
Real-time control and learning using neuro-controller via
simultaneous perturbation for flexible arm system.

Yutaka Maeda
Department of Electrical Engineering, Kansai University

3-3-35 Yamate-cho, Suita Osaka, 564-8680 JAPAN.
PHONE : +81-6-6368-0932, FAX : +81-6-6388-8843

 E-MAIL: maedayut@kansai-u.ac.jp

Abstract
This paper describes details of real-time control and
real-time learning of neuro-controller for a flexible
arm system using the simultaneous perturbation
optimization method.
The simultaneous perturbation optimization
method is useful, especially when dimension of the
parameters to be adjusted is large. Therefore, it is
beneficial to utilize the simultaneous perturbation
method for neural networks.
On the other hand, when we use the ordinary
gradient method as a learning rule of the
neuro-controller, Jacobian of the plant is essential.
However, the learning rule via the simultaneous
perturbation does not require Jacobian of an
objective plant so that the neural network uses only
outputs of an objective system. Actual real-time
control and real-time learning results of a real
flexible arm system are described to confirm a
feasibility of the proposed method.

Keywords : Simultaneous perturbation, Neural
networks, Neuro-controller, Real-time, Flexible arm

1. Introduction
Neural networks (NNs) are recently used in many
fields. Especially, its non-linear information
processing capability is intriguing.
In the field of control, NNs are one of hopeful tools.
Neuro-controller (NC) by a direct inverse control
scheme(see Fig.1) is one of promising approaches in
non-linear control problems.
In order to use a NC as a direct controller, the NC
must be an inverse system of an objective plant, that
is, the NC must learn an inverse system in so-called
indirect inverse modeling. Then, the learning rule
plays a practical role, because it will be related to an
arrangement of overall system.
In the case of indirect inverse modeling, generally,
we need a plant model or a sensitivity function of
the plant to acquire the derivatives needed for
learning such as the backpropagation(BP) method,
because the error function is usually defined not by
an output of the NN but by that of the plant(see

Fig.1(a)).
In this paper, we propose a NC using the
simultaneous perturbation learning rule for a
flexible arm system. This learning rule does not
require a derivative of an error function but only
values of the error function itself. Therefore,
without knowing Jacobian of the objective arm
system, we can design a direct neuro-controller.
Then the neuro-controller can learn a changing
environment about the system as well.
Ordinarily, an error function J(w) is defined by a
squared error of the plant. When we use a usual
gradient method as a learning rule of the NC, we
must know the quantity
Then, we have

(1)
where denotes the desired output of the plant.
Therefore, (y-yd) is known. Moerover, we can
calculate like the back-propagation learning
rule. However, we don’t know the sensitivity
function. As a resutlt, we can not obtain a proper
modifying quantities for weights in the NC.
On the other hand, we can introduce an idea of the
simultaneous perturbation learning rule. In this

() / .J∂ ∂w w

() () () ()
d

J J f uy uy y
y u

∂ ∂ ∂∂ ∂
= = −

∂ ∂ ∂ ∂ ∂
w w

w w w
dy

/u∂ ∂w

w

u y +

−
dy()f u

dy Neuro-
controller

Plant

w

u y +

−
dy()f u

dy Neuro-
controller

Plant

Jacobian

(a)Learning by the back-propagation.

(b)Learning by the SP method.
Fig.1 A basic scheme for a direct

neuro-controller.

2583

case, there is no need to know the sensitivity
function of the unknown plant. Only using the
values of an error function, the learning rule can
estimate a gradient of the error function with
respect to adjustable parameters, weights of the NC
in this case.
Moreover, the algorithm of the simultaneous
perturbation is very simple. This implies easy
implementation and real-time learning of NCs.
Actually, real-time learning of NC was achieved in
this research. The NC learns an inverse system of
an objective plant and controls the plant at the same
time.
Even if environment changes, e.g. change of mass of
equipment, the NC can adapt new situation by the
learning. In usual control scheme such as the state
feedback control, if the environment changes, we
have to recalculate parameters used in controller
such as the feedback gain.
From these points of view, NCs using the
simultaneous perturbation is significant in the
control problems.

2. Simultaneous perturbation
learning rule
The idea of the simultaneous perturbation was
proposed by J.C.Spall as an extension of
Kiefer-Wolfowitz stochastic approximation[1][2].
J.Alespector et al. and G.Cauwenberghs also
proposed the same idea[3][4]. Independently,
Y.Maeda introduced the same algorithm as a
learning rule of neural networks[5][6]. J.C.Spall et
al. and Y.Maeda reported some applications of the
simultaneous perturbation method in control
problems[7][8][9].
Now, we describe the simultaneous perturbation
leaning rule used in this paper.
Define a weight vector and a sign vector as follows;

(2)
Where t denotes iteration, superscript T is
transpose of a vector. s (t) is a sign vector whose
components are +1 or −1.
The i -th component of the modifying vector of the
weights is defined as follows;

(3)

Where c is a magnitude of the perturbation. The
weights are updated as follows;

(4)
Where, α is positive learning coefficient.
Note that only two values of the error function;
J(w(t)) and J(w(t)+cs(t)) are used to update the

weights in the network. Any information about the
objective plant does not included in the learning
rule.
In this paper, we adopt the simultaneous
perturbation with the sign vector that is equivalent
to the random direction type of optimization method.
This method is easy to implement. However, we
have to pay attention to difference of the
simultaneous perturbation and the random
direction.

3. Simultaneous perturbation for
flexible arm system
We consider a one-freedom flexible beam shown in
Fig.2 as an objective plant.
In usual control scheme, we must have an exact
model of an objective plant, since controllers are
basically designed based on the identified model.
Therefore, when some characteristics of the plant
change, we must detect the change to compensate
the controller.
On the other hand, our scheme used here works
without this information, because only values of the
error function are required. Without a model of the
plant or information about the plant, the NC via the
simultaneous perturbation can generates proper
input for the plant.

torque

1x
2x 1θ

0θ

τ

m
l

1M

1r

1I

ZEI

0M

0r
0P

1P

Fig.2 A flexible arm

top

() () () ()()1 2, , ,
T

Nt w t w t w t=w L

()iw t∆

() () ()() ()() ()i i

J t c t J t
w t s t

c
+ −

∆ =
w s w

() () () ()()1 2, , ,
T

Nt s t s t s t=s L

() () ()1t t tα+ = − ∆w w w

Fig.3 Picture of the flexible arm.

2584

Moreover, proper modification of the controller is
carried out under operation. That is, on-line
learning is possible in this learning scheme.

3.1 The flexible beam
A picture of the actual flexible arm is shown in Fig.3.
The arm is made of acrylic and the rigid body is
attached to top of the arm. There are some color
markers on the beam to measure some states of the
arm.
Mass of the top of the arm is 0.145[kg], and length of
the arm is 0.472[m].
Then, we selected six states to control the plant. x is
the six dimensional state variable as follows;

()0 0 1 1 1 1
T

x x xθ θ θ θ= & && (5)

τ denotes a torque input as a command against the
plant. Inputs of the NC are four states and their
derivatives of Eq.(5) as shown in Fig.4. We know
that these six states are necessary to produce a
proper command input for the system.
Using these states, the neural network outputs a
torque τ.

3.2 Neural network
The objective plant has a dynamics. Therefore,
simple multi-layered neural network is not
appropriate to control the plant, since the
multi-layered network cannot have any memories.
Such a network cannot handle a dynamic
information processing. Thus we used a
multi-layered neural network with feedback.
The network used here is shown in Fig.4. Basic
construction is a simple multi-layered network.
However, the network has time-delayed feedback
inputs from output of itself. This feedback gives

dynamics to the network.

3.3 Control system
Fig.5 is schematic flow of signals based on actual
equipments. The system consists of the objective
flexible arm, CCD camera, image processing device
and PC which controls the system and realizes the
recurrent neural network.
Color markers are attached to the both arm ends to
get the arm positions.
States of the flexible arm is monitored by the
camera. An image processing device Quick-MAG
converts positions of color markers equipped on the
arm into numerical values. A PC calculates states
from these data and outputs torque by the NC
realized in the PC. This cycle is repeated.

4. On-line learning by simultaneous
perturbation.
Fig.6 shows a configuration of the system. The error
function is defined as follows;

()() ()2
2 ,i i

i
J u x d= −∑w (6)

0θ
0θ&

1x
1x&
1θ
1θ&

τ

1−z
2−z

3−z

Fig.4 Neural network used here

Desired
signal

Recurrent Neural
Network

Desired
output

weights

Displacement

Output

torque
Input
Torque

τ

States x

Simultaneous
perturbation

Flexible
arm

2x

Fig.6 Overall configuration of the system

Fig.5 Flexible arm system.

Picture of
Flexible

Arm

Position of
Color
markers

Torque

PC

CameraFlexible arm

Quick-MAG

Fig.5 Flexible arm system.

Picture of
Flexible

Arm

Position of
Color
markers

Torque

PC

CameraFlexible arm

Quick-MAG

Picture of
Flexible

Arm

Position of
Color
markers

Torque

PC

CameraFlexible arm

Quick-MAG

2585

Where, di denotes a desired position of the top of the
arm at the i-th sampling time. That is, the error is a
sum of the squared error of the position of the end
for ten seconds. Every trial gives a value of the error
function.
Without perturbation, we make a trial and obtain a
value of the error in Eq.(6). Next, we add
perturbations to all weights simultaneously and
make a trial. Then, we have a value of the error, i.e.
J (u (w+cs)). By using Eq.(3) and (4), we can update
all weights in the NC. We repeat this procedure.
This is a learning cycle of the NC. This cycle is
carried out with control of the flexible arm in every
trial.
Total flowchart of this learning is shown in Fig.7. In
a case, we need pre-training, since using untrained
NC is reckless. After the pre-training of the neural
network, the network is utilized as a controller of
the plant. However, in many preliminary
experiments, initial value of zeros for NC yields
stable results without pre-training.
In control cycle, based on the measurements, a
position of the top of the arm, angles θ1 and θ2 and
their derivative are calculated. These measured
data are fed into the NC realized by PC. Torque
calculated by PC is sent to the flexible arm through
a driver. This process is carried out for every
sampling time. The sampling time is mainly
restricted by capability of the image processing

device.

4.1 Vibration reduction control
 From a certain initial state, we would like to
reduce vibration of the top of the flexible arm.
Initial weights of the NC are all zero. The learning
coefficient α and the perturbation c are both 0.0002.
Fig.8 is a result after 30 times on-line learning by
our learning rule. Vibration is reduced, compared
with free vibration. The NC controls the actual
flexible arm system.

 4.2 Tracking control
The learning coefficient α and the perturbation c are
0.00002 and 0.0001, respectively. Initial weights of
the NC are all zero.

30 times learning

free

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

Time [sec]

Fig.8 A vibration control of the flexible arm

30 times learning

free

30 times learning

free

30 times learning

free

30 times learning

free

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

Time [sec]

Fig.8 A vibration control of the flexible arm

30 times learning

free

30 times learning

free

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

Fig.9 A result of a tracking control.

100 times learning

Desired locus

300 times learning

Time[sec.]-0.05

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

Fig.9 A result of a tracking control.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

Fig.9 A result of a tracking control.

100 times learning100 times learning

Desired locusDesired locus

300 times learning300 times learning

Time[sec.]

Fig.7 Flowchart

Operation of the
objective plant

Calculate the
error

Update all
weights

Calculate the error

Operation of
the objective

plant

Add perturbation
to all weights

Modeling

Training NC
by simulation

Download of weights

Pre-training processPre-training process On –line processOn –line process

2586

Fig.9 shows results after 100 times and 300 times
on-line learning by our learning rule. Desired locus
is sinusoidal wave which amplitude is 0.2[m], period
is 10[sec]. As on-line learning proceeds, locus is
closing the desired one.
 Fig.10 shows change of error for sinusoidal locus.
We can see that the NC works well as iteration goes.
Next, we assigned other locus for the same NC.
Weights values learned in the previous example are
used as initial weights values of the NC in this
example. Target locus changes randomly for every
trial.
Fig.11 and Fig.12 show results for different locus.
Even for different locus, the NC tried to adapt new
target locus.
Change of error for different target locus is depicted
in Fig.13. Since desired locus changes every trial,
error changes violently. However, on average, the
error decreases as learning goes.

5. Conclusions
 In this paper, a flexible arm system controlled by a
NC using the simultaneous perturbation learning
rule is described. Moreover, we could apply this
scheme to a real time system. The back-propagation
learning rule is not applicable to this without any
information on the objective plant. However, by
using the simultaneous perturbation learning rule,
the NC can learn an inverse of the object plant.

Acknowledgement
 This research is financially supported by Kansai
University Frontier Sciences Center and High
Technology Research Center.
Author would also like to thank to Mr.Kubo for his
assistance.

References
[1]J.C.Spall(1987), A Stochastic approximation

technique for generating maximum likelihood

Fig.11 A result of a tracking control
for random locus.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

0 2 4 6 8 10
Time[sec.]

100 times
learning

Desired locus

Before learning

Fig.11 A result of a tracking control
for random locus.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

0 2 4 6 8 10
Time[sec.]

100 times
learning

Desired locus

Before learning

Fig.12 A result of a tracking control
for random locus 2.

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time[sec.]
0 2 4 6 8 10

100 times learning

Desired locus

Before learning

Fig.12 A result of a tracking control
for random locus 2.

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time[sec.]
0 2 4 6 8 10

Fig.12 A result of a tracking control
for random locus 2.

D
is

pl
ac

em
en

t o
f t

he
 to

p
of

 th
e

ar
m

 [m
]

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time[sec.]
0 2 4 6 8 10

Time[sec.]
0 2 4 6 8 10

100 times learning

Desired locus

Before learning

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

Fig.13 Change of error for random locus.
Iteration

Er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 2000 50 100 150 200

Fig.13 Change of error for random locus.
Iteration

Er
ro

r

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Fig.10 Change of error.
Iteration

Er
ro

r

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Fig.10 Change of error.
Iteration

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 3000 50 100 150 200 250 300

Fig.10 Change of error.
Iteration

Er
ro

r

2587

parameter estimates, Proceedings of the 1987
American Control Conference, pp.1161-1167

[2]J.C.Spall(1992), Multivariable stochastic
approximation using a simultaneous perturbation
gradient approximation, IEEE Trans. Automatic
Control, vol.37, pp.332-341

[3]J.Alespector, R.Meir, B.Yuhas, A.Jayakumar and
D.Lippe(1993), A parallel gradient descent
method for learning in analog VLSI neural
networks, in S.J.Hanson, J.D.Cowan and
C.Lee(eds.), Advances in neural information
processing systems 5(pp.836-844), San Mateo,
CA : Morgan Kaufmann Publisher

[4]G.Cauwenberghs(1993), A fast stochastic
error-descent algorithm for supervised learning
and optimization, in S.J.Hanson, J.D.Cowan and
C.Lee(eds.), Advances in neural information
processing systems 5(pp.244-251), San Mateo,
CA : Morgan Kaufmann Publisher

[5]Y.Maeda and Y.Kanata(1993), Learning rules for
recurrent neural networks using perturbation and

their application to neuro-control, Transactions of
the Institute of Electrical Engineers of Japan,
vol.113-C, pp.402-408 (in Japanese)

[6]Y.Maeda, H.Hirano and Y.Kanata(1995), A
learning rule of neural networks via simultaneous
perturbation and its hardware implementation,
Neural Networks, vol.8, pp.251-259

[7]J.C.Spall and J.A.Cristion(1994), Nonlinear
adaptive control using neural networks :
Estimation with a smoothed form of simultaneous
perturbation gradient approximation, Statistica
Sinica, vol.4, pp.1-27

[8]J.C.Spall and D.C.Chin(1994), A model-free
approach to optimal signal light timing for
system-wide traffic control, Proceedings of the
1994 IEEE Conference on Decision and Control,
pp.1868-1875

[9]Y.Maeda and R.J.P.deFigueiredo(1997), Learning
Rules for Neuro-Controller Via Simultaneous
Perturbation, IEEE Trans. on Neural Networks,
vol.8, no.5, pp.1119-1130

2588

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:
	header:

