

weights in the network. Any information about the 
objective plant does not included in the learning 
rule. 
In this paper, we adopt the simultaneous 
perturbation with the sign vector that is equivalent 
to the random direction type of optimization method. 
This method is easy to implement. However, we 
have to pay attention to difference of the 
simultaneous perturbation and the random 
direction. 
 
3. Simultaneous perturbation for 
flexible arm system 
We consider a one-freedom flexible beam shown in 
Fig.2 as an objective plant. 
In usual control scheme, we must have an exact 
model of an objective plant, since controllers are 
basically designed based on the identified model. 
Therefore, when some characteristics of the plant 
change, we must detect the change to compensate 
the controller. 
On the other hand, our scheme used here works 
without this information, because only values of the 
error function are required. Without a model of the 
plant or information about the plant, the NC via the 
simultaneous perturbation can generates proper 
input for the plant. 
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Moreover, proper modification of the controller is 
carried out under operation. That is, on-line 
learning is possible in this learning scheme. 
 
3.1 The flexible beam 
A picture of the actual flexible arm is shown in Fig.3. 
The arm is made of acrylic and the rigid body is 
attached to top of the arm. There are some color 
markers on the beam to measure some states of the 
arm. 
Mass of the top of the arm is 0.145[kg], and length of 
the arm is 0.472[m]. 
Then, we selected six states to control the plant. x is 
the six dimensional state variable as follows; 

( )0 0 1 1 1 1 
T

x x xθ θ θ θ= & &&  (5) 

τ denotes a torque input as a command against the 
plant. Inputs of the NC are four states and their 
derivatives of Eq.(5) as shown in Fig.4. We know 
that these six states are necessary to produce a 
proper command input for the system. 
Using these states, the neural network outputs a 
torque τ. 
  
3.2 Neural network 
The objective plant has a dynamics. Therefore, 
simple multi-layered neural network is not 
appropriate to control the plant, since the 
multi-layered network cannot have any memories. 
Such a network cannot handle a dynamic 
information processing. Thus we used a 
multi-layered neural network with feedback. 
The network used here is shown in Fig.4. Basic 
construction is a simple multi-layered network. 
However, the network has time-delayed feedback 
inputs from output of itself. This feedback gives 

dynamics to the network. 
 
3.3 Control system 
Fig.5 is schematic flow of signals based on actual 
equipments. The system consists of the objective 
flexible arm, CCD camera, image processing device 
and PC which controls the system and realizes the 
recurrent neural network. 
Color markers are attached to the both arm ends to 
get the arm positions. 
States of the flexible arm is monitored by the 
camera. An image processing device Quick-MAG 
converts positions of color markers equipped on the 
arm into numerical values. A PC calculates states 
from these data and outputs torque by the NC 
realized in the PC. This cycle is repeated. 
 
4. On-line learning by simultaneous 
perturbation. 
Fig.6 shows a configuration of the system. The error 
function is defined as follows; 
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Where, di denotes a desired position of the top of the 
arm at the i-th sampling time. That is, the error is a 
sum of the squared error of the position of the end 
for ten seconds. Every trial gives a value of the error 
function. 
Without perturbation, we make a trial and obtain a 
value of the error in Eq.(6). Next, we add 
perturbations to all weights simultaneously and 
make a trial. Then, we have a value of the error, i.e. 
J ( u ( w+cs )). By using Eq.(3) and (4), we can update 
all weights in the NC. We repeat this procedure. 
This is a learning cycle of the NC. This cycle is 
carried out with control of the flexible arm in every 
trial. 
Total flowchart of this learning is shown in Fig.7. In 
a case, we need pre-training, since using untrained 
NC is reckless. After the pre-training of the neural 
network, the network is utilized as a controller of 
the plant. However, in many preliminary 
experiments, initial value of zeros for NC yields 
stable results without pre-training. 
In control cycle, based on the measurements, a 
position of the top of the arm, angles θ1 and θ2 and 
their derivative are calculated. These measured 
data are fed into the NC realized by PC. Torque 
calculated by PC is sent to the flexible arm through 
a driver. This process is carried out for every 
sampling time. The sampling time is mainly 
restricted by capability of the image processing 

device. 
 
4.1 Vibration reduction control 
 From a certain initial state, we would like to 
reduce vibration of the top of the flexible arm. 
Initial weights of the NC are all zero. The learning 
coefficient α and the perturbation c are both 0.0002. 
Fig.8 is a result after 30 times on-line learning by 
our learning rule. Vibration is reduced, compared 
with free vibration. The NC controls the actual 
flexible arm system. 
 
 4.2 Tracking control 
The learning coefficient α and the perturbation c are 
0.00002 and 0.0001, respectively. Initial weights of 
the NC are all zero. 
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Fig.9 A result of a tracking control.
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Fig.9 A result of a tracking control.
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Fig.9 shows results after 100 times and 300 times 
on-line learning by our learning rule. Desired locus 
is sinusoidal wave which amplitude is 0.2[m], period 
is 10[sec]. As on-line learning proceeds, locus is 
closing the desired one. 
 Fig.10 shows change of error for sinusoidal locus. 
We can see that the NC works well as iteration goes. 
Next, we assigned other locus for the same NC. 
Weights values learned in the previous example are 
used as initial weights values of the NC in this 
example. Target locus changes randomly for every 
trial. 
Fig.11 and Fig.12 show results for different locus. 
Even for different locus, the NC tried to adapt new 
target locus. 
Change of error for different target locus is depicted 
in Fig.13. Since desired locus changes every trial, 
error changes violently. However, on average, the 
error decreases as learning goes. 
 

5. Conclusions 
 In this paper, a flexible arm system controlled by a 
NC using the simultaneous perturbation learning 
rule is described. Moreover, we could apply this 
scheme to a real time system. The back-propagation 
learning rule is not applicable to this without any 
information on the objective plant. However, by 
using the simultaneous perturbation learning rule, 
the NC can learn an inverse of the object plant. 
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