
Jointly optimizing model complexity and

data-processing parameters with mixed-input

SPSA

Jim Garrett ∗

June 30, 2004

Abstract
When predictor selection is applied prior to modeling, and modeling

performance is assessed by cross-validation (or most other methods), then
that performance estimate will be biased. When the number of predictors
outstrips the number of data cases, the bias can be severe, a phenomenon
known as selection bias. Fundamentally, a model process is applied�of
which �tting the model is only the last step�yet performance estima-
tion does not encompass the entire process. Cross-validation that exam-
ines the entire process is free of selection bias, yet such cross-validation
presents a challenging optimization problem. An e�cient multiparameter
optimization algorithm, Simultaneous Perturbation Stochastic Approxi-
mation (�SPSA�), can be adapted to handle loss functions having both
continuous and ordered discrete inputs. SPSA is relatively e�cient, han-
dles noisy loss functions, and is unlikely to become trapped in inferior
local optima, particularly for noisy loss functions. This �mixed-input�
SPSA can jointly optimize data-processing parameters (including feature-
selection) and model-complexity parameters, and also provide a type of
cross-validation performance estimate that is free of selection bias.

1 The problem

1.1 Why joint optimization?

Predictive modeling generally proceeds through a chain of data-processing steps,
each locally optimized in some sense. Raw data may arise from an instrument,
such as a mass spectrometer or gene-array scanner, which applies algorithms
thought to be nearly optimal. Raw data is further processed: peaks on spectra
are identi�ed, baselines are subtracted, etc. Growth curves may be smoothed
and derivatives measured. Data ready for statistical analysis in the traditional
sense may then be scaled, averaged, transformed, etc. Dimension reduction

∗jim_garrett@bd.com

1

and/or variable selection may occur, and �nally a model may be �tted, whose
performance is the �nal object of the entire chain.

Steps in the chain typically are optimized without consideration of the �nal
output of the chain, yet such local optimization can be hard and may not op-
timize the total chain even when done well. Consider for instance building a
model to discriminate growth of microorganisms in suspension from non-growth.
The maximum �rst derivative of a growth curve can be a reasonable biological
growth metric, as mentioned in [13]. Estimating derivatives of smooth curves is
a challenging problem that has been explored in [2] and [10], but always with a
view to optimizing some loss function related to squared-error loss. While this is
a natural and reasonable criterion to consider, and parameters optimal for such
criteria are unlikely to give very poor values as classi�cation inputs, they may not
be optimal for the larger classi�cation problem because the bias-variance trade-
o� optimal for squared-error loss may not be optimal for subsequent classifying.
In particular, high bias (induced by oversmoothing) may matter little in subse-
quent classi�cation, provided all cases are biased similarly; meanwhile the gain
in reduced variance could be valuable. Why not then choose as a smoothing-
parameter criterion the downstream classi�cation performance (as estimated by
cross-validation)? The criterion cannot be evaluated independently of classi�ca-
tion parameters, so the optimization problem e�ectively becomes one of jointly
opimizing data-processing and classi�cation.

Optimizing some portion of a data-processing chain (in addition to the �nal
model-�tting portion) also has implications for statistical inference. Ambroise
and McLachlan [1] describe how screening variables prior to �tting classi�ca-
tion models can severely bias cross-validation performance estimates. Variable
screening is properly seen as part of a modeling process, and since (in their
examples) cross-validation does not encompass this important step, it yields bi-
ased performance estimates. The remedy: perform variable screening at each
iteration of cross-validation, so that cross-validation assesses the entire model-
ing process, not just the �model-�tting� at the end; Ambroise and McLachlan
refer to this as �external� cross-validation.

Other data-processing steps may be more benign than variable selection, but
any such step can induce some bias if performance estimates do not account for
it. Hence joint optimization of a data-processing chain and model complexity
can remove bias and perhaps give better performance.

Most models have a small number of parameters governing complexity, so
ad-hoc search methods may be adequate. However, adding data-processing pa-
rameters to the problem will quickly make ad-hoc methods insu�cient. Design
of Experiment (DOE) methods [9], typically carried out in a sequence of screen-
ing and then response-surface experiments, optimize noisy loss functions of many
variables very e�ectively if approximately, while also providing surface estimates
in the neighborhood of the optimum. In fact, DOE methods are probably un-
derutilized for model optimization. However, DOE methods are interactive, and
often a more unsupervised �batch-mode� process is desired.

2

1.2 SPSA

The Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm
([15, 17]) can optimize di�erentiable noisy loss functions of many parameters
e�ectively. SPSA is relatively robust to local optima; Maryak and Chin [8] show
that under certain conditions SPSA is guaranteed to converge to the global op-
timum; while these conditions are unlikely to be known for a given loss function,
Maryak and Chin also provide anecdotal evidence that SPSA can be more ro-
bust even than simulated annealing. The web site http://www.jhuapl.edu/spsa
provides a thorough bibliography. Johannsen et. al. [7] apply SPSA to optimize
jointly variable selection and distance metric in a nearest-neighbor classi�cation
problem by transforming the predictor-selection problem into one using contin-
uous parameters.

To optimize a p-length parameter vector θ, SPSA uses a perturbation vector
∆k where each [∆k]i , i = 1, . . . , p is selected randomly from {-1, 1}. [∆k]i refers
to element i of vector ∆k. Given a gradient-estimation step-size sequence ck,
the loss function is evaluated at θ̂k +ck∆k and θ̂k−ck∆k, generating y+

k and y−k ,

respectively. The one-dimensional gradient estimate ĝk(θ̂k) = (y+
k −y−k)/(2ck) is

calculated, and a �steepest descent� step is taken: θ̂k+1 = θ̂k−akĝk(θ̂k) for step-
size sequence ak. Like all �rst-order optimization algorithms, step sizes {ak}
and the relative scale of the parameters θ must be selected carefully. Further
re�nements, such as enforcing box constraints and limiting the update distance,
can improve the odds of successful optimization in certain cases.

Gain sequences ak and ck are divergent sequences that converge to zero.
Typically

ak =
a

(k + A)α

and
ck =

c

kγ

with α = 0.602 and γ = 0.101. Optimal choices for a and c are problem-
dependent [14].

The set {θ̂k ±∆k} may remind statisticians of a fractional factorial design,
although statisticians don't generally recommend multifactor experimental de-
signs with two design points. In fact, {θ̂k ±∆k} can be viewed as a randomly-
selected fraction of a 2p−(p−1) fractional factorial design, where p is the number
of parameters to optimize. As an experimental design it hardly seems infor-
mative, yet a di�erent random fraction is selected at every iteration, in the
aggregate providing enough information to converge. At any rate, it seems �t-
ting to refer to the gradient-estimation points {θ̂k ±∆k} as the �design points�
for the kth iteration.

Since only two points are evaluated regardless of the dimension of θ, including
a parameter whose role is uncertain poses little cost to convergence properties,
and may o�er a bene�t. If a parameter has no e�ect on the loss function,
including it in an optimization will not change the sequence at all, and will
not require more loss evaluations. (The parameters value will be set arbitrarily

3

by the process, which is inconsequential if the parameter has no e�ect.) If the
parameter in question does have a strong e�ect, the optimization will converge
more slowly, but ultimately specifying a parameter that merits speci�cation,
and possibly yielding better ultimate performance than if the parameter were
speci�ed arbitrarily. If parameters with weak e�ects are mixed with strong-e�ect
parameters, the process will quickly converge to a near-optimum neighborhood
(optimizing the strong-e�ect parameters), and then move slowly, optimizing the
weak-e�ect parameters. In this situation following the process until apparent
convergence of all parameters may not be worthwhile.

2 Mixed-input SPSA

When optimizing both data-processing and model-complexity parameters, very
likely some parameters will be continuous and others discrete. As presented
thus far, SPSA applies only to continuous parameters. Hill et. al. [6] discuss
three approaches to adapting SPSA to purely discrete problems. Technically
these extend SPSA to integer domains, but since a countable ordered set can be
put in one-to-one correspondence with integers, these results can be applied to
countable ordered sets. One of these approaches seems particularly convenient
to the mixed problem. In this approach, Hill et. al. extend a loss function L
de�ned on a discrete subset of Rp to L∗ on Rp by elementwise linear interpo-
lation, and base the gradient of L∗ on L evaluated at adjacent discrete points,
again elementwise.

Two modi�cations to Hill's L∗ approach seem to be in order. First, �linear
interpolation� suggests that in order to obtain the two L∗ evaluations SPSA
requires, L must be evaluated at least twice, perhaps four times if design points
are widely separated. For example, consider optimizing a single parameter ν for
which L is de�ned on the integers; for instance let L(1) = 1, L(2) = 0.5, L(3) =
2, and L(4) = 2.5. For design points ν+ = 3.5 and ν− = 1.5, we have L∗(ν−) =
(1.0 + 0.5)/2 = 0.75 an L∗(ν+) = (2.0 + 2.5)/2 = 2.25. Four loss evaluations
are required to obtain the gradient estimate. If instead of L∗ we extend with
L∼(ν) = L(bνc), we �nd L∼(ν−) = 1.0 and L∼(ν+) = 2, yielding a gradient
estimate of (2 − 1)/2 = 0.5, similar in magnitude and in the same direction as
L∗'s gradient but requiring only two evaluations of L.

Suppose 2 ≤ ν− < ν+ ≤ 3. Since L∗ extends L linearly between integers,
L∗'s gradient estimate must be (L(3) − L(2))/1 = 1 for these design points,
hence the design points may as well be 2 and 3. However, L∼'s gradient is
(L(2) − L(2))/0 which is unde�ned. In this case let us add 1 to one of the
(truncated) design points, making it 3. Which one? Since the identi�cation
of one point as ν+ and the other as ν− was originally based on a random
perturbation vector, it makes no di�erence: select one randomly. Equivalently,
generate another perturbation vector η taking on values 0 and 1 with equal
probability. Add η to bν+c, and add its �opposite� (η + 1) mod 2 to bν−c.
Obtain a gradient estimate with the newly-perturbed truncated design points.

4

Continuing the example, suppose η = [0]. The gradient estimate is

L(bν+c+ 0)− L(bν−c+ 1)
(bν+c+ 0)− (bν−c+ 1)

=
L(2)− L(3)

2− 3
= (0.5− 2)/− 1
= 1.5

the same as L∗'s gradient estimate for the design points ν− and ν+.
Generalize this algorithm to multiple parameters as follows, yielding the �rst

modi�cation to Hill's approach:

1. Leave continuous parameters as they are.

2. Take the integer part of nominally integer-valued parameters.

3. For those integer-valued parameters having the same integer part across
design points, perturb by 0 or 1. Use the resulting design points to esti-
mate the gradient.

The second modi�cation to Hill's approach is motivated by the need to scale
and transform parameters. In practice, ensuring that gradient elements are of
similar scale can dramatically improve the e�ciency of SPSA, or any other �rst-
order algorithm. Moreover, transforming some elements nonlinearly, so that a
given step-size on the transformed scale has di�erent implications in di�erent
regions, can also improve performance. Scaling di�erent discrete parameters
di�erently causes their admissible values to be equally-spaced on grids of di�er-
ent mesh-size, while transforming nonlinearly yields a grid of admissible values
that is not even of �xed mesh size. Both complicate gradient estimation.

Above, we added a perturbation when discrete elements of design points
were within 1. After di�erentially scaling and/or transforming, on what scale
is this distance evaluated? On the original, �natural� scale; call the space of
�natural� parameter values Ω. Optimization mathematics (design point genera-
tion, gradient estimation, and updates) are applied to the space of transformed
parameters; call this Θ. Let f : Ω → Θ and let f be invertible. Let design
points θ+ and θ− be generated in Θ. The corresponding design points in Ω are
ν+ = f−1(θ+) and ν− = f−1(θ−). Apply the algorithm above to modify ν+ and
ν−; call the modi�ed points ν+

∗ and ν−∗ . To estimate the gradient on the trans-
formed scale, calculate corresponding modi�ed design points in Θ, θ+

∗ = f(ν+
∗)

and θ−∗ = f(ν−∗). Finally, let

ĝk(θ̂k) = (θ+
∗ − θ−∗)

L(θ+
∗)− L(θ−∗)

(θ+
∗ − θ−∗)

where vector multiplication and division in this expression is elementwise.

3 Implementation details

When applying mixed-input SPSA to optimize cross-validation performance es-
timates, a few implementation details are worth considering.

5

3.1 Maximum change in θ̂

Allowing a given maximum change in θ̂ limits the e�ect of outlying loss eval-
uations. This is implemented by calculating d =

√
||akĝk||. If d exceeds the

given threshold, the change vector is normalized to length 1, i.e., θ̂ is updated
by −akĝk/d.

3.2 Complexity penalty

When selecting a model complexity parameter to maximize cross-validation a
performance estimate, it is common to select the simplest model that does not
appreciably degrade performance relative to the apparent optimum. This is not
easy to do when optimizing two or more parameters, however. Fortunately,
much the same e�ect can be had by including in the optimization criterion a
complexity penalty on parameters that regulate model complexity. The appro-
priate size of the penalty can be di�cult to determine a priori, but in many
situations, including that of classi�cation, penalties can be motivated naturally
by the degree of performance degradation that one would be willing to trade
for a unit decrease in a complexity parameter. For instance, if one parameter is
the number of predictors to use, then if one is willing to lose a percentage point
of classi�cation accuracy in order to drop one predictor, then the criterion

L(θ) = performance accuracy + 0.01 ∗ (number of predictors)

would be justi�able.

3.3 Incomplete cross-validation

SPSA's ability to optimize noisy loss functions makes it ideal for optimizing
cross-validation performance estimates. In fact complete cross-validation is gen-
erally not necessary, and in examples presented here 10% of cases is set aside
at each iteration. The random selection is strati�ed so that the frequencies of
positives and negatives in the set-aside data set match the class prevalences in
the original data as closely as possible.

The same random partition of cases is used for all loss-function evaluations
in that iteration. Continuing the analogy to DOE methods, this amounts to
blocking on partitions.

3.4 Performance estimation

SPSA-optimized cross-validation performance as described above yields a series
of nearly-independent small-sample performance estimates, evaluated in points
in optimization space that are near in sequence. We desire a performance es-
timate (as precise as possible) for the last point in optimization space visited.
This problem is amenable to Generalized Additive Modeling [5]. The examples
presented here use the mgcv package for R ([19, 20, 11]) because its automated
smoothing-parameter selection is convenient.

6

Classi�cation performance estimates are often based on a two-way table of
actual vs. predicted classes for cases not included in model-�tting, i.e., a con-
fusion matrix [12]. For two-class classi�cation, let the four cells in the 2 × 2
confusion matrix be denoted d1, d2, d3, and d4 (order is irrelevant, and gener-
alization to larger matrices is straightforward). At each SPSA iteration, eval-

uate L(θ̂k) (in addition to the two gradient-estimation points) and in the pro-
cess obtain a small-sample confusion matrix for that iteration. Arrange counts
with which to estimate P (d1), P (d2|d1), and P (d3|d1, d2) (only three need be
estimated; the fourth follows from the unit-sum constraint). After �tting a
logistic-regression GAM to each constructed data set, estimate probabilities
P (d1), . . . , P (d3|d1, d2) for the �nal iteration and then multiply to obtain the
confusion-matrix probabilities. These probability estimates support any other
calculation (agreement, sensitivity, speci�city, etc.).

4 Limitations

Although this article extends SPSA to deal with certain types of loss functions
in discrete and continuous parameters, some cautions are in order.

First, if the algorithm can handle discrete parameters, shouldn't it solve the
feature-selection problem directly? Simply let an indicator vector de�ne which
variables to include, and feed this vector in as an additional set of parameters
to optimize. This will work in principle. However, if there are very many fea-
tures, this will be a very high-dimensional problem that may take very many
iterations to converge. Also, at every iteration mixed-input SPSA �ts two mod-
els, each using approximately half the variables. For models that do not allow
more predictors than cases, this will be simply impossible. For models that can
accommodate more predictors than cases, contrasting models based on roughly-
equal partitions of the predictors will be informative early in optimization, and
SPSA will move towards the optimum subset reasonably e�ciently. Then, if the
optimum subset is much smaller than half the total set, continuing to include
apparently worthless predictors at every iteration will add needless computa-
tional burden (although any robust algorithm will probably need to visit such
predictors occasionally).

Depending on the number of predictor variables and the type of model,
a better strategy might be to implement a variable-screening algorithm that
is governed by one or a few parameters, and optimize those parameters. For
instance, one might apply a location test to each variable and select those with
p-values falling below a threshold; the parameter to optimize would be threshold.

SPSA easily accommodates independent (�box�) constraints by resetting of-

fending elements of θ̂k+1 to their respective limits. To handle gradient-estimation
steps that extend beyond limits, the loss function can be programmed to re-
place o�ending parameters with the nearest admissible value. Dealing with
dependent constraints is harder: Wang and Spall [18] discuss enforcing gen-
eral inequality constraints with penalty functions, an approach that requires a
penalty sequence, hence further algorithm parameters to tune.

7

Consequently, mixed-input SPSA can be applied to integer-valued parame-
ters (and by extension, ordered discrete parameters) but not to unordered dis-
crete parameters with more than two levels. Identifying one level among three
or more levels is exclusive�the other two or more levels cannot be picked�
implying complex constraints.

5 Examples

Consider for example a simple data-processing chain, implemented in R [11]
using the R package gbm:

1. Rank predictors by p-value using Wilcoxon's signed-rank test.

2. Select the k most signi�cant predictors.

3. Fit a classifying gradient-boosting machine (GBM) [3, 4].

GBM's use regression trees, which select predictors in the course of �tting, so
predictor preselection is not required. However, they have three �tting param-
eters requiring speci�cation, and so pose an interesting optimization example
here. A GBM is based on a sequence of trees; the sequence takes the GBM from
a model of constant predicted value (0 trees) through models that deviate from
the constant value in progressively more complex ways. A parameter referred to
as �shrinkage� dampens the contribution from each tree. The number of splits
allowed in each tree determines the maximum degree of interaction the GBM
can exhibit. k, the number of trees, and the degree of interaction are discrete,
while shrinkage is continuous.

Like all models, GBM's can exhibit selection bias. When applied to a simu-
lated data set with 50 cases (25 �positive� and 25 �negative�) and 1000 predic-
tors, all independent standard random normals, this author was able to obtain
apparent 84% classi�cation accuracy in 10-fold cross-validation (after selecting
predictors) by taking k = 10, shrinkage = 0.05, number of trees = 1000, and
allowing no interaction e�ects. This was completely due to predictor preselec-
tion: using all predictors, the highest apparent accuracy for any set of �tting
parameters was 44%, consistent with the expected 50%.

Applying mixed-input SPSA to optimize the data-processing chain yields a
performance estimate, and parameter settings, consistent with the conclusion
that no predictor is useful. k, shrinkage, and the number of trees were op-
timized on scales transformed to

√
k, log10(shrinkage), and

√
number of trees,

respectively. The optimization process was initiated at k = 5, shrinkage = 0.1,
number of trees = 20, and interaction level = 1, and parameters were limited
to 1 ≤ k ≤ 100, 0.01 ≤ shrinkage ≤ 1, 1 ≤ number of trees ≤ 1000, and
1 ≤ interaction level ≤ 2 (1 indicates main e�ects, 2 indicates two-way interac-
tion). The loss function was

L(θ) = classi�cation error rate + 0.005(number of trees) + 0.01k.

8

The optimization process was run for 100 iterations with tuning parameters
a = 50, A = 100, and c = 4. A maximum change of 3 was enforced.

The top plot in �gure 1 indicates that the loss function is indeed very noisy.
Loss generally trended downwards, although (probably by chance) the �nal value
was quite high. Much of the decrease occurs before the 40th iteration. Change
in loss was small relative to the noise, possibly because the initial parameter
values were not far from optimal, but Figure 2 indicates that parameters changed
substantially nevertheless. In particular, k quickly reached 1.0, the smallest
allowed value, and stayed there except for occasional excursions. The number of
trees also reached 1.0, its smallest allowable value. Among the last 20 iterations,
one predictor was selected 13 times, another 3 times, and four others once each.
Therefore the optimal model either has no predictors (hence zero trees, but
zero lies outside the permitted optimization space) or one predictor. Using the
methods of 3.4, cross-validation prediction accuracy is estimated to be 45.4%,
so we may conclude that the ideal model has no predictors.

Evidently mixed-input SPSA applied to the joint optimization of predictor
selection and model-�tting parameters can give reasonable results free of selec-
tion bias. But can it successfully identify useful predictors, and yield reasonable
classi�cation estimates? Suppose in the pure noise data set above we substitute
3 informative predictors for the �rst 3 noise predictors as follows: Let x1 and x2

be jointly multivariate normal with mean 20, standard deviation 1, and covari-
ance (and correlation) 0.75. Indepndently of x1 and x2, Let x3 be gamma with
shape 1 and scale 10 in the parameterization used by R (yielding mean 10 and
variance 100). Create a class indicator variable with the ith case distributed
Bernoulli with probability pi, where logit(p) = x1 + x2 + log(x3). Data drawn
from this model will likely not have clear class separation in the informative
predictors, but classi�cation signi�cantly better than noise levels will be pos-
sible. In one simulation realization examined here, a logistic regression model
�tted to x1, x2, and log(x3) (using all cases) yielded classi�cation accuracy
of 76%, where 0.5 was applied as a classi�cation threshold for predicted class
probabilities. Stepwise model selection using AIC yielded a model with x1 and
log(x3).

Using the same parameter transformations and boundaries as above but
beginning the optimization with k = 100, shrinkage = 0.1, 100 trees, and inter-
action level = 1, the process with this data yielded clear decrease in loss (see
�gure 1) and reasonable though conservative parameter values. (k was initial-
ized to a high value to verify that the process could in fact move through the
optimization space.) Figure 3 presents parameter histories during optimization.

In 100 iterations θ̂ reached k = 1, shrinkage = 1.0, number of trees = 2.96 (im-
plying 2�recall that the data-processing chain is speci�ed by the integer part),
and interaction level = 1.82 (implying 1). Among the last 20 iterations, x1 was
selected 12 times and x2 was selected 9 times (on one of these iterations both
were selected). The small number number of trees, the high shrinkage value,
and the lack of interaction indicate the apparent optimal model makes two splits
in one predictor, a relatively simple model. Prediction accuracy was estimated

9

0 20 40 60 80 100

0.
0

0.
4

0.
8

Pure noise data

Iteration

Lo
ss

0 20 40 60 80 100

0.
0

1.
0

Data with 3 useful predictors

Iteration

Lo
ss

Figure 1: Observed loss values during data-processing chain optimization, with
overlaid smoothing spline. Top, applied to noise data; bottom, applied to data
with 3 useful predictors.

10

0 20 40 60 80 100

1.
0

2.
0

3.
0

4.
0

Number of features

Iteration

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Shrinkage

Iteration

0 20 40 60 80 100

5
10

15
20

Number of trees

Iteration

0 20 40 60 80 100

1.
0

1.
4

1.
8

Interaction level

Iteration

Figure 2: History of parameter values during the course of optimization for the
data set in which no predictor is useful for classi�cation.

11

0 20 40 60 80 100

0
20

40
60

Number of features

Iteration

0 20 40 60 80 100

0.
0

0.
4

0.
8

Shrinkage

Iteration

0 20 40 60 80 100

0
20

40
60

Number of trees

Iteration

0 20 40 60 80 100

1.
0

1.
4

1.
8

Interaction level

Iteration

Figure 3: History of parameter values during the course of optimization for the
data set having 3 useful predictors.

12

to be 76.8%.
The apparently optimum parameters indicate 1 predictor is best, when in

fact we know that 3 are informative; however, the loss function penalizes each
selected predictor by 1 percentage point, and using two or three predictors may
not improve classi�cation performance by more than the required one or two
percentage points.

In both examples, running the optimization process for more iterations could
allow parameter estimates settle more. Alternatively, it would be prudent to
regard the estimates as approximate, and perform some checks by hand in the
neighborhood of the estimates. Like any �rst-order optimization method, SPSA
typically moves quickly to the neighborhood of the optimum (while gradients
are high), but once close to the optimum (where gradients are small) it con-
verges slowly. Thus waiting for parameters to settle may be an ine�cient use
of computing time.

Spall [16] introduced a second-order analog to SPSA which speeds conver-
gence once the process is in the neighborhood of the optimum; this approach
might be adaptable to mixed inputs.

6 Conclusions

Mixed-input SPSA o�ers a way to jointly optimize parameters governing data
processing (notably feature selection) and model complexity, while o�ering cross-
validation performance estimates free of selection bias. In a �negative� example
involving pure noise, the algorithm performed correctly, con�rming it is free
of selection bias. In a �positive� example involving 3 useful predictors, the
algorithm returned a conservative but reasonable estimate of the number of
predictors to use and yielded returned a reasonable performance estimate.

SPSA was applied for 100 iterations in each case; this number constitutes
300 loss evaluations (200 to optimize, 100 to assess progress and estimate perfor-
mance). This would be su�cient to perform 30 complete 10-fold cross-validation
runs, enough for almost four 24−1 fractional factorial experiments. If such exper-
iments were conducted with incomplete cross-validation runs (somehow blocking
on the subset of fold labels set aside), still more designed experiments could be
conducted. An analyst adept at DOE methods, designing and analyzing a series
of experiments interactively, could probably reach a sound optimum, and have
high con�dence in the quality of that result, perhaps with less computer work
than the SPSA algorithm implemented here. Indeed, DOE methods should not
be neglected. However, SPSA can reach a good answer without supervision.

References

[1] Christophe Ambroise and Geo�rey J. McLachlan. Selection bias in gene
extraction on the basis of microarray gene-expression data. Proceedings

13

of the National Academy of Sciences of the United States of America,
99(10):6562�6566, 2002.

[2] Jianqing Fan and Irène Gijbels. Data-driven bandwidth selection in local
polynomial �tting: Variable bandwidth and spatial adaptation. Journal of
the Royal Statistical Society B, 57(2):371�394, 1995.

[3] J. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29(5):1189�1232, 2001.

[4] J. Friedman. Stochastic gradient boosting. Computational Statistics and
Data Analysis, 38(4):367�378, 2002.

[5] Trevor J. Hastie and Rob J. Tibshirani. Generalized Additive Models. CRC
Press, 1990.

[6] Stacy D. Hill, László Gerencsér, and Zsuzsanna Vágó. Stochastic approxi-
mation on discrete sets using simultaneous perturbation di�erence approx-
imations. In Conference on Information Science and Systems, 2003.

[7] David A. Johannsen, Edward J. Wegman, Je�rey L. Solka, and Carey E.
Priebe. Simultaneous selection of feature and metric for optimal nearest
neighbor classi�cation. Communications in Statistics � Theory and Meth-
ods (in press), 2004.

[8] John L. Maryak and Daniel C. Chin. Global random optimization by si-
multaneous perturbation stochastic approximation. In Proceedings of the
American Control Conference, pages 756�762, 2001.

[9] Douglas C. Montgomery. Design and Analysis of Experiments, 5th Edition.
Wiley, 2000.

[10] H.-G. Müller, U. Stadtmüller, and T. Schmitt. Bandwidth choice and con�-
dence intervals for derivatives of noisy data. Biometrika, 74:743�749, 1987.

[11] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2003.
ISBN 3-900051-00-3.

[12] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, 1996.

[13] B. W. Silverman. Some aspects of the spline smoothing approach to non-
parametric regression curve �tting. Journal of the Royal Statistical Society
B, 47(1):1�52, 1985.

[14] James C. Spall. Implementation of the simultaneous perturbation algorithm
for stochastic opimization. IEEE Transactions on Aerospace and Electronic
Systems, 34(3):817�823, 1998.

14

[15] James C. Spall. An overview of the simultaneous perturbation method for
e�cient optimization. Johns Hopkins APL Technical Digest, 19:482�492,
1998.

[16] James C. Spall. Adaptive stochastic approximation by the simultane-
ous perturbation method. IEEE Transactions on Automatic Control,
45(10):1839�1853, 2000.

[17] James C. Spall. Introduction to Stochastic Search and Optimization�
Estimation, Simulation, and Control. Wiley�Interscience, 2003.

[18] I-Jeng Wang and James C. Spall. Stochastic optimization with inequality
constraints using simultaneous perturbations and penalty functions. In
Proceedings of the 42nd IEEE Conference on Decision and Control, pages
3808�3813, 2003.

[19] S. N. Wood. Modelling and smoothing parameter estimation with multiple
quadratic penalties. Journal of the Royal Statistical Society B, 62(2):413�
428, 2000.

[20] Simon N. Wood and Nicole H. Augustine. Gams with integrated model se-
lection using penalized regression splines and applications to environmental
modelling. Ecological Modelling, 157:157�177, 2002.

15

