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SPSA in noise free optimization
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Abstract

The SPSA (simultaneous perturbation stochastic ap-
proximation) method for function minimization devel-
oped in [15] is analyzed for optimization problems with-
out measurement noise. We prove the striking result
that under appropriate technical conditions the estima-
tor sequence converges to the optimum with geometric
rate with probability 1. Numerical experiments sup-
port the conjecture that the top Lyapunov-exponent of
defined in terms of the SPSA method is smaller than
the Lyapunov-exponent of its deterministic counter-
part. We conclude that randomization improves con-
vergence rate while dramatically reducing the number
of function evaluations.

Keywords: optimization; stochastic approximation;
recursive estimation; Kiefer-Wolfowitz-methods; ran-
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1 Introduction

The aim of this paper is to analyze the convergence
properties of the simultaneous perturbation stochastic
approximation (SPSA) method for function minimiza-
tion developed in [15] when the function values can be
computed without measurement error. A basic feature
of Spall’s method is a new way of estimating the gradi-
ent using only two measurements at properly selected
random parameter values. The application of SPSA is
justified when the function evaluation is expensive.

The SPSA methods has been proposed in [15] where,
under appropriate technical conditions, the almost sure
convergence of the estimator process has been estab-
lished. In the same paper asymptotic normality of a
properly scaled estimation error process has been es-
tablished. Similar results under weaker conditions have
been obtained in [1]. A rate of convergence result for
higher order moments of the estimation error has been
given in [7]. A number of ideas related to SPSA meth-
dos are given in [10]. For an up to date survey see
[14].
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SPSA for noise-free optimization was briefly considered
in [7]. It was shown there that under suitable technical
conditions the rate of convergence for the L -norms of
the estimations error is O(k='/2), for any ¢ > 1. In
fact, in the noise-free case the SPSA procedure can be
analyzed using results for Robbins-Monroe-type pro-
cedures. In particular, the asymptotic covariance of
k'/2(8,, — 6*) can be determined using classical results
of [11]. Tt is easy to see that, due to the multiplica-
tive effect of the noise, this asymptotic covariance is
equal to zero. Hence a convergence rate faster than
O(k~'/?) is expected. In fact, using the analysis of
[7] in an inductive argument and exploiting the multi-
plicative nature of the noise it can be shown that the
convergence rate is O(k~™) for any finite m.

The question thus arises what is the actual rate of con-
vergence of 8 — 8* and what is the best choice of the
perturbation size and the step-size. The main result
of the paper is that fixed gain SPSA applied to noise-
free optimization yields geometric rate of convergence
almost surely, just like for deterministic gradient meth-
ods under appropriate conditions. In the terminology
of optimization theory we would say that the conver-
gence rate is linear indicating the error at step k& + 1
is less than constant multiple of an upper bound for
the error at step k£ and this constant is strictly smaller
than 1.

2 The problem formulation

The p-dimensional Euclidean-space will be denoted by
R?. The Euclidean-norm of a vector r will be denoted
by |z|. The operator norm of a matrix A will be de-
noted be || A, i.e. ||A]| = sup,..q|Az|/|z|. We consider
the following problem: minimize the function L{8) de-
fined for #eRP under the following conditions:

Condition 2.1 The function L(.) is three-times con-
tinuously differentiable with respect to 6 with bounded
derivatives up to order three in any bounded domain.
It is assumed that L(.) has o unique minimizing value
and it will be denoted by 8*. We assume 6* = (.

A key assumption is that the computation of L(.) is
expensive and the gradient of L(.) is not computable
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at all. Thus to minimize L(.) we need a numerical
procedure to estimate the gradient of L(.) denoted by

G(6) = Lq(0). ()

Following [15] we consider random perturbations of
the components of 8. For this we first consider a se-
quence of independent, identically distributed (i.i.d.)
random variables Ay, kK = 1,..., i = 1,...,p defined
over some probability space (Q, F, P) satisfying certain
weak technical conditions. E.g. they may be chosen
Bernoulli with
PAg; =+1)=1/2 P(Ag; =-1)=1/2.

Now let 0 < ¢ < 1 be a fixed sequence of positive
numbers. A standard choice for ¢k, proposed in [15] is
e = ¢/k” with some v > 0. For any 8¢R? we evaluate
L(.) at two randomly and symmetrically chosen points
f+cp Ay and 8 —cp Ay, respectively. Define the random
vector

T
At =[aghag]
Then the estimator of the gradient is defined as

1 1

H(k,6) = Ay 5 -

(L(9 + CkAk) - L(9 —_ CkAk)) .
The SPSA procedure is then defined by

~ o~ a -~
8 =6,———H(k+1,0 2
k1 =0k — 5o ( k) (2)
with a > 0 fixed. The convergence of this procedure un-
der various conditions, in particular under the assumed
presence of measurement noise, has been analyzed in in

[15], (1], [7]-

The analysis given in [7] is based on the adaptation of
an ODE-method developed earlier in [5]. The charac-
teristics of an ODE-method is that a segment of the
piecewise linear trajectory defined by the estimator se-
quence 0y is approximated by the solution trajectory
of an associated ODE, which is defined by

. a

h=-7GW) ys=& a>0 3)
The convergence rate of the ODE to 6* is O(¢~¢) with
some ¢ > 0. A simple calculation gives that, assuming
the validity of an ODE principle for a noise-free SPSA
method, we should increase the stepsize from a/t. A
radical choice is to consider a fized stepsize and thus
we consider the ODE

9t = —aG(yr) ys=§ a>0. 4)
Correspondingly, we will consider a fixed gain SPSA
method defined the recursion

Ori1 =0k — aH(k+1,8). (5)

Fixed gain SPSA methods have been first considered
in [8] in connection with discrete optimization. It has
been shown there that choosing the perturbation size
¢ = a'/8, the error of the estimator is of the order of
magnitude Ops(a'/?). The notation Ops(.) means that
the L,(Q, F,P)-norm of the left hand side decreases
with the rate given on the right hand side for any ¢ > 1.

Condition 2.2 Let y(t,s,&) denote the unique solu-
tion of (4). Then with some Cp,cx > 0

ly(t,5,€)] < Coe™*=2|¢]

for every €,t > s > 1. Furthermore we have

8
IIB—éy(t,s,f)H < Cpe™et=9), (6)

The convergence properties of the proposed fixed gain
SPSA method will be first established for quadratic
functions. We have the following result:

Theorem 2.1 Let L be a positive definite quadratic
function, with Hessian-matriz A and let the smallest
eigenvalue of A be a. Assume that the size of the
perturbation, ¢ is fivred. Then, for sufficiently small
a there is a deterministic constant A < 0 depending on
a, such that for any initial condition 8y outside of a set
of Lebesgue-measure zero we have

.1 ~ .
kli)nologlogIOk—G [ =A

with probabality 1.

Remark: For an arbitrary initial condition we have < in
place of the equality. Thus the sequence of estimators
6. converges to 6* with geometric rate with probabil-
ity 1. The deterministic constant A is called the top
Lyapunov-ezponent of the problem. Comments on its
magnitude will be given in the next section.

3 The proof

The proof of the theorem is surprisingly simple. First,
it is easy to see that for quadratic functions

H(k,0) = A;'ALG(9).

But G(0) = A(f — 6*), hence we get the following re-
cursion for 66 = 6 — 6*:

60ks1 = (I — aA; AT A)56y. (7)
Now the sequence Ay is i.i.d., hence the matrix-valued

process

A = (I -aA'ATA)
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is stationary and ergodic. Applying Oseledec’s multi-
plicative ergodic theorem (cf. [12, 13]) the claim of the
theorem follows immediately with some deterministic,
not necessarily negative A.

To establish that A < 0 we apply [4] the conditions
of which are easily verified. We also use an elementary
device to couple continuous time and discrete time pro-
cedures. Since

Elog(I — aA;'AT A)

is stable for sufficiently small a it follows that the ran-
dom product AxA_;...A; converges to 0 at geometric
rate with probability 1. Thus we must have A < 0, as
stated.

Remark: SPSA for noise-free quadratic problems is
equivalent to the application of iterated random linear
mappings (cf. (7)). Therefore we refer to this prob-
lem as the linear problem. In the general case of non-
quadratic functions SPSA leads to the study of the ef-
fect of iterated random non-linear mappings. This case
will be referred to as the non-linear problem.

The value of the top Lyapunov exponent A is of great
practical interest. A remarkable feature of A can be eas-
ily established for the scalar case in a slightly different
setting. Assume that £ are positive i.i.d. non-constant
random variables. Then the inequality

Elogé < log E

implies that the convergence rate of the randomized
product is better than that of its deterministic coun-
terpart. It is conjectured that a similar result holds
for matrix products under appropriate conditions. The
conjecture is supported by simulation results.

A theoretical expression for A can be obtained as fol-
lows (cf. [3]). Let Y = Ag...A; and define the normal-
ized products Uy = Yi/||Yk||. Then it can be shown
that the process (Ug, Ax41) is asymptotically station-
ary. In our case the two components are also indepen-
dent. Let p denote the stationary distribution of U on
the unit sphere of p x p matrices. Then we have

A=Ep / log || 42U | dy (8)

where P denotes the probability distribution of As.

The invariant measure can be described by an integral
equation, but this may be more useful for theoretical
purposes than for practical computations.

Oseledec’s theorem also implies that if the multiplicity
of the top Lyapunov exponent is 1, then there is a p-
dimensional random vector v; such that

n}cn(ék —6%)/16x — 6*| = .
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Thus the direction of (§; — 8*) also converges just like
in the case of the deterministic gradient method.

Finally for sufficiently small a Theorem 3 of [3] is appli-
cable and we get that for some normalizing constants
m, o and for any pair of indices 1, j

(logYi,ij — nm)/(n'/?0) = N(0,0?)

in distribution.

4 The general case

In the general case a third order Taylor series expansion
gives

H(k,0) = AL ATG(9) + O(c2).

Thus (5) defines a non-linear random mapping. The
stability properties of stationary random mappings has
been considered recently in [2]. However, these results
are not directly applicable for non-stationary sequences
of random mappings. Furthermore, even if we could ig-
nore the presence of the residual term O(c), the con-
ditions of the cited paper are hard to verify. Namely,
we have to consider the inequalities

AL IATGO) - AFATG()| < Lilo — ¢

where L; is a random Lipschitz-constant, in some ap-
propriately chosen metric |.|, depending only on Ag.
Then we should check the condition

Elog Ly < 0. 9)

In this paper we choose to adapt the analysis of fixed
gain recursive estimators given in [6]. By exploiting the
multiplicative structure of the noise we can rewrite the
analysis so that we arrive to inequalities which are very
similar to inequalities given for the linear case in [4].
Thus the techniques of the two papers can be combined.

Since the analysis of [6] has been given primar-
ily for continuous-time methods, we now switch to
continuous-time SPSA procedures. Such procedures
can be obtained by using a perturbation-process

Alt) = (AL(1), -, Ap ()T

which is an L-mixing process such that for each ¢ A;(t)
are i.i.d. Bernoulli random variables. E.g. a single
component A;(t) can be generated as the sign process
of a Gaussian ARMA-process. Then the SPSA-method
becomes

d ~ ~
0(t) = —aH(t,0(2). (10)

In [6] it was assumed that |H (k,8) — G(6)] is bounded.
Thus the imposed stability of the associated ODE en-

sures that the estimator process lives in a bounded do-
main. In the case of fixed gain SPSA the random effect



is multiplicative and the above boundedness condition
can not be guaranteed a priori. Therefore we have to
modify the analysis of [6] to truncated procedures.

Let Dy be a compact truncation domain. Then if akéDg
then we reset its value the initial valued £eintDgy. The
choice of the set Dy requires some a priori knowledge
on the location of 8*.

Unlike the decreasing gain case (cf. [5]) the probability
of the resetting is typically not asymptotically vanish-
ing. The first major step is to show that the conclusions
of [6] remain valid for the truncated procedure. In par-
ticular, the tracking error IHAt — y¢| is bounded by an

L-mixing process the order of magnitude of which is
Onr(a'/?).

Now we give a short outline of the proof, indicating
only the necessary changes to be made. First, assume
that the residual term O(c?) is actually zero. Such sit-
uations do arise in connection with multivariable direct
adaptive controller design (cf. [9]). Let the event that
a resetting takes place in the interval [nT, (n + 1)T) be
denoted by C,,. A key quantity that shows up in the
ODE analysis is the normalized local tracking error 7,
defined by

t
sup | / on(5,8) - H(s, y(s,nT, 8))ds|/ 0]
aT<t<(n+ )T J T

#eDg

where ¥y (5,0) = (8/88)y((n+1)T, 5,y(s,nT, 8)) is the
sensitivity matrix of the ODE and H(s,y(s,nT,8) =
H(s,y(s,nT,8) — G(s,6). The new element here is the
normalization by |6]. In analogy with Lemma 2.2 of [6]
n} can be analyzed. Furthermore, equation (2.11) of
[6] can be rewritten as

sup |0 — G| < en”(n)|fnr| + Rxc,
n<t<(n+1)T
where xc, is the characteristic function of the event
C,, with some R > 0.

The above inequality reduces the non-linear problem to
a linear one: except for the effect of resetting an iden-
tical inequality has been obtained as (2.6) in [4]. Thus
the analysis is thus essentially reduced to the analysis
of a truncated version of the linear algorithm given in
[4], which can be carried out without much difficulty.

The handling of the effect of the residual term O(c3)
is a routine exercise. Assuming c¢x = (¥ with suffi-
ciently small 3, the exponential rate of convergence of
the perturbed algorithm will still be ensured.

To enhance numerical stability we use Newton-type
SPSA methods proposed in [17] (in condensed form in
[16]) or higher order SPSA methods proposed in [7].

Finally we get the following non-linear extension of

Theorem 2.1: for sufficiently small a we have

1 ~
lim sup —log |8 — 8*| = X' <0 (11)
k— oo k

with probability 1. We are unaware of any non-linear
extension of Oseledec’s theorem, thus we can not guar-
antee the existence of the limit on the left hand side

Likewise, we are unaware of any non-linear extension
of (8).

A natural idea is to consider the linear approximation
of our procedure around 6* and apply the theorem for
the linear case. Unfortunately there is no guarantee
that A’ is smaller than the top Lyapunov exponent of
the linear problem and thus the effect of nonlinearity
may stay dominant. We conclude that there seems to
be no easy way to improve (11). On the other hand it
would be of interest to find interesting classes of non-
linear problems where A’ < A. For such problems the
asymptotic behaviour of the approximating linear pro-
cedure would become dominant and thus the linear the-
ory would be applicable.

5 Simulation results

We have tested fixed gain SPSA for quadratic func-
tions in p = 20 and p = 50 dimensions. In the gra-
dient estimation we have chosen ¢ = 0.5 and we have
performed 1000 iterations. The purpose of the simula-
tions was to provide empirical evidence for the viability
of the method. In addition we have found the approxi-
mate value of the top Lyapunov-exponent for which no
closed form theoretical expression exists in general. In
the attached figures we plot

.1 N
A= Elogwk — 67|

against k. On Figures 1 and 2 we have two examples
with nice stability properties with the following param-
eters:

p =20, solid line: a = 0.01, dotted line: a = 0.005
p =50, solid line: ¢ = 0.01, dotted line: a = 0.005.

The remarkable thing is that the top Lyapunov-
exponents are significantly larger in absolute value than
what you would get for the deterministic algorithm.
The latter would be roughly —a for the present exam-
ple.

If a is too small then, predictably, the top Lyapunov-
exponent is very close to zero. On the other hand,
if a is too large then the algorithm loses its stability,
just like in the deterministic case. The stability of the
empirical value of the Lyapunov exponent predicted by
Oseledec’s theorem is nicely demonstrated in all cases.
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Figure 1: p = 20, a = 0.01 and a = 0.005, resp.
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Figure 2: p = 50, a = 0.01 and a = 0.005, resp.
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