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Abstract  

The SPSA (simultaneous per turba t ion  stochastic ap- 
proximation) method for function minimization devel- 
oped in [15] is analyzed for optimization problems with- 
out measurement  noise. We prove the striking result 
that  under appropr ia te  technical conditions the estima- 
tor sequence converges to the op t imum with geometric 
rate with probabil i ty 1. Numerical experiments sup- 
port  the conjecture tha t  the top Lyapunov-exponent  of 
defined in terms of the SPSA method is smaller than 
the Lyapunov-exponent  of its deterministic counter- 
part .  \Ve conclude tha t  randomizat ion improves con- 
vergence rate  while dramatical ly  reducing the number  
of function evaluations. 

SPSA for noise-free optimizat ion was briefly considered 
in [7]. It  was shown there tha t  under suitable technical 
conditions the rate  of convergence for the Lq-norms of 
the estimations error is O(k - l / 2 ) ,  for any q > 1. In 
fact, in the noise-free case the SPSA procedure can be 
analyzed using results for Robbins-Monroe- type pro- 
cedures. In particular,  the asymptot ic  covariance of 
kl/2(O k - - 0 " )  can be determined using classical results 
of [11]. It  is easy to see that ,  due to the multiplica- 
tive effect of the noise, this asymptot ic  covariance is 
equal to zero. Hence a convergence rate  faster than  
O(k -1/2) is expected. In fact, using the analysis of 
[7] in an inductive argument  and exploiting the multi- 
plicative nature  of the noise it can be shown tha t  the 
convergence rate  is O ( k - " )  for any finite m. 

Keywords: optimization; stochastic approximation;  
recursive estimation; Kiefer-Wolfowitz-methods; ran- 
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1 Introduct ion 

The aim of this paper  is to analyze the convergence 
properties of the simultaneous per turbat ion  stochastic 
approximat ion (SPSA) method for function minimiza- 
tion developed in [15] when the function values can be 
computed without measurement  error. A basic feature 
of Spall 's method is a new way of est imating the gradi- 
ent using only two measurements  at properly selected 
random paramete r  values. The application of SPSA is 
justified when the function evaluation is expensive. 

The  SPSA methods has been proposed in [15] where, 
under appropr ia te  technical conditions, the almost sure 
convergence of the es t imator  process has been estab- 
lished. In the same paper  asymptot ic  normali ty of a 
properly scaled est imation error process has been es- 
tablished. Similar results under weaker conditions have 
been obtained in [1]. A rate of convergence result for 
higher order moments  of the est imation error has been 
given in [7]. A number  of ideas related to SPSA meth-  
dos are given in [10]. For an up to date survey see 
[14]. 

The question thus arises what  is the actuM rate  of con- 
vergence of Ok -- O* and what  is the best choice of the 
per turbat ion size and the step-size. The main result 
of the paper  is tha t  fixed gain SPSA applied to noise- 
free optimization yields geometric rate  of convergence 
almost surely, just  like for deterministic gradient meth-  
ods under appropr ia te  conditions. In the terminology 
of optimization theory we would say tha t  the conver- 
gence rate is linear indicating the error at step k + 1 
is less than constant multiple of an upper  bound for 
the error at step k and this constant  is strictly smaller 
than 1. 

2 T h e  p r o b l e m  formulat ion 

The p-dimensional Euclidean-space will be denoted by 
~P.  The Euclidean-norm of a vector x will be denoted 
by Ixl. The operator  norm of a matr ix  A will be de- 
noted be IIAII, i.e. IlAII = sup~¢o IAxl/Ixl.  We consider 
the following problem: minimize the function L(O) de- 
fined for 0 e ~  p under the following conditions: 

Condit ion 2.1 The function L(.) is three-times con- 
tinuously differentiable with respect to 0 with bounded 
derivatives up to order three in any bounded domain. 
It is assumed that L(.) has a unique minimizing value 
and it will be denoted by 0". We assume O* = O. 
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at all. Thus to minimize L(.) we need a numerical 
procedure to estimate the gradient of L(.) denoted by 

G(O) =Lo(O). (1) 

Following [15] we consider random perturbations of 
the components of 0. For this we first consider a se- 
quence of independent,  identically distributed (i.i.d.) 
random variables A k i  , k = 1,..., i = 1,.. . ,p defined 
over some probability space (f~, .7", P )  satisfying certain 
weak technical conditions. E.g. they may be chosen 
Bernoulli with 

P(Aki  = +1) = 1/2 P(Aki  = --1) = 1/2. 

Now let 0 < ck < 1 be a fixed sequence of positive 
numbers. A standard choice for Ck, proposed in [15] is 
ck = e lk  ~ with some 7 > 0. For any 0 ~  p we evaluate 
L(.) at two randomly and symmetrically chosen points 
0 + Ck Ak and 0 -  ck Ak, respectively. Define the random 
vector 

T _~ ~ ' ' '  ~- -1  

Then the estimator of the gradient is defined as 

H(k'O) = Ak-1 1 ( 

The SPSA procedure is then defined by 

a 1H(k  + 1,0k) (2) 

with a > 0 fixed. The convergence of this procedure un- 
der various conditions, in particular under the assumed 
presence of measurement noise, has been analyzed in in 
[15], [1], [71. 

The analysis given in [7] is based on the adaptation of 
an ODE-method developed earlier in [5]. The charac- 
teristics of an ODE-method is that  a segment of the 
piecewi~ linear t ra jectory defined by the estimator se- 
quence Ok is approximated by the solution trajectory 
of an associated ODE, which is defined by 

Fixed gain SPSA methods have been first considered 
in [8] in connection with discrete optimization. It has 
been shown there that  choosing the per turbat ion size 
c = a 1 / 6 ,  the error of the estimator is of the order of 
magnitude OM (al/3). The notat ion O M  (.) means that  
the Lq(ft, Sc, P) -norm of the left hand side decreases 
with the rate given on the right hand side for any q _> 1. 

C o n d i t i o n  2.2 Let y( t , s ,~)  denote the unique solu- 
tion of (4). Then with some Co, c~ > 0 

ly(t,s, )l _< 

for every ~, t > s >_ 1. Furthermore we have 

0 
II-~y(t,s,~)ll _< Coe - ~ ( t - ~ ) .  (6) 

The convergence properties of the proposed fixed gain 
SPSA method will be first established for quadratic 
functions. We have the following result: 

T h e o r e m  2.1 Let L be a positive definite quadratic 
/unction, with Hessian-matrix A and let the smallest 
eigenvalue of A be a. Assume that the size of the 
perturbation, c is fixed. Then, ]or sufficiently small 
a there is a deterministic constant )~ < 0 depending on 
a, such that for any initial condition Oo outside of a set 
of Lebesgue-measure zero we have 

lim 1 ; log -0"1 = 

with probability 1. 

Remark: For an arbi t rary initial condition we have < in 
place of the equality. Thus the sequence of estimators 
Ok converges to 0* with geometric rate with probabil- 
ity 1. The deterministic constant A is called the top 
Lyapunov-exponent of the problem. Comments on its 
magnitude will be given in the next section. 

a 
Yt = - ~ G ( y t )  Y s = ~  a > 0 .  (3) 3 T h e  p r o o f  

The convergence rate of the ODE to 0* is O(t -c) with 
some c > 0. A simple calculation gives that,  assuming 
the validity of an ODE principle for a noise-free SPSA 
method, we should increase the stepsize from a/t.  A 
radical choice is to consider a fixed stepsize and thus 
we consider the ODE 

Yt = - a G ( y t )  y s = ~  a > 0 .  (4) 

The proof of the theorem is surprisingly simple. First, 
it is easy to see that  for quadratic functions 

H ( k , 0 )  = ~ ; l ~ k T a ( 0  ). 

But G(O) = A(O - 0"), hence we get the following re- 
cursion for 50k = 0 -- 0": 

50k+1 = (I -- a&; l  &kT A)6Ok. (7) 

Correspondingly, we will consider a fixed gain SPSA 
method defined the recursion 

Ok+, = Ok - aH(k  + 1, Ok). (5) 

Now the sequence Ak is i.i.d., hence the matrix-valued 
process 

Ak = (I - aA;1AkTA) 
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is s ta t ionary and ergodic. Applying Oseledec's multi- 
plicative ergodic theorem (of. [12, 13]) the claim of the 
theorem follows immediately with some deterministic, 
not necessarily negative A. 

To establish tha t  A < 0 we apply [4] the conditions 
of which are easily verified. We also use an elementary 
device to couple continuous t ime and discrete t ime pro- 
cedures. Since 

E l o g ( / -  az2xk "1 ATA) 

Thus the direction of (Ok - 0") also converges just like 
in the case of the deterministic gradient method.  

Finally for sufficiently small a Theorem 3 of [3] is appli- 
cable and we get tha t  for some normalizing constants  
m, a and for any pair of indices i , j  

(log Yk, j - N ( 0 ,  

in distribution. 

is stable for sufficiently small a it follows that  the ran- 
dom product  A~Ak-1...A1 converges to 0 at geometric 
rate with probabil i ty 1. Thus we must  have A < 0, as 
stated. 

Remark: SPSA for noise-free quadratic problems is 
equivalent to the application of i terated random linear 
mappings (cf. (7)). Therefore we refer to this prob- 
lem as the linear problem. In the general case of non- 
quadrat ic  functions SPSA leads to the s tudy of the ef- 
fect of i terated random non-linear mappings.  This case 
will be referred to as the non-linear problem. 

The value of the top Lyapunov exponent A is of great 
practical interest. A remarkable  feature of A can be eas- 
ily established for the scalar case in a slightly different 
setting. Assume tha t  (k are positive i.i.d, non-constant  
random variables. Then the inequality 

E log ~ < log E(  

implies tha t  the convergence rate of the randomized 
product  is be t ter  than  that  of its deterministic coun- 
terpart .  It is conjectured tha t  a similar result holds 
for matr ix  products  under appropr ia te  conditions. The 
conjecture is suppor ted  by simulation results. 

A theoretical expression for A can be obtained as fol- 
lows (cf. [3]). Let ~f~ = Ak...A1 and define the normal- 
ized products  Uk = Yk/llY~]I, Then it can be shown 
that  the process (Uk, Ak+l) is asymptot ical ly  station- 
ary. In our case the two components  are also indepen- 
dent. Let p denote the s ta t ionary  distribution of U on 
the unit sphere of p x p matrices. Then we have 

= Ep f log IIA2U~ lids A (s) 

where P denotes the probabil i ty distribution of A2. 

The invariant measure  can be described by an integral 
equation, but  this may  be more useful for theoretical 
purposes than  for practical  computat ions.  

Oseledec's theorem also implies tha t  if the multiplicity 
of the top Lyapunov exponent  is 1, then there is a p- 
dimensional random vector Vl such that  

li~n(O~, - 0*)/[Ok - 0"[ = vl. 

4 T h e  g e n e r a l  c a s e  

In the general case a third order Taylor series expansion 
gives 

H(k,O) = A;lz2~kTG(0) + O(c~). 

Thus (5) defines a non-linear random mapping.  The  
stability properties of s ta t ionary  random mappings  has 
been considered recently in [2]. However, these results 
are not directly applicable for non-s ta t ionary sequences 
of random mappings.  Furthermore,  even if we could ig- 
nore the presence of the residual te rm O(c~), the con- 
ditions of the cited paper  are hard to verify. Namely, 
we have to consider the inequalities 

[A;1A~G(0)  - A;1AkTG(0')[ .< Lk[O -- 0'[ 

where Lk is a random Lipschitz-constant,  in some ap- 
propriately chosen metric I.[, depending only on Ak. 
Then we should check the condition 

E log Lk < 0. (9) 

In this paper  we choose to adap t  the analysis of fixed 
gain recursive est imators  given in [6]. By exploiting the 
multiplicative structure of the noise we can rewrite the 
analysis so tha t  we arrive to inequalities which are very 
similar to inequalities given for the linear case in [4]. 
Thus the techniques of the two papers  can be combined. 

Since the analysis of [6] has been given pr imar-  
ily for continuous-time methods,  we now switch to 
continuous-time SPSA procedures. Such procedures 
can be obtained by using a per turbat ion-process  

ZX(t) = (zXl (t), ..., ±p( t ) )  r 

which is an L-mixing process such tha t  for each t Ai (t) 
are i.i.d. Bernoulli r andom variables. E.g. a single 
component  Ai(t)  can be generated as the sign process 
of a Gaussian ARMA-process.  Then the SPSA-method  
becomes 

~tO(t) = -al l ( t ,  (10) 

In [6] it was assumed tha t  IH(k,O) -G(O)[ is bounded. 
Thus the imposed stabili ty of the associated ODE en- 
sures tha t  the est imator  process lives in a bounded do- 
main. In the case of fixed gain SPSA the random effect 
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is multiplicative and the above boundedness condition 
can not be guaranteed a priori. Therefore we have to 
modify the analysis of [6] to t runcated procedures. 

Let Do be a compact  t runcat ion domain. Then if Ok$Do 
then we reset its value the initial valued ~eintD0. The 
choice of the set Do requires some a priori knowledge 
on the location of ~*. 

Unlike the decreasing gain case (cL [5]) the probabil i ty 
of the resett ing is typically not asymptotical ly vanish- 
ing. The first major  step is to show tha t  the conclusions 
of [6] remain valid for the t runcated procedure. In par- 

ticular, the tracking error lit - Ytl is bounded by an 
L-mixing process the order of magni tude of which is 
OM(al/2). 

Now we give a short  outline of the proof, indicating 
only the necessary changes to be made. First, assume 
tha t  the residual t e rm O(c~) is actually zero. Such sit- 
uations do arise in connection with multivariable direct 
adaptive controller design (cf. [9]). Let the event that  
a resetting takes place in the interval [aT, (n + 1)T) be 
denoted by C,~. A key quanti ty tha t  shows up in the 
ODE analysis is the normalized local tracking error ~7~ 
defined by 

f sup I "¢N(s, O ) . H ( s , y ( s , n r ,  O))dsl/lOI 
n T < t < ( n + l ) T  T 

~ D  0 

where tON (s, fl) = ( 0 / 0 [ ) y ( ( n  4-1)T, s, y(s,  nT,  0)) is the 
sensitivity mat r ix  of the ODE and H(s ,  y ( s ,nT ,  0) = 
H(s ,  y(s, nT,  fl) - G(s,  0). The  new element here is the 
normalization by 101. In analogy with Lemma 2.2 of [6] 
~ can be analyzed. Furthermore,  equation (2.11) of 
[6] can be rewrit ten as 

sup lit - Y~I <- er/*(n)lff,,TI + RXc. 
'n<t<(n+l)Y 

where Xcn is the characteristic function of the event 
C.,~ with some R > 0. 

The above inequality reduces the non-linear problem to 
a linear one: except for the effect of resetting an iden- 
tical inequality has been obtained as (2.6) in [4]. Thus 
the analysis is thus essentially reduced to the analysis 
of a t runcated version of the linear algorithm given in 
[4], which can be carried out without much difficulty. 

The handling of the effect of the residual term O(c~) 
is a routine exercise. Assuming ck = flk with suffi- 
ciently small/3, the exponential  rate  of convergence of 
the per turbed algori thm will still be ensured. 

To enhance numerical stability we use Newton-type 
SPSA methods proposed in [17] (in condensed form in 
[16]) or higher order SPSA methods proposed in [7]. 

Finally we get the following non-linear extension of 

Theorem 2.1: for sufficiently small a we have 

lim sup 1 A~ (11) 

with probabil i ty 1. We are unaware of any non-linear 
extension of Oseledec's theorem, thus we can not guar- 
antee the existence of the limit on the left hand side 
Likewise, we are unaware of any non-linear extension 
of (8). 

A natural  idea is to consider the linear approximat ion 
of our procedure around 0* and apply the theorem for 
the linear case. Unfortunately there is no guarantee  
that  A' is smaller than the top Lyapunov exponent  of 
the linear problem and thus the effect of nonlinearity 
may stay dominant.  We conclude tha t  there seems to 
be no easy way to improve (11). On the other hand it 
would be of interest to find interesting classes of non- 
linear problems where M < A. For such problems the 
asymptot ic  behaviour of the approximat ing linear pro- 
cedure would become dominant  and thus the linear the- 
ory would be applicable. 

5 S i m u l a t i o n  re s u l t s  

We have tested fixed gain SPSA for quadrat ic  func- 
tions in p = 20 and p = 50 dimensions. In the gra- 
dient est imation we have chosen c = 0.5 and we have 
performed 1000 iterations. The purpose of the simula- 
tions was to provide empirical evidence for the viability 
of the method.  In addition we have found the approxi-  
mate  value of the top Lyapunov-exponent  for which no 
closed form theoretical expression exists in general. In 
the at tached figures we plot 

= ¼ log I k -0"1 

against k. On Figures 1 and 2 we have two examples 
with nice stability properties with the following param-  
eters: 

p = 20, solid line: a = 0.01, dot ted line: a = 0.005 
p = 50, solid line: a = 0.01, dot ted line: a = 0.005. 

The remarkable thing is tha t  the top Lyapunov- 
exponents are significantly larger in absolute value than  
what you would get for the deterministic algorithm. 
The lat ter  would be roughly - a  for the present exam- 
ple. 

If a is too small then, predictably, the top Lyapunov-  
exponent is very close to zero. On the other hand, 
if a is too large then the algori thm loses its stability, 
just  like in the deterministic case. The stabili ty of the 
empirical value of the Lyapunov exponent  predicted by 
Oseledec's theorem is nicely demonst ra ted  in all cases. 
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