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Abstract—mage registration is the process by which we deter-
mine a transformation that provides the most accurate match be-
tween two images. The search for the matching transformation can
be automated with the use of a suitable metric, but it can be very
time-consuming and tedious. In this paper, we introduce a registra-
tion algorithm that combines a simple yet powerful search strategy
based on a stochastic gradient with two similarity measures, cor-
relation and mutual information, together with a wavelet-based
multiresolution pyramid. We limit our study to pairs of images,
which are misaligned by rotation and/or translation, and present
two main results. First, we demonstrate that in our application mu-
tual information may be better suited for sub-pixel registration
as it produces consistently sharper optimum peaks than correla-
tion. Then, we show that the stochastic gradient search combined
with either measure produces accurate results when applied to syn-
thetic, as well as multitemporal or multisensor collections of satel-
lite data. Mutual information is generally found to optimize with
one-third the number of iterations required by correlation. Results
also show that a multiresolution implementation of the algorithm
yields significant improvements in terms of both speed and robust-
ness over a single-resolution implementation.

Index Terms—mage registration, mutual information, remote
sensing imagery, stochastic optimization, wavelets.

I. INTRODUCTION

D

build 3-D models from 2-D images taken from different view-
points, or for object recognition.

In the remote sensing framework in particular, with the in-
creasing number of multiple platform remote sensing missions,
different sensors may simultaneously observe the same features.
These sensors may produce data at different resolutions or in dif-
ferent spectral ranges, over multiple times, thus providing very
large amounts of redundant or complementary data. The combi-
nation of all these data will allow for better analysis of various
phenomena, as well as allow the validation of global low-reso-
lution analysis by the use of local high-resolution data analysis.
For all these applications, accurate geo-referencing is the first
step in integrating such data from multiple sources, and itis thus
becoming a very important issue in remote sensing. By using
a model-based systematic correction, newly acquired remote
sensing data is usually geo-referenced to within a few pixels.
Starting with this information, we focus on precision correction
or automatic image registration, which refines the accuracy to
within one pixel or a sub-pixel. For applications such as data
fusion, it is very important to reach sub-pixel accuracy, and au-
tomatic image registration offers a practical means of achieving
this.

In this context, we define image registration as follows:

IGITAL image re.gistration'is a process by which the mo_%iven a pair of two-dimensional gray-level image&; (z, y)
accurate match is determined between two images, whighy Fr(z,y) that we denote by the reference and input (or

may have_ been taken at the same or diffe_rent tim_es, by_ %@nsed) images respectively with coordingieg) € A  R?,
same or different sensors, from the same or different viewpoiniereA is a region of interest; To register the images is to find
The registration process determines the optimal transformatlgngeometric transformatiofip(.) of a certain class such that
which will align the two images. This has applications in man, ai| (1. y), F(Tp(z, y)) best matched’s (z, ), whereP is
fields as diverse as medical image analysis, pattern matchiigat of transform parameters. In this paper, we lifit.) to

and computer vision for robotics, as well as remotely sensgq|ass of transforms that include shifi:(ty) and rotation ¢)
data processing. In all of these domains, image registration ¢&{y can be written as

be used to find changes in images taken at different times, or to
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istration process may include the following steps: 1) the extrac-
tion of features to be used in the matching process, 2) the fea-
ture matching strategy and metrics, and 3) the resampling of
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Fig. 1. Summary of our wavelet-based mutual information registration method.

the data based on the correspondence computed from matdius |1l and 1V present cross-correlation and M, together with
features. Many automatic image registration methods have beeaomparative study of the performance of these two metrics
proposed and a survey can be found in Brown [1]. Our work comhen applied to image registration. Section V then describes
siders the search strategy and similarity metric to be used in step optimization search technique and associated results are pre-
2) of the registration process. Many objective functions exist sented in Section VI. Section VII discusses other related work,
the literature, which can be used in automated image registimparticular comparing the algorithm presented here to that of
tion schemes. These objective functions may be feature-ba3éevenazt al. [5], and it gives conclusions and directions of

or intensity-based. Feature-based methods establish geométiigre work. The main innovation of this paper is in the use of
correspondences by matching salient features, which have b#ensimultaneous perturbation stochastic approximation (SPSA)
extracted by pre-processing the images. A drawback of thesegrhdient strategy for the optimization of the mutual informa-
gorithms lies in the difficulty of recognizing matched featureson similarity criterion. It provides a simple, more practical ap-

in the images, and they require the use of reliable and robpsbach to MI-based registration problems than what is currently
algorithms for image segmentation and edge detection. By cdaund in the literature.

trast intensity-based methods require no prior pre-processing of
the images. Commonly used intensity-based objective functions
include intensity correlation, the mean square difference of the
image intensity values, and mutual information (MI). Cross-cor- Most of our previous work in image registration has focused
relation is one of the most common similarity metrics used ion the use of wavelets or wavelet-like features in step 1) of the
registration. It measures similarity by computing global statisegistration process. Fig. 1 summarizes our registration scheme
tics such as mean and variance, and it performs well if the t#), [6], [14] when wavelet or wavelet-likeinformation is utilized.
images are similar in nature, with an underlying linear rel®oth the reference and input images are first decomposed
tionship between the image intensities. On the other hand, nioHowing a multiresolution wavelet or frame decomposition. In
tual information measures redundancy between two imagesdiger to achieve computational efficiency, our search strategy
looking at their intensity distributions, and it represents a mefllows the multiresolution decomposition, working iteratively
sure of the relative entropy between two sets. Mutual informftom the deepest level of decomposition (where the image
tion (MI) has been extensively studied for the registration cfze is the smallest) to the top level of decomposition, i.e.,
medical imagery [3]-[5], and it has been found to be especialiping from coarse to fine spatial resolution. For all levels of
robust for multimodal image registration. decomposition, MI or correlation between sub-band images of

In this paper, we show how mutual information can be suthe reference image and input image is successively computed
cessfully merged with an optimization scheme and applied &amd maximized. The accuracy of this search increases when
the registration of remotely sensed imagery. Our first tests ageing from coarse resolution to fine resolution. At each level the
designed to compare the sharpness of the MI and correlategarch focusesin on an interval around the “best” transformation
curves, and they show that Ml produces consistently shargeund at the previous level and is refined at the next level up.
peaks at the correct registration values than correlation. Moes a preliminary study, our search space is restricted to 2-D
over, when used with a multiresolution search strategy, this comtations and translations, and this will be extended later to
parative result is also verified for the lower resolution sub-baraffine transformations. To obtain the transformed images, data
images of the Simoncelli pyramid described in Section Il. Thaterpolation is done using cubic B-splines [18]. Maximization
use of a multiresolution search provides for large reductionsafi the metric can be performed by exhaustive search, but it is
computing time, and this result is very important for producingnore efficient and more accurate if an automated optimization
consistently accurate results within such a scheme. technique is used.

In our earlier work [2], [6], [14] a simple search strategy, Different wavelet or wavelet-like filters could be chosen, but
based on exhaustive search, was used to provide a thoroogh previous work [7] showed that Steerable Simoncelli filters
comparison of the two different metrics. But exhaustive searf®] are more robust to translation, rotation and noise than the
is computationally expensive, and the computational cost istandard Daubechies wavelet filters. The method described by
creases exponentially with the number of transformation p&imoncelli [8] enables one to build translation- and rotation-in-
rameters and the size of the dataset. Therefore, in this waiant filters by relaxing the critical sampling condition of the
we describe a more sophisticated search technique, which useselet transforms. By invariance, it is meant that the informa-
a gradient approximation, that is applied within a multiresoldion contained in a given sub-band will be invariant to transla-
tion framework based on a wavelet-like pyramid decompodgien or rotation. The resulting representation is equivalent to an
tion. Section Il describes our registration framework, while Seovercomplete wavelet transform; it is not an orthogonal repre-

Il. MULTIRESOLUTION IMAGE REGISTRATION
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the area of template, or prototype matching, where the problem
is to find the closest match between an unknown image and
a set of known images. One approach is to compute the cor-
relation between the unknown and each of the known images.
The closest match can then be found by selecting the image that
yields the correlation with the largest value. Matching of images
A and B can be performed by using the correlation coefficient,
which is defined as

Fig. 2. Four-level decomposition by a steerable pyramid. Sub-bBinaie
utilized to extract features.

sentation but is an approximation of a “tight-frame,” i.e., invert-

ible. The Simoncelli Steerable Pyramid is summarized in Fig. 2, 3 Sfaij — mean(a)] * [bi; — mean(b)]
where only the analysis decomposition is shown. In Fig. 2, H8 _ T 5 !

is the result of high-pass filterind,L0, ..., Lm} are results (4, B)= 1/2
of low-pass filtering, and B0, ..., Bm} represent the results S5 (ai; —mean(a)) %33 (b, —mean(b))?
after filtering by a set of oriented band-pass filters which ensure i i

that the representation is rotation-invariant. In order to ensure (2)

some translation-invariance, the outputs of the high-pass fillshere the double sums indicated are taken over the rows and
and of the band-pass filters are not sub-sampled. In additi&®/umns of the two images, ang};, b;; are the pixel values of
that portion of the signalL0, which is iteratively decomposedimages A and B at rowand columry, respectively. This statis-

by the band-pass and the low-pass filters, does not contain ti§al measure has the property that it measures correlation on an
larger high frequency components and has been preproces¥egplute scale ranging from-[L, 1]. Under the assumption that
by a low-pass filter, thus removing most aliased componentge transformation is small enough, it can be shown that maxi-
This representation is overcomplete by a factot/of3, where mizing this correlation measure is equivalent to minimizing the
k is the number of oriented band-pass filters [8]. In the stud§ast-mean-square of the difference in the intensity values of A
described in LeMoignet al. [6], the steerable filters studied inand B, see [17]. For many registration methods, correlation is
a correlation framework, showed very accurate and reliable € primary tool, where A may be an input image to be regis-
sponses for registration purposes. Therefore, in the experimdgf€d against a reference image, B. Itis equal to one for identical
shown here, we will use Simoncelli steerable filters, and in ordépages, and thus provides the degree of similarity between the
to optimize the computational speed, we chbse 1. two images.

When using the multiresolution approach for registration, a The cost of a single computation of the spatial correlation
wide variety of search methods can be utilized to obtain &f two images isSO(N?), whereN is the number of pixels in
approximation to the solution at each pyramid level. Differef@@ch image. When used for image registration, the total cost is
search strategies may even be used at different levels. The diagn a function of the number of steps where the correlation is
plest approach is to apply an exhaustive search method atc@mputed.
pyramid levels, where one varies one or more of the transforma-
tion parameters over a certain discrete range of values, whigh Mutual Information (M)
is assumed to include the “true” transformation (or “Ground
Truth,” GT). For each combination of parameters, the similarity The concept of mutual information represents a measure of
metric is computed and the combination that yields the largd§tative entropy between two sets, which can also be described
metric value is chosen as the final approximation at the ci@#s & measure of information redundancy [3]-{5]. From this def-
rent level. How this discrete mesh is determined depends B#ion, it can easily be shown that the Ml of two images is max-
the pyramid level. At the coarsest resolution, the initial rand&@l when these two images are perfectly aligned. Therefore, in
is usually specified by the user. When moving up the pyramiﬁle context of image registration, M| can be utilized as a sim-
the new range is chosen as a given interval centered aroundit@@ty measure which, through its maximum, will indicate the
solution computed at the previous step. Details of this approR®st match between a reference image and an input image. Ex-
can be found in [2]. periments show that, in this context, Ml enables one to extract

Although this method is quite robust, it is not very practicé" optimal match with a much better precision than cross-cor-
for two reasons. First, it is computationally expensive even féglation.

a small number of search parameters. Second, it yields resultf§ A and B are two images to register, (a) andpp(b) are

of limited accuracy since the accuracy depends on how fine t#gfined as the marginal probability distributions, angs(a, b)
discrete mesh is. is defined as the joint probability distribution of A and B. Then

Ml is defined as

I1l. CORRELATION AND MUTUAL INFORMATION AS
SIMILARITY METRICS

A. Correlation pa.pla,b) )
I(A,B) = a,b) xlog [ —LABD )
Correlation is one of the most widely used similarity metrics ( ) Z ZpAB( ) xlog ((pA(a) *pp(h))

a b

in image processing [16]. One of its principal applications is in 3)
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This quantity can be computed using the histograms of the two
images A and Bh 4 (a) andh(b) respectively, as well as their
joint histogramh 4 5 (a, b). The Ml is then defined by

1 X MhA7B (a, b)
I(A,B) = + Z Zb:hA,B(a,b) % log <<hA(a) . hB<b))>
4)
whereM is the sum of all the entries in the histogram, see [3].
The histograms are computed using original gray levels or gray
levels of pre-processed images, such as edge gradient magni-
tudes or wavelet coefficients.

In this work a histogram with 64 bins is used, since it pro-
duces a significantly smoother Ml surface than the 256-bin his-
togram. The smoother surface works better with the optimiza-
tion algorithm, and the reduced number of bins dramatically im-
proves the runtime for Ml registration. The joint histogram is
obtained by the following computation. The transformed refer-
ence image is obtained using cubic B-spline interpolation [18ig. 3. Landsat— U.S. Pacific Northwest reference image for sharpness of M
The gray values of the input image and the transformed refend correlation curves.
ence image are linearly rescaled into the range [0,255]. The gray

values ¢, b) of those pairs of pixels, which lie in the same potjyely over a range of values. This sharper peak enables one to
sition are then used to build the histogram, using the followinghtain a higher precision of the registration. These experiments
update law: are performed on a 512512 image (Fig. 3) with no wavelet
decomposition, and also on multiple resolutions of a Simon-
b ( a [QD b ( a1 [b celli decomposition. The second set of experiments investigates
AB [}, — hap [}, +1 (5) . i -
4 4 4 4 the sensitivity of the Ml and correlation metrics to compositions
of translations and rotations of the reference image when used
where(a,b) = (Fr(z,y) , Fr(T(z,y))) for 0 < a, b < 255. in conjunction with the Simoncelli steerable filter decomposi-
Note that[z] represents the integer part afand a 64-bin his- tion. This sensitivity is then investigated for input images with
togram is produced. varying levels of noise.

The cost of computing the Ml of two images depends both The experiments described in this section include many of the
on the number of data points or pixels in each imay§eand issues that will be present in “real-life” imagery, although the
also on the number of bins used to form the histogram. If bolist is not exhaustive. In particular, this set of experiments deals
images have the same number of pixé¥s,the computational only with uncorrelated noise and single-modality inputs, but the
cost of computing the histogram 3(V). The computational results are still informative, and show the main characteristics of
cost relative to the number of histogram bid§,used in the the two similarity metrics.
computation, isD(K?).

A. Sharpness of Ml and Correlation Curves

IV. EVALUATION OF MUTUAL INFORMATION VERSUS After the curves for both metrics have been normalized to lie
CORRELATION FOR THEREGISTRATION OFREMOTE SENSING  in the range [0,1] we restrict the neighborhad@ for which the
IMAGERY area under the curvés computed, to one centered around the

In this section, we present results of a number of differeﬁiaXimal point and'bounded by the points where the twq curves
tests, which provide a comparison between MI and correlatid}ersect, when this does occur. Then for the correlation and
as two potential similarity measures for remote sensing imagiitual information curves which are produced, the following
registration. In order to obtain high registration precision, it @SSUmptions are noted to be true:
important to use a similarity measure that produces a sharp peak® the two functions are defined and continuou¥/
at the correct transformation point with significantly smaller * the two functions are both positive W0,
values elsewhere, especially in the vicinity of the correct trans- * the two functions do not intersectfD except at the max-
formation. Other important considerations for the choice of a  imum.
similarity measure include the resolution and/or accuracy of theUnder these assumptions, we say that a funcfiensharper
final solution, speed of computation, and the presence or dban a functiorny in a neighborhoo&0 if there exists a neigh-
sence of local extrema. These will be discussed in later SectionsrhoodV1, that is a subset &fOcentered on the maximal point,

In this Section, the following set of tests has been designedstach that the magnitude of the slopejofs larger than that of
compare sharpness of Ml and correlation curves. The first setgofor all points inVV1. Since the two curves do not intersect in
tests illustrates that Ml provides a sharper peak than correlatitis neighborhood, and they are both normalized to the same
at the correct registration value of either a rotation, or a transaximal value of 1, it is then easy to show that this definition
lation in one of thex- or y- directions, when searching exhausis equivalent to stating that the area under the cyrie VO is
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smaller than the area under the curvg af VO. An alternative = el
definition for the neighborhood/0 could be that of the region ~ ,4/"—™" |
around the peak bounded by the closest inflexion points of t
two curves. Inflexion points indicate the presence of other loc
maxima to which the optimization may possibly be attracte
and this neighborhoo®0, would then define theegion of at-
traction for each of these measures, indicating the maximu
distance from which convergence to the optimum can be gu.
anteed. This issue is discussed further in Section VI-C-I. For t
curves of this section we note that these two definitions yie
neighborhoodsy0, which differ only slightly, and we use the
first, more easily computable definition here.

1) Original Grey Level Imagery:First a 1024x 1024 image
is extracted from Band 4 of a Landsat-TM (“Thematic o1f .
Mapper”) scene of the Pacific Northwest, and a %1212 o T
reference image is produced from the center of this sce  -60 -40
(Fig. 3). From the same scene, forty-two 54812 input im- )
ages are produced, with either a single translation or a single @
rotation of the reference image. The ground truth translatior '[— oRR !
range from—10 to +10 pixels in thex-direction, and the  ,o/"—™
rotations,f, range from—10° to +10°. We then register each
of the 42 reference-input pairs by executing a one—dimension:o'8 / Area under Minfo curve = 5,916
exhaustive search where the reference is transformed eitt ;o7 1
by a rotation ranging betweenr60° and 60, or by a shift J Y Aveaunder Corr curve = 32.807
ranging between-50 and 50 pixels. Both correlation and Ml ;0'6’ /
are measured between the input and the transformed referer Jos
and we compare the sharpness of the peak in the neighb‘%,i0
hood, VO between each of the 42 correlation curves and thg
corresponding MI curves. E—jo.s

Examples of these curves are shown in Fig. 4. The scalcE0 |
MI and correlation curves are shown in Fig. 4(a) for an inpu )
image which has a transformation of the reference given t o.1f
(tz,ty,0) = (0,0,4). Rotation§ is varied over the range {60,
60]. Fig. 4(b) shows the same curve for an input image with -5
transformation(tz, ty, ) = (—9,0,0) astx is varied in the T,
range [-50, 50]. The solid curve represents MI and the dashed (b)
curve represents correlation. We showed [14] that Ml produceE'ia. 4. Scaled MI & correlation curves for registration of 512 images, with
much sharper peak than correlation in both cases. More speﬁggrjggg,f;ﬂggﬁ%f‘l'["ggj tiar%s'f,oim(? fions= 4, Tx = Ty = 0. (b) Image
ically, we find that for rotations, the average value of the area T TEE AR
under the MI curve is 2.46 as compared to an average correla-
tion value of 15.26, while for the translations the average Mi step of 1, which corresponds to varyitigbetween-48 and
value is 5.76, as compared to the correlation average of 32.022 with a step of 8 at the original (finest) level. For Ml and
These results quantitatively indicate how much sharper the Rbbrrelation, we generate a set of 4 curves of the measure value
curve is, compared to the correlation curve. corresponding to the 4 levels of the Simoncelli decomposition.

2) Simoncelli Band-Pass Imageryn the second part of this These curves are shown in Fig. 5.
experiment we use a single reference-input pair with both im-The solid curve represents Ml and the dashed curve repre-
ages produced from the same source as above. The referenseiis correlation. As expected, at all decomposition levels both
the 512x 512 center of the source and the inputisthe 8812 correlation and MI produce their largest values at the points that
center of the source shifted by 32 pixels in thdirection (hor- correspond to the correct transformation. However, Ml produces
izontally). Thus the correct transformation between the refaensistently sharper peaks than correlation. As in previous ex-
ence and the input i&x,ty,0) = (32,0,0). The tested pair periments, the area under the scaled correlation and Ml curves
is then decomposed using single-orientation Simoncelli filterimdicated in Fig. 5, is used as a measure of sharpness of the
Four levels of decomposition are produced, which correspoadrves, and again at all levels MI produces smaller areas. It is
to scaling of the images by 1, 2, 4 and 8. At wavelet leyel important to note that the correlation curves tend to be concave
we fix the parameters) = ¢ty = 0 and varytx in the interval around the maximum, while the Ml curves are often convex.
[tz — 10,tz ;7 + 10], wheretz 5 is the correct transformation This property, which explains the sharpness of the curves, could
scaled to the level resolution. Thus, for instance, at the 4thpose problems for the application of second order optimization
level,tz4 = 32/8 = 4 andtx is varied betweenr-6 and 14 with methods.
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Fig. 5. Correlation and mutual information curves with values scaled to range [0,1] for the different levels of the Simoncelli decomposition.

B. Sensitivity to Noise filters. Registration is achieved in a more efficient manner in

The following set of tests is designed to compare the sensitivijjS framework, since one can start with a smaller image for the
of the registration results to the amount of noise present in t}jifial séarch, and successfully narrow down the search range
data, when utilizing either correlation or MI. A collection offO" the larger images. Our results show that even when noise

inputimages is generated using only one transformation, namiSiPresent in the input image, both correlation and Ml produce
(tz,ty,0) = (6,4,3), and then adding different amounts oferfect registration for Gaussian noise levels up-1@ dB for

Gaussian white noise. The added noise is measured by Qi tests with Simoncelli filters, and M1 is more robust to noise
signal-to-noise ratid; expressed in decibels (dB), defined as  than correlation.

Var(Iimage) V. STOCHASTIC GRADIENT OPTIMIZATION FOR IMAGE
ar(Noise) EGISTRATION

_In the previous sections, the search for the optimum trans-
ormation was done by an exhaustive search over an allow-
ble range of parameters. But as previously stated, this com-

tational cost increases exponentially with both the dimension
pZ’the parameter space and the dimension of the dataset. Ex-

that both measures produce perfect results even with level gﬁStl'vceaIsaeft;rcrazect(;]mEZﬁV:I?err?](;rti 'et)gr):tnsévze\g?cehn ;?;Eg;l.és
noise as large as 12 dB. However, correlation-based results$ U0 PX uracy, thu ' v '

deteriorate faster than the Ml-based results. considered in this Section.

As a summary, we have shown that for these experiments, o )
MI produces consistently sharper peaks at the correct registfa-Brief Survey of Optimization Techniques
tion values than correlation, which is important for obtaining The choice of optimization search technique depends on
sub-pixel registration accuracy. Moreover, sharper peaks #ne type of problem under consideration. Traditional nonlinear
also produced at the lowest resolution of the sub-band imagesgramming methods, such as the constrained conjugate
produced by a wavelet-like decomposition. This indicategadient, or the standard backpropagation in neural network
that Ml can produce more accurate results than correlationdpplications, are well suited to deterministic optimization
a multiresolution registration scheme based on wavelet-likgoblems with exact knowledge of the gradient of the objective

In this experiment, the SNR is varied between 20 dB (
most noise-less) and15 dB (extremely noisy). Two levels of
single-orientation Simoncelli wavelet decomposition are co
puted for all images. Results are presented in Figs. 6 and
which show rotation and shift errors, respectively. We obser



COLE-RHODESet al. MULTIRESOLUTION REGISTRATION OF REMOTE SENSING IMAGERY 1501

_____ SoRR| ‘ ‘ ‘ powerful local search algorithm. Other nongradient optimiza-

/ tion methods include Simulated annealing, the Nelder-Mead
Simplex method which attempts to minimize a scalar-valued
nonlinear function using only function evaluations, and the
Kiefer-Wolfowitz algorithm which is a finite-difference method
for optimization of noisy data. Approaches based on the use
of gradient estimations tend to be fast, but are sensitive to
the presence of local optima. Additional discussion of these
methods can be found in [23].

The stochastic gradient technique, which is used in this work
is a gradient-free approach. It does not require an explicit deriva-
tion of the required gradient vector, but it uses instead an ap-
proximation to the gradient. In the next Sections we show how
it can be applied to image registration, and integrated within the
multiresolution framework of the Simoncelli steerable pyramid

-10 -1 -12 -13 -14 -15 described in Section II.
SNR IN DECIBELS

N w S (5 (=2
T T T T T
L L I

ROTATION ERROR IN DEGREES

[N
T
L

Fig. 6. Rotation error as a function of noise. B. Spall's Optimization Technique

The optimization technique, which is implemented in this
work is the Simultaneous Perturbation Stochastic Approxima-
----- CoRR| ‘ ‘ / ' tion (SPSA) algorithm. It was first introduced by Spall in [12],
,,/" where a detailed description can be found. It has recently at-
5¢ / ] tracted attention for solving challenging optimization problems
/ where it is difficult or impossible to obtain an analytic expres-
sion for the gradient of the objective function. This is espe-
cially true of the MI function, since the probabilities required in
the computation of (3) are estimated using the joint image his-
togram. The dependence of the MI function on this discrete his-
togram makes the computation of its derivative complex. SPSA
is based on an easily implemented and highly efficient gradient
approximation that relies only on measurements of the objective
function to be optimized. It does not rely on explicit knowledge
of the gradient of the objective function, or on measurements of
/ this gradient.
% - 12 5 =7 5 Letus callL, the objective function to be optimized. In our ex-
periments[(.) represents either Ml or the correlation similarity
SNR IN DECIBELS . .
measure. We consider a parameter search space of two-dimen-
sional rigid transformations, consisting of rotation and transla-
tion in thex andy-directions. There are thus three parameters to
be optimized, represented in a vector fornpas [tx, ty, 0]7.
function. Optimization algorithms have been developed for & each iteration, the gradient approximation is based on only
stochastic setting where randomness is introduced either in #4® function measurements (regardless of the dimension of the
noisy measurements of the objective function and its gradiephrameter space). An additional function measurement is made
or in the computation of the gradient approximation. Thesg each newly computed point, in order to decide (subject to a
optimization algorithms can be divided into two categoriegreset threshold) whether to block or to update the parameters.

Gradient-based algorithmssuch as the Robbins-Monro sto-At iteration %, the update law for the parameters is steepest as-
chastic approximation algorithm can be considered to becant
generalization of the deterministic steepest descent. It requires
that direct measurements of the gradient are available, but
these measurements are generally a gradient estimate because
Fhe underlying data is usually n0|s§§rgd|ent—free aIgonthm; wlhere the gradient vector. = [(gx)! (9¢)? ... (gx)™]T for the
include some general-purpose optimizers such as the simple,. ; . .
. ; : .m-dimensional parameter space is determined by

random search, or the genetic algorithm, which works with
a population of candidate solutions and randomly alters the
solution over a sequence of generations. Both these methods . L(pj + cxAr) — L(prx — crAk) ,

; ) = - ,fori=1,2...m.
can be useful for a broad search over the domain of the para 2er(AL)
eters being optimized, and can provide initialization for a more (8)

w S
T T

SHIFT ERROR IN PIXELS
)

Fig. 7. Translation error as a function of noise.

Pk+1 = Pk + GGk (7)
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In this study, three parameters are to be updated at each it
tion, i.e.,m = 3. Each elementA; )’ of the vectorA,, takes on
a value of+1 or —1, as generated by a Bernoulli distribution
anday andcy are positive sequences of the form To

Ml surface for wind/chip 2, level 0 (6 =0)

a
ay = ———— 9
T+ A1) ©
&
=— 10
= T (10)
such that
a,c>0,A>0,0<y<a<l
anda—2fy>0,3'y—%zo. (11)
tx ty
The SPSA algorithm is a very powerful technique, which can (@
get through some local maxima of the objective function to fin Misurface for wind/chipt, level4 (0 <0)

the global maximum because of the stochastic nature of the ¢
dient approximation. All the elements pf are randomly per-
turbed to obtain two measurements of.). Each component 2
of the gradient vector is then formed by the ratio defined in (8
The algorithm works by iterating from an initial guess of the of
timal parametergy, by using this calculated gradient. Spall [12
presents sufficient conditions for convergence of the SPSA itt< 1.4
ative process in the stochastibmost sure Convergence is es-
tablished by requirind.(.) to be sufficiently smooth (i.e., three
times continuously differentiable) near the optimum, and in '
posing the following conditions on the gain sequencgsnd s
ck, such that they go to zero at rates that are neither too fast| 8
too slow, i.e., 4

1.8

1.6

=\
e
A

"\“‘
SOSSOR
SR

‘ " >
ST

ag,cr >0Vk; ap — 0, ¢ — 0ask — oo; x 2 0

2
Zak =00, Z <Z—”:) < 0. (12) (®)
- .

a Fig. 8. Mutual information surfaces. (a) Spline-interpolated sub-pixel Ml
surface for one data pair at leveld £ 0). (b) MI surface at level 4, showing
the global maximum and some local maxima.

The elements of the perturbation vecty are required to be
independent and symmetrically distributed about O with ﬁnitt(?1 MI surf for level 4 f i of i ¢ test
inverse moment&{1/|(Ag)¢|} for all k, i. The conditions on € Mi surtace for level = Tor one pair ot images irom our tes

Ay, make the gradient approximatiag,(.) an almost unbiased dataset, wherfe rlp[:t)rI]es c;nbthle M _surfaceTﬁan be se_eg_ ast_one
estimator of the true gradient.), i.e., E{gx(pr)} — g(pr) + moves away from the global maximum. These are indicative

O(c}). Fore, small, these misdirections act like random error ;_Iloggl nn'}%);rr?cas’r:]\/:é?nnmagf ttrﬁep mlesalgfggghr:t i?gstl:r;%rl_:,:s)t
which average and cancel out over a number of iterations. tl.-signili Ing u

When the transformed image is obtained using cubic B-spliﬁfcomposnmn level results from using a histogram with 64

interpolation, it produces a smooth MI surface as shown I hs, as opposed to 256 bins.
Fig. 8(a). An important consideration in the application of the
optimization scheme, is that the further away the initial guess
is from the global maximum, the more local maxima the algo-
rithm may need to overcome to reach the global maximum, andin this Section, multiresolution registration combining
thus the more likely it is to fail. Note that the coarser the imag&moncelli band-pass features, MI and the Spall optimization
(i.e., the deeper the level of the Simoncelli decomposition) tlseheme is thoroughly tested and compared using synthetic
less smooth is the MI surface, and failure at this coarser levebt data as well as multitemporal data and remotely sensed
can be catastrophic to the optimization algorithm. For thegeagery from different sensors. Results are also provided to
smaller, lower resolution images, a further reduction in theompare Ml with correlation. These experiments are conducted
number of bins in the histogram may be necessary, in ordar an SGI Octane 195 MHz computer, and timing results are
to get a smooth surface. As an illustration, Fig. 8(b) showsovided for that machine.

VI. EXPERIMENTS AND RESULTS
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A. Description of the Parameters

Using Simoncelli filter size 9 and the Steerable Pyramid de-
composition of Fig. 2, four levels of decomposition are com-
puted and the feature space is composed of the gray levels of im-
ages{ B3}, {B2}, {B1} and{B0}. These images correspond
to a decimation of 8, 4, 2, and 1 of the original image, respec-
tively. The constants, ¢, A, « and~ for the SPSA algorithm i
are chosen and optimized within the range of values suggested "';
by Spall [12], which would ensure convergence. The chosen pa- &=
rameter values ard = 100, ¢ = 0.5, a = 12.0, a = 0.602,
~ = 0.101 using a threshold of 0.1 for blocking; i.e., the param-
eter values are not updated if the Ml value for the new point falls
more than 0.1 below the current Ml value. These values were
found to work well for both MI and correlation for the datasets
tested, so they were fixed for all the experiments to follow, pro-
viding a single frame of reference for the comparative study. In
general, it may be more judicious to set the threshold at some
percentage of the starting Ml value.

B. Description of the Test Datasets
In this study, four datasets were used. For datasets 1— 3 »

below, only one band of each sensor was utilized. This is S
band 4 for Landsat-TM (*Thematic Mapper”) data and banlqg. 9. Second dataset: Series of multitemporal AVHRR images over South
2 for AVHRR-LAC (Local Area Coverage) data. These bandsica.
correspond to the Near-Infrared bands and usually show the
best contrast of land features. In the future, an investigation
could be done of whether a combination of several bands might
improve the registration accuracy. The datasets are as follows:

1) From the same Landsat-TM (“Thematic Mapper”) scene

of the United States. Overall, we consider eight different
images corresponding to different bands of different sen-
sors. The four sensors and their respective bands and spa-
tial resolutions involved in this study are

of the Pacific Northwest used to produce the image of « IKONOS Bands 3 (Red) and 4 (Near-Infrared), spa-
Fig. 3, the 192< 192 center of this image is extracted tial resolution of 4 meters per pixel, resampled to
and utilized as the “Reference Image.” “Inputimages” are 391 m:

artificially created by translating and rotating the original . Landsa,t—7/ETM+ Bands 3 (Red) and 4 (Near-In-

image and then extracting the 192192 centers of the

! frared), spatial resolution of 30 meters per pixel, re-
transformed images

sampled to 31.25 m;

« translation parameters are varied in the horizontal - MODIS Bands 1 (Red) and 2 (Near Infrared), spa-
dlregtlon by amounts of 0 t0,5 p|x§Is; ) tial resolution of 500 meters per pixel;
* rotation parameters are varied with angles ranging - SeaWIFS Bands 6 (Red) and 8 (Near Infrared), spa-

from O° to 6°.

2) The second set of images comes from a series of mul-
titemporal NOAA Advanced Very High Resolution Ra-
diometer (AVHRR) scenes which differ from the refer-
ence by very small translations and no rotations; these are
shown in Fig. 9. These images are all of size 517024. First, we conduct a series of experiments using the synthetic
Note the varying locations of clouds in the images. images generated from the reference of dataset 1, to test the sensi-

3) The third dataset consists of seven pairs of images tofity of ouralgorithmtoseveralparameters. Thenbasedonourre-
size 256x 256, each of which extracted from Band 4 ofults, an automated optimization scheme is designed and applied
two scenes taken by Landsat-5 (in 1997) and Landsatérthe remaining datasets (2—4) in a multiresolution manner. The
(in 1999) over the Chesapeake Bay area (Eastern Unitggtimization algorithm is tested on these multisensor and multi-
States). These pairs of images, shown in Fig. 10, are temporal datasets using both correlation and M.
ferred to as wind and chip respectively, and the Landsat-5The optimization scheme starts with an “initial guess” of the
windows are registered to the corresponding Landsa@rrect registration value, based on prior information from a
chips. coarser registration scheme. The initial guess is then scaled to

4) The fourth dataset used for this study represents multite corresponding starting value at the lowest decomposition
sensor data acquired by four different sensors over onelevel to be registered, and the optimization scheme is applied
the MODIS Validation Core Sites. The site is the Konzéor a fixed number of iterations. The final registration transla-
Prairie in the state of Kansas, in the Middle West regiation-values at this level, are then doubled and passed with the

tial resolution of 1000 meters per pixel.
Fig. 11 shows one band of each of these scenes.

Algorithm Implementation
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Fig. 11. Fourth dataset: IKONOS, Landsat/ETM, MODIS and SeaWIFS
images of the Konza Prairie in Kansas, U.S.

MI optimization for the band-pass outputs of the Simoncelli de-
composition for the images of dataset 1. They show the average
of the final RMS errors measured in pixels, for the images of
dataset 1 versus the number of iterations, for starting points (or
initial guesses) at various horizontal distances from the correct
result (or ground truth). Each starting point has a rotational error
of 5°, in addition to the translational error indicated.

The average errors are computed as follows. For each of the
42 reference-input pairs, individual errors are computed by
taking the root mean square (RMS) error over all the pixels in
each image as follows:

(b)

1
— J— . Y — / Y. . ||2
Fig. 10. Third dataset: (a) Seven chips (26@56) extracted from band 4 of a RMS Error = N Z Z ”(I“ yJ) (:c Y )’J H
1999 Landsat-7 Scene. (b) Seven corresponding windows{2Z28®) extracted (]

from band 4 of a 1997 Landsat-5 scene. (13)

rotation-value, up to the next level as a new starting point. THisr (2, v');; = Terr(zi,y;) With Ttp, = To(Ter) ™! ; where
process is iterated up to level 1, which provides the final regi€y 7 represents the correct (“Ground Truth”) transformation and
tration result. Note with this multiresolution approach, it is crit?. is the computed transformatioh|| is the Euclidean distance
ical for a correct result to be obtained at the coarsest level of thied NV is the total number of pixels in the image. This error is
decomposition so as not to propagate and multiply errors. averaged over all the image pairs.

1) Sensitivity to Initial Guess and Number of Decomposi- For all the cases shown in Fig. 12, the algorithm consistently
tion Levels: In this subsection, we test the sensitivity of ouconverges using four levels of decomposition, when the starting
algorithm to the following parameters: the choice of the Simowlistance is 12 pixels or less in a single direction from the
celli subband (low-pass versus band-pass), the number of levgioound truth” value. The algorithm fails at 16 pixels, with the
of decomposition, and the distance between the initial guessor increasing with the number of iterations. This may be
and the correct result. Finally we compare MI to correlation idue to the algorithm getting trapped at a local maximum at a
terms of their respective regions of attraction. These tests amarser level, with this incorrect registration being propagated
performed using dataset 1. The plots of Fig. 12 correspondttwough subsequent levels. For one level of decompoaosition,
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Fig. 12. RMS pixel error curves for Ml with different initial distances over varying numbers of decomposition levels (band-p&s#)alaguess = 4 pixels
from correct result. (bJnitial guess = 8 pixels from correct result. (Cnitial guess = 12 pixels from correct result. (dJnitial guess = 16 pixels from
correct result. (Algorithm failure for all decomposition levels.).

registration is done using the band-pass ouBfubnly, and for such a starting point can be determined from a coarser registra-
all cases the algorithm does not converge. Convergence cartibe scheme such as an exhaustive search [2].
achieved for this size image by using the original image, with The results for the identical experiment optimizing correla-
no Simoncelli decomposition. tion for the band-pass outputs, are shown in Fig. 13. We note that
Similar plots were generated using the low-pass outputsiafthis case, algorithm failure occurs at a distance of 24 pixels
the Simoncelli decomposition. For the varying numbers of d&om the “ground truth” values [see Fig. 13(d)].
composition levels, the final value of the average error after 220Comparing the results of the experiments shown in Figs. 12
iterations was about the same as for the band-pass outputs érel 13, we note that correlation converges if the starting dis-
tween10~2 and 10~3) with the low-pass being less sensitivaance is less than 24 pixels from the optimum point, and we say
than the band-pass to the distance of the initial guess from that its optimum has a region of attraction of about 24 pixels.
correct result. However, when more complex test data is us&Hdith a similar definition, the MI optimum has an attraction re-
such as noisy and/or multisensor imagery, band-pass appeagioa of about 16 pixels. Inspecting the plots of Fig. 5, at level
achieve better precision than low-pass, while being just as ¥bwe observe that the neighborhow@, defined by inflexion
bust. This is consistent with results reported in [20]. Based @oints, is 3 pixels for correlation, which is consistent with 24
these observations, the remaining tests are done using four lepetgls in full resolution units, and it is 2 pixels for Ml, which is
of the Simoncelli band-pass output from a starting point, whiatonsistent with 16 pixels in full resolution units. We also note
is less than 12 pixels from the expected solution. We expect ttiaat Ml achieves better accuracy than correlation, since after 220
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Fig. 13. RMS pixel error curves for correlation with different initial distances over varying numbers of decomposition levels (band-gashl(gjess =
4 pixels from correct result. (b)nitial guess = 12 pixels from correct result. (c)nitial guess = 16 pixels from correct result. (dnitial guess = 24 pixels
from correct result. (Algorithm failure for all decomposition levels.).

iterations the sub-pixel precision of the final resultis! for the SPSA registration values of [23,32,0] for [wind2, chip2],

correlation, compared to abol@—2 for Ml optimization. and [23,35,0] for [wind5, chip5], as shown in Fig. 14.
) ) Table Il provides the results for the AVHRR images (i.e.,
D. Results on Multitemporal and Multisensor Imagery dataset 2) with four levels of decomposition. For this dataset

Tables | and 1l show details of the optimization algorithm aphe average RMS error between the manual registration values
plied to dataset 3, referred to as the wind and chip image pa@sd those from the MI optimization is 0.6385 pixels, while the
for a total of 10 iterations only. Convergence occurred to a “reaverage error from the correlation optimization is 0.5156 pixels.
sonable” set of final parameters for all the pairs in this dataset,Results for the multisensor images of dataset 4 are provided
and intermediate results are provided at all four levels of the $i Table IV. For the multisensor images, the average error be-
moncelli decomposition. The initial guess for starting the optiween the manual registration values and those from the Ml op-
mization, is about 8 pixels away from the final registration valugmization is 0.3446, while the average error with the correlation
in thex-direction, and less than 4 pixels in thedirection. Re- optimization is 1.2522, and sub-pixel accuracy is not achieved
sults of using Ml are provided in Table I, while those for correan average. The correlation error is skewed by the much larger
lation are given in Table Il. Note the similar timings for the twaerror produced by the NIR pair of modis and etm. Excluding this
metrics when using the same number of iterations. data pair, the average error is 0.3538 for Ml versus 0.4756 for

Since no good ground truth is available for this dataset, weerrelation. It is important to also note that manual registration
evaluate these results visually by obtaining the mosaics uswvajues were not provided at the sub-pixel level.
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TABLE |
WIND AND CHIP, MUTUAL INFORMATION USING SIMONCELLI DECOMPOSITIONS STARTING POINT (16,32,0) Max. No. Iterations = 10
Images Level Starting MI Ending Pt (Tx/Ty/6) Ending MI Tterations to Peak Total Run-Time
Full Resolution Units (secs)
wol 0 4 1892177 23.568/30.312/-1.025 2433614 7
3 1.509950 23032431 096/-0.252 1734695 9
2 1.185174 23350031 152/0.119 1294970 9
1 0969451 23.327/31.158/0071 0973435 3 260763
wol 1 4 1.267940 22.408/32 920/-0.781 1.806131 f
3 1322530 22760133 .056/0 873 1365593 2
2 0.743350 23.352/33.10040 082 1445919 9
1 1071002 2335332937015 1.086046 3 259383
wol 2 4 1.759831 22930432 256:-0.970 2398865 4
3 1393357 24234/33.436:-0.325 1442109 3
2 0.741066 23.810/32.042/0 382 1134174 9
1 0.716551 2308%/32.254/-0.017 1.010505 9 260267
wol 3 4 1329628 22160431 .840/-1.070 1799268 f
3 1.114694 22088/30.896/-0.133 1298333 9
2 0905466 22576130 898/0 098 1055709 9
1 0.845633 22.680/31.187/0 027 0906563 9 26.1428
wol 4 4 1668014 22 816/32.344/-0.518 2077568 4
3 1.245365 22360432 664/-0.112 1337770 9
2 0940130 22446132 944/0 033 0977274 3
1 0.714340 2255232 .975/0 016 0.726304 9 260603
wol 5 4 0931030 22.432/34.992/0.124 1455114 5
3 1.280736 23392135 40040 409 1296779 3
2 0924769 32232/34.766:-0.209 1.100453 7
1 0.762982 23.076/34.994/0 075 0866124 9 257704
wolf 4 1671403 22088/31.704/-0.439 2216321 f
3 1443503 23100431 352/-0.392 1746211 9
2 1.144628 23.808/30 474/0 352 1376146 8
1 0938186 23.669/30.825/-0.090 1104534 9 260889
TABLE I
WIND AND CHIP, CORRELATION USING SIMONCELLI DECOMPOSITIONS STARTING POINT (16,32,0), Max. No. Iterations = 10
Images Level Starting Corre Ending Pt (Tx/Ty/6) Ending Corre TIterations to Peak  Total Run-Time
Full Resolution Units (secs)

wel 4 0415278 22.534/30.960/0.417 0.554160 9

3 0405324 23.072/30.988/0.314 0.410104 2

2 0304505 23330431.006/0.125 0.310164 9

1 0.205008 23.355/31.084/0.024 0.210094 9 254361
wel L 4 0326058 20.744/30.056/0.236 0.39891¢ 3

3 0311130 22.334/31.996/0.027 0.354633 7

2 0285719 23.152/32.810/0.084 10.332899 9

1 0244042 23.303/33.013/0.023 0.260912 9 253361
wel 2 4 0452410 22.120431.312/0.292 0.555309 9

3 0387133 22802/32.052/0.156 0.39583¢ 2

2 0396167 23.128432.152/0.011 0.397172 2

1 0227161 23.170/32.190/0.036 0.228114 9 253749
wel 3 4 0.243187 20816/32.240/-0.161 0.302934 2

3 0321620 22136431 42810177 0.339906 9

2 0302008 22444431 328/0.063 0.306688 9

1 0221331 23.559431.253/0.003 0.224032 9 254902
wel 4 4 0290710 20976/32.240/0.158 0.352973 9

3 0333284 21.736/32.432/0.096 0.345130 9

2 0252080 22.036/32.600/0.021 0.258952 9

1 0138192 22.100/32.661/0.003 0.140181 9 254121
wel 5 4 0221524 20264/33.040/0.055 0.265966 7

3 0.183845 22.068/34.202/0.007 0.223079 2

2 0181548 22.620/34.696/0.131 0.20133¢ 9

1 0175173 22.792/34.800/0.046 0.18749¢ 9 252349
wel§ 4 0350045 22208431.376/0.296 0.442415 9

3 0404347 23.172/30.904/0.283 041938 9

2 0373416 23.638/30.766/0.083 0.387857 9

1 0.201208 23.730/20.772/0.013 0.204570 9 254178

E. Parameter Convergence required by correlation optimization. Note that the wavelet

starting points atlevel 1 are very close to the optimum in all cases.

By further expanding the results of Tables | and Il for th The tir_ning fo_r the 4-level registration of [wind2, c_hip2]. from
[wind2, chip2] data pair of dataset 3, we can observe tfﬁ%e starting pomt[t;v,t_y,e] = [20,35,0] qver.400 lterations
convergence rates using MI optimization versus correlation 999.7's _fo_r MI' while that for correlation is 9.85'9 S: l_\lev-
optimization. In Fig. 15, the plots show the convergence rate q;_hele_ss, Itis u_nportant to.note'that for the o_r|g|nal [wind2,
the relevant parameters with the optimization of Ml compar |p2]'|magE.3 palr.over'400 |ter§1t|ons, the maximum M yalug
with that of correlation. We compare convergence for the origin'&l aghleved n 72. iterations, while the maximum correlation is
[wind2, chip2] images with an “arbitrary” starting point Ofachleved at 395 iterations.

[tz,ty, 0] = [20,35,0], and also for Simoncelli decomposition
level 1 using the starting point obtained from the previous
three-level optimization. For the original image with no pyramid Prior work on optimization techniques for image registration
decomposition, one observes that using Ml optimization, eachazn be found in references [3]-[5] and [9]-[11]. The techniques
parameters converge in about one third the number of iteratiatescribed in[9]-[11] are all based on minimizing a sum of square

VII. DIScussiON ANDCONCLUSIONS
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(b)
Fig. 14. Checkerboard Mosaiced images using SPSA optimization values. (a) SPSA registration for [wind2,chip2]. (b) SPSA registration fhigsjnd5,c

TABLE 1lI
AVHRR, MUTUAL INFORMATION AND CORRELATION, USING SIMONCELLI DECOMPOSITIONS STARTING POINT (0,0,0),Max. No. Iterations = 250

Images Registration MI, End Pt (Tx'Ty/0) Corre, End Pt (Tx/Ty/0)
avhrr 1244 (1/0/0) 1.030/-0.247/-0.001 0.815/-0.174/0.012
avher_126 | (0/0/0) -0.411/-0.520/-0.039 -0.264/-0.585/-0.048
avier 127 (04000 -1.578/-0.747/-0.033 -1.431/-0.790/-0.030
avher_ 129 (-340/0) -2.786/-0.558/0.042 -2.396/-0.651/0.036
avher 1300 (2/00) 2.624/0.076/-0.021 2.251/0.147/-0.010
avhre_1311  (140/0) 1.676/-0.901/-0.009 1.310/-0.780/-0.010
avhor 1322 (04400 0.602/-1.115/-0.024 0.475/-1.056/-0.012
avher 133 (0~1/0) | -0.080/-1.318/-0.010 -0.083/-1.296/-0.003
avher 1411 (040/9) | -0.170/-1.718/-0.062 -0.136/-1.584/-0.057
avher 146 (-3/5/0) | -3.661/-4.686/-0.085 -3.455/-4.689/-0.076
avhrr_1488 (2734 2.795/3.012/-0.000 2.500/3.047/0.005

TABLE IV
MULTI-SENSOR MUTUAL INFORMATION AND CORRELATION, USING SIMONCELLI DECOMPOSITIONS STARTING POINT (0,0,0),Max. No. Iterations = 250
Tmages Registration MIEnd Pt (Tx/Ty/0) Corre End Pt (Tx'Ty/0)
mod_nir -2/-4/0) -1.984/-3.878/0.111 -1.258/-6.113/3.353 *
etm_nir
mod_red (-2/-4/0) -2.017/-3.930/0.093 -2.011/-3.957/0.062
etm_red
seawifs nir  (~9/0/0) -8.646/0.014/0.007 -8.047/0.119/0.381
modis_nir
seawifs red  (-&0/0) -8.417/-0.053/0.103 -7.884/-0.195/0.105
modis_red
etm_nir (2/0/0) 1.663/0.297/-0.113 1.678/0.282/-0.090
iko_nir
etm_red (2/0:0) 1.708/0.337/-0.087 1.697/0.304/-0.067
iko_red

differences. Maegt al. [3] use Powell's method to optimize spline pyramid. Their work is applied to medical imagery, and is
MI. Following this gradient-based methods were investigated @xtended in [5] to the maximization of the Ml similarity criterion.
[22], which uses an explicit calculation of the required derivative The registration algorithm proposed by Thevenaz and Unser
based on a partial volume interpolation of the criterion, ard [5], solves a problem similar to the one described here. Their
the search is implemented in a multiresolution frameworklgorithm is based on a combination of Ml together with a mul-
Irani and Peleg [10] choose to minimize the square error oftisesolution gradient search. By using the spline data model both
“disparity vector” between the two images. It proceeds by far image interpolation and for the probability density estima-
Newton-Raphson technique, and also requires computatiortioh with Parzen windows, smoothing is achieved and the gra-
the necessary gradients. The scheme described in [10] doesdiett components of Ml are computed exactly in a determin-
involve multiple resolutions of the images. Finally, Eastrean istic fashion. An optimizer similar to the Levenberg-Marquardt
al. [11] integrate the gradient-descent techniques describedsrthen designed specifically for this criterion.

[9] and [10] in a multiresolution framework, while focusing on The algorithm presented here is generally simpler and thus
the radiometric component of the registration transform whichlisss computationally intensive, while the optimizer in [5] is
associated with the differentviewing conditions of multitemporahore involved and may therefore be more robust. Our gradient
or multisensor data. Thevenatal.in [9], develop a scheme to components are computed approximately and stochastically,
optimize an integrated sum of square differences in the intenséiygd we also use trivial windowing in the form of a reduced
values of the images, which works in a multiresolution mannerumber of histogram bins, to achieve smoothing. In addition,
They use a Marquardt-Levenberg algorithm, and computatiomgr search strategy is essentially gradient ascent, which is
of the derivatives and of the Hessian matrix are based onabust when far from the solution but it converges more slowly
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Fig. 15. Parameter optimization curves for mutual information versus correlation for [wind2,chip2] data pair. (a) Optimization curves for Wtekioo
(b) Optimization curves fof'x. (c) Optimization curves fol'y. (d) Optimization curves for rotatios,

than the Levenberg-Marquardt type optimizer of [5], whemultiresolution approach also increases the robustness of the al-
close to the solution. Also because of the stochastic naturegofrithm since it is less likely to get trapped in a local maximum
the gradient approximation, our algorithm exhibits a somewhaitthe higher resolutions. From Figs. 12 and 13, we note that the
oscillatory convergence behavior compared to the smodilgorithm consistently converges when using 4 decomposition
convergence in [5]. It is unclear which algorithm performigvels for registration, provided that the initial starting point is
better under various conditions, and more testing is necessagj too far from the global optimum.
to evaluate this, but this is beyond the scope of this paper.On average for these experiments, registration of 22266
However, we note that due to the simplicity of its componentgnage over the same number of iterations, took about equal time
our algorithm may yield itself more easily to a distributed ofor MI with 64 bins as for correlation on an SGI Octane 195
parallel implementation, which may be essential for real-tirldhz computer. The advantage of using Ml optimization over
processing of satellite scenes. correlation can be found in its faster convergence rate in terms
The study presented in this paper has applied the SPSA opfinumber of iterations. Ml was generally observed to converge
mization technique for the registration of remote sensing imagesabout one third the number of iterations required by correla-
in a multiresolution framework, using Simoncelli wavelet-likdion. In this work, the algorithm was run for a fixed number of
filters. In the multiresolution approach provided by this steeiterations, in the future we will investigate the definition of an
able decomposition, when convergence occurs at a coarser leggipmatic stopping criterion for the optimization.
it provides a near optimal starting point for the next level. This Using the area under the curve as a measure of sharpness of
can produce immediate convergence at that level, providinghe Ml and correlation peaks, it was shown in Section IV-A that
considerable speed up in the overall registration process. The Ml curve for the original gray levels is about 6 times as sharp
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as the correlation curve, but it is 2.5 times as sharp when using2]
the Simoncelli sub-bands in a neighborhood about the optimum.
Thus it is possible that faster convergence and better precisiqiyg)
can be achieved at the finest level of the decomposition by using
MI together with the original gray level images, in place of the
level 1 outputs of the Simoncelli wavelets. We also observe thgt 4
while the Ml curve is convex around the optimum for the reg-
istration of the synthetically generated images in Figs. 4 and 5,
this curve becomes concave for the real-life images of Fig. 10,5]
as shown in Fig. 8(a). This may indicate less precise registratioHG]
for those images, butit also allows for the possibility of applying
second order optimization methods. [

Current work involves the inclusion of isometric scaling as|yg
an additional parameter to be optimized by the algorithm. The
experiment using the multisensor images of dataset 4 indicat(?fg]
that the scheme presented here may, in fact, work well for mul-
tisensor registration also. We will continue to test this algorithm
on other types of datasets in future work, and its performanc&o]
will be compared to other registration schemes [13].
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