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Abstract

We consider discrete-time fixed gain stochastic approxi-
mation processes that are defined in terms of a random
field that is identically zero at some point 6*. The
boundedness of the estimator process is enforced by a
resetting mechanism. Under appropriate technical con-
ditions the estimator sequence is shown to converge to
0* with geometric rate almost surely. This result is in
striking contrast to classical stochastic approximation
theory where the typical convergence rate is n~'/2. For
the proof a discrete-time version of the ODE-method
is developed and used, and the techniques of [8] are ex-
tended. The paper is motivated by the study of simul-
taneous perturbation stochastic approximation (SPSA)
methods applied to noise-free problems and to direct
adaptive control, see [13].

1 Introduction

Let H(n,f,w) be a random field defined over some
probability space (2, F, P) for n > 1 and 6eD C RP?,
where D is a bounded open domain. Assume that for
some 0*eR” the random field identically vanishes, i.e.
we have

H(n,0",w)=0. (1)

The problem that we study is to determine 6* via a
stochastic approximation procedure based on observed
values of H(n,0,w).

Noise free SPSA: For a motivation consider the fol-
lowing problem: minimize a function L(#) defined for
feRP, such that it is three-times continuously differen-
tiable with respect to €, and L(.) has a unique global
minimizing value 6*. Assume that the computation
of L(.) is expensive and the gradient of L(.) is not
computable at all. To minimize L(.) we estimate the
gradient of L(.) denoted by G(6) = Ly(#). Following
[19] consider random simultaneous perturbations of the
components of 6 as follows: first take a sequence of in-
dependent, identically distributed (i.i.d.) random vari-
ables, with time index n, A,;(w), ¢ = 1,...,p defined
over some probability space (€2, F,P) satisfying certain
weak technical conditions given in [19]. E.g. we may
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take a Bernoulli-sequence with
P(Api(w) =+1) =1/2 P(Api(w) =-1)=1/2.

Let ¢ > 0 be a fixed small positive number. For any
feR? we evaluate L(.) at two randomly, but symmet-
rically chosen points, 8 + cA,(w) and 8 — cA, (w), re-
spectively. Then the i-th component of the gradient is
estimated as

L0+ cAp(w)) — L(0 — cAp(w))
2¢ '
Set H(n,0,w) = (Hi(n,0,w), ..., Hp(n,8,w)) and

H;i(n,0,w) = A7 (w)

ni

AN W) = [At ), .., AT )]

n nl » =np

Using this gradient estimator with a decreasing ¢ = ¢,
where ¢, tends to zero at a rate 1/n” with some v > 0,
a stochastic approximation procedure with decreasing
gain 1/n® with some 0 < a < 1, called the simultane-
ous perturbations stochastic approximation or SPSA
method, has been developed in [19]. SPSA methods
have been analyzed under various conditions in [3], [9],
[17] and [19], and simplified and improved versions have
been developed in [20, 21].

In the special case, when L is a positive definite
quadratic function we have

H(n,0,w) = A;l (w)Ag(w)G(t‘))

for any size of the perturbation c. Since G(6*) = 0, we
have identically

H(n,0",w) =0.

For general, non-quadratic cost functions we have to
decrease the size of the perturbation, thus we chose
¢ = c¢p, where ¢, tends to zero. Then the condi-
tion H(n,0*,w) = 0 will be satisfied asymptotically.
An alternative class of problems where the condition
H(n,0*,w) = 0 is satisfied exactly is described in [13]
in connection with multivariable direct adaptive con-
troller design.

A survey of previous results: The standard stochastic
approximation procedure for (1) would be

1
Ont1 =9n+n—+1H("+1;9n,W) bo=¢& (2)



Such general stochastic approximation procedures have
been considered e.g. in [1, 2, 5, 18]. The asymptotic
covariance matrix of the estimator process, denoted by
S*, has been determined under various conditions in
[1, 2, 6, 18]. It is easy to see that H(n,0*,w) = 0
implies

S* = lim nE(#, —6*)(0, — ")

n—o0

0,

hence the convergence rate is better than the standard
rate n~ /2. But how much better can it be? A straight-
forward, but tiresome calculation induces us to con-
sider fixed gain stochastic approximation processes of
the form

Ont1 :0n+>\H(n+150naw) o = &. (4)

Fixed gain recursive estimation processes of this gen-
eral form have been widely used in the engineering liter-
ature. An important example is the well-known LMS-
algorithm of adaptive filtering, the stability properties
of which had been studied in [7, 12, 16], assuming some
form of stationarity. The most complete characteriza-
tion of LMS processes has been given recently in [14].
General classes of algorithms given above has been con-
sidered in [1] and [18]. Assuming that

G(0) = EH(n, ,w). (5)

is independent of n, and that 6* is an asymptotic sta-
ble equilibrium point for G' has the estimator sequence
0, is related to the solution of the associated ordinary
differential equation

Ut = AG(yt)

This method of proof is often called the ODE-method.

yo =&.

In [8] H(n,f,w) is assumed to be an L-mixing pro-
cess. A key condition in the analysis presented in [8]
is that the essential supremum of the random variable
|H(n,0,w) — G(#)| is sufficiently small for all feD, to
ensure a priori that 8,, will stay in a prescribed compact
domain Dy C D. The conclusion is that the L,-norms
of the tracking error is of the order of magnitude \/2,

A new feature of the present paper is that the condi-
tion H(n,0*,w) = 0 is imposed, and that assumption
ensuring a priori that 6, will stay in a prescribed com-
pact domain Do C D, is removed. Instead, the condi-
tion #,eDy is enforced by using a resetting mechanism.
The relaxation of the conditions on the upper bound
of |[H(n,f,w) — G()] is essential for noise free SPSA.

We have the surprising result that, in spite of the fact
that, predictably, we have frequent resetting, 6,, does
converge to #* almost surely, and the rate of conver-
gence is geometric. A heuristic argument in favour this
result is that when 6, gets close to 6* then the effect
of the noise is negligible, and also the occurrence of a
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resetting becomes less likely. The analysis is based on
a discrete-time ODE-method.

In the special case of SPSA methods applied to noise-
free optimization we get fixed gain SPSA methods.
These have been first considered in [10] for gen-
eral random fields, i.e. without the extra condition
H(n,0*,w) = 0. The present paper is a follow-up of
[11].

2 The basic result

The p-dimensional Euclidean-space will be denoted by
RR?. The Euclidean-norm of a vector x will be denoted
by |z|, the operator norm of a matrix A will be denoted
be ||A||. Assume 6* = 0 and that H(n,f,w) can be
written in the form

H(n,0,w) = A(n,0,w)d

where the p x p matrix-valued random-field A(n,8,w)
satisfies the conditions below. Thus we come to con-
sider a quasi-linear random iterative process of the form

Oni1 =0+ AA(n+1,0,,w)0,. (6)

If A(n + 1,0,,w) is in fact independent of 6, then
(6) is a random linear difference equation with state-
independent transition-matrices, the stability of which
has been studied extensively already in [15].

In the conditions below we use the notations given in
the Appendix. Define the p X p matrix-valued random-
field AA/AG, for 6,6 + h h # 0, by

(AA/AB)(n,0,0+h,w) = |A(n,0+h,w)—A(n,8,w)|/|h.

Condition 2.1 The matriz-valued random-fields A
and AA/AB are defined and bounded forn > 1, 0, 6+
heD, h # 0, where D is a bounded domain:

[|A(n,8,w)|| <K', ||[(AA/A6)(n,0,0 + h,w)|| < L'

A key technical condition that ensures a stochastic av-
eraging effect is the following:

Condition 2.2 A and AA/AO are L-mizing uni-
formly in 0 for 8eD and in 0,0+h for 6,0+heD, h #0,
respectively, with respect to a pair of families of o-
algebras (Fp, F;7),n > 1.

For the sake of convenience we assume:

Condition 2.3 The mean field EH(n,0,w) is inde-
pendent of n, i.e. we can write

G(0) = EH(n,0,w). (7)



It follows, that B(#) = EA(n,f,w) is also independent
of n. Write

A(n,0,w) = A(n,0,w) — EA(n,0,w).

Condition 2.4 The function G defined on D is con-
tinuous and bounded in y together with its first and
second partial derivatives, say

G| < K, 110G(y)/oyll < L 110°G(y)/0y|| < L.

(8)

Domains: We develop a discrete-time version of the
ODE method which can be applied with ease for the
problem considered in this paper. The process 6,, will
be compared with the discrete-time deterministic pro-
cess (z,,) defined by

Znt1 = zn + AG(2p), 20 =& = 0eDy, (9)
where Dy is a compact domain to which the estima-
tor sequence #, will be confined by a resetting tech-
nique. Let z(n,m,&) denote the solution of (9) with
initial condition z,, = £. Define the time-homogeneous
mapping associated with (9) £ — z,(§) = z(n,0,¢).
Let Dy C D be a subset of D such that for feDy we
have z,(8)eD for any n > 0. For any fixed n the
image of Dy under z, will be denoted as z,(Dy) i.e.
zn(Dg) = {z : z = 2(n,0,0), 8eDy}. The union of
these sets will be denoted by z(Dy), i.e.
z(Dg) ={z:2z=2(n,0,0) forsome n >0, feDy}.
It can be proved that, under suitable technical condi-
tions, z(Dy) C D, C D where D, is some compact
domain.

The associated continuous-time ODE is defined as

yt = AC;(yt)> s> 0.
The solution of (10) will be denoted by y(t,s,&). The
time-homogeneous flow associated with (10) is defined
as the mapping & — y(£) = y(¢,0,&). Let D, be such
that for zeD. we have y;(z)eD for any t > 0. For any
fixed ¢t the image of D, under y; will be denoted as
yr(Dy) ie. y(Dy) ={y:y =y(t0,2), zeD,}. The
union of these sets will be denoted by y(D,), i.e.

ys =& = zeD, (10)

y(D,)={y:y=y(t0z) for some t>0, zeD,}.
For any set Dy write

S(Dg,e) ={0:10 — z| < e for some zeDy}.

Finally the interior of a compact domain Dy is denoted
by int Dy. We will require the following stability con-
dition:
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Condition 2.5 There ezist compact domains Dy C
D.C Dy CD andd >0 such that 0 € intDg and

S(y(Dy),d) C D. and y(D.)CD,CD. (11)

Condition 2.6 The ordinary differential equation
(10) satisfies the following stability conditions: for any
& = zeD, and for any € > 0 there exists a T > 0
such that t — s > T implies |y(t,s,&)| < e. Moreover
the Jacobian-matriz G (0) has all its eigenvalues in the
open left half plane.

It follows, that for some Cp > 0 and o > 0 we have for
all0<s<t, zeD,

(t,s,2)|| < Coe @), (12)

||£y
We can assume that Cy > 1.

Resetting: Let D¢ be a compact domain such that

OeintDe and S(Dg,d') C intDy (13)

for some d' > 0. Assume that { = é\OeDg. At time n
we first define a tentative value 6,41 following (4) as

Ont1i— =6 + AH(n +1,0,,w) (14)
and then we set
On+1 Onr1— if Onp1 €Dy
Ont1 = 6o if 0,1 1-¢Dyp. (15)

Condition 2.7 It is assumed that for some 0 <r < R
we have

D C S(0,7) C S(0,R) C Dy. (16)

Theorem 2.1 Assume that Conditions 2.1-2.7 are
satisfied. Let & = 6peD¢ and assume that Cir/R < 1.
Then there exists a v with 0 < v < 1 and a positive
random wvariable C(w) such that for sufficiently small
A we have

O] < Clw™™.

3 Outline of the proof

First we need two simple lemmas on the discrete flow
defined by (9).

Lemma 3.1 Assume that Conditions 2.4, 2.5 and 2.6
are satisfied. Let y; be the solution of (10) and let z,
be the solution of (9) with yo = zoeDy. Then if d >
Coa! - ALK then z, will stay in D, for all n, and
|20 — Yn| < Coa™' - ALK for all n > 0. In addition
for any o/ < a we have |z,| < Coe™" " whenever \ is
sufficiently small.



An interesting property of the discrete flow defined by
(9) is that it inherits exponential stability with respect
to initial perturbations if X is sufficiently small.

Lemma 3.2 Assume that Conditions 2.4, 2.5 and 2.6
are satisfied. Then d > Coa~! - ALK implies that z,
will stay in D, for all n, moreover for any 0 < o' <
and n > m we have

a —Aa'(n—m
g2 (s I < Coe (=), (17)

whenever X is sufficiently small.

A local approximation: In what follows the discrete-
time parameter n will be replaced by ¢ and n will stand
for a rescaled discrete time-index. Let T be a fixed
positive integer. Let us subdivide the set of integers
into intervals of length 7. Let n be a non-negative
integer and let 7(nT) denote the first integer ¢ > nT'
for which 6;¢Dy. In the interval [nT, (n + 1)T — 1] we
consider the solution of (9) starting from 6,7 at time
nT'. This will be denoted by Z, i.e. Z; is defined by

Zi+1 = Zt + AG(Zt),  ZnT = Onr.

We can also write z; = 2(t,nT,0,7) for nT < ¢
(n + 1)T. The definition of Z; is non-unique for ¢
(n + 1)T, therefore we use the notation Z(,41)r—
z((n+1)T,nT,0,7) and Z(,41)r = 0(n41)r- A key step
in the derivation is to get an upper bound for |6; —Z;|.

<

We need the following simple observation: for s > nT
we have

Zs = z(s,nT,0,7) = 2(s,nT,0,1) — z(s,nT,0) =

Loz

o 0
The presence of the multiplicative term |6,7| on the
right hand side is a key feature that ensures conver-
gence with exponential rate. In the lemma below the
definition of 6, 1) will be temporarily changed for the
sake of convenience to denote the value of 6; at time
7(nT') prior to resetting.

(S, TLT, )\anT)dA . QnT.

Lemma 3.3 For any T we have

sup |6 —Z¢| < c*n) |Onr] (18)
nT<t<(n+1)TAT(nT)
where 0}, is defined in terms of H as follows:
t—1
mp= sup || Y M(s+1,2(s,nT,6),0)| (19)
nT<t<(n+1)T
0cDg s=nT

and ¢* = Co(1+ AL)T.
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Remark: Lemma 2.2 of [8] implies that the process ()
is L-mixing with respect to (F,r,F,;). In particular,
choosing T' = [(Aa)™!] + 1 we get for any 2 < ¢ < oo
and r > p

M, (n*) < CAM2, (20)

where Cj is independent of A.

In the lemma below we use the following notation: if a
resetting takes place at time nT then 6,7 denotes the
value of 6; at time nT prior to resetting.

Now if no resetting takes place over several periods then
the repeated application of (18) leads to the following
result:

Lemma 3.4 Let T = [(Aa)~'|+ 1 and assume that no
resetting takes place for 0 < t < nT with some positive
integer n. Then we have

0nr| < Colbo] - My (B + Coc™ny_y)

with 0 < B < 1, where the latter is independent of A.

The starting points and the endpoints of the above in-
terval can be replaced by arbitrary, possible random
time-moments.

For small X\ the averaging effect is ensured by taking
large T'. Note that 3 is independent of A, but n;_; =
On(X'/?) can be made very small.

If a resetting does take place in (nT,(n + 1)T], then
the following multiplicative inequality can be derived,
that will replace (18) in the analysis:

(C() +20*77;;)2|0nT|. (21)

=]l

0(ns1)r| <

The proof the Theorem 2.1 can now be completed by
applying fairly straightforward estimations for random
products.

4 Simulation results
Consider a quadratic function L(f) = 167 A6, with
some symmetric positive definite A. Then H(k,0) =
A'AFG(9). But G(A) = Af, hence we get the follow-
ing recursion for 6y:

Ori1 = (I — AALTAL A)Oy. (22)

Applying Oseledec’s multiplicative ergodic theorem we
can easily get the claim of Theorem 2.1. Consider now
non-quadratic problems of the form

L) = %9%(9)9



with
A(0) = A+ u(@)u(®)”

where u(0) = D with some fixed matrix D.

We have tested the fixed gain SPSA method (4) for
randomly generated problems of dimension 20, where
the elements of D were chosen uniformly in the range of
[0, ¢p]. In each experiment we had N = 500 iterations.

The top Lyapunov-exponent is approximated by

1
N10g|0N_0*|'

In Figures 1. and 2. the approximate top Lyapunov
exponent is plotted against the step-size A for three, in-
creasingly non-quadratic problems for plain SPSA and
second order SPSA proposed in [21].

5 Conclusion

Stochastic approximation processes based on vanish-
ing random fields with a resetting mechanism converge
with geometric rate almost surely. The result is in strik-
ing contrast to classical stochastic approximation the-
ory where the typical convergence rate is n='/2. The
paper is motivated by the study of simultaneous per-
turbation stochastic approximation (SPSA) methods
applied to noise-free problems.

An open problem is the following: The condition
C3r/R < 1 becomes r/R < 1 if Cp = 1. This is equiv-
alent to saying of (12) that for some a > 0 we have for
all 0 <s<t, zeD,

(t,s,2)|| < e, (23)

I
927
An interesting problem is to find useful sufficient con-
ditions under which (23) will be satisfied for non-linear
systems with some Euclidean norm.

6 Appendix

In this section the basic concepts of the theory of L-
mixing processes developed in [4] will be presented. Let
a probability space (Q, F, P) be given, let D C IR? be
an open domain and let (z,(0)): Q@ x Z x D — R" be
parameter-dependent stochastic process. We say that
(z,(0)) is M-bounded if for all 1 < g < 0o

M, () = sup EY/9|z,,(8)|? < .
n>0
6eD

We shall use the same terminology if € or ¢t degenerate
into a single point.

4404

Let (F,),n > 0 be a family of monotone increasing o-
algebras, and (F,7),n > 0 be a monotone decreasing
family of o-algebras. We assume that for all n > 0, F,
and F,I are independent. For n < 0 we set F,I =
FiF. A stochastic process (,(6)),n > 0 is L-mixing
with respect to (F,,F,;) uniformly in 6 if it is (F,)-
measurable, M-bounded and if we set for 1 < ¢ < 0o

Ya(T, %) = 7,(7) = sup EY|2,,(6) — Bz (0)|Fi_,)|¢
6eD

where 7 is a positive integer then

Ly =Ty(z) = Z'Yq(T) < 0o.
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Method : second order SPSA
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