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ABSTRACT 

Congestion is always a serious problem in many transportation commuting corridors. The 

need to implement effective control in the corridors has long been recognized by 

transportation professionals. Ramp metering has been discussed as a viable control 

strategy on freeways in many places of the US, which may alleviate or at least reduce the 

delay. In this study, a dynamic ramp metering control model is developed to maximize 

the total throughput with simultaneous perturbation stochastic approximation (SPSA), 

subject to the constraints of link densities, capacities, and feasible range of metering 

rates. A case study for a segment of US I-80 in New Jersey is conducted, while the 

impact of the proposed ramp metering control on traffic behavior is simulated with 

CORSIM. 
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1. Introduction 

Heavy congestion is always observed on urban transportation corridors in peak periods, 

during which delay increases and the level of service deteriorates. Starting from the early 

1960s, a variety of control strategies on freeways were proposed [1, 2, 3]. Ramp metering 

control has been regarded as one of effective traffic management strategies for alleviating 

congestion.  

        Metering control can be pre-timed, allowing vehicles to enter a freeway every few 

seconds, or traffic responsive, based on real-time traffic information (e.g., gaps, speeds, 

occupancies and queues) on the studied freeway and ramps. By releasing vehicles from 

entering ramps to the freeway in measured or regulated amounts, a single vehicle or a 

group of vehicles can smoothly merge into the traffic stream on the mainline. Thus, the 

flow interruption may be reduced. 

        Due to the potential advantages, ramp metering control strategies have been 

discussed for more than four decades, varying from the simplest pre-timed metering to 

traffic responsive metering. Lots of efforts have been paid on optimizing metering rates 

for individual and/or a series of ramps through dynamic metering control models, but 

only a few were using simulation to quantify the benefit while consider geographical 

constraints. Developing a dynamic metering control model to maximize capacity (or 

called total throughput) subject to realistic constraints (e.g. limited storage on ramps) is 

the major objective of this study. The simultaneous perturbation stochastic approximation 

(SPSA) method is introduced in this paper to optimize ramp metering rates over 

continuous time intervals. Simulation approach is applied to quantify the benefit of the 

developed model. 
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2. Literature Review 

According to a previous study [4], appropriate implementation of ramp metering control 

may improve traffic efficiency (e.g., travel time; reliability; throughput; and accidents), 

particularly in preventing stop-and-go and erratic traffic conditions. Such improvements 

can be achieved by regulating vehicles from the entering ramps, and then the flow 

interruption may be avoided.  

     In a survey conducted by Piotrowicz et al [4], the mainline speed might increase 16% 

to 62%, while the accident rate might decrease 24% to 50%. By considering the queuing 

delay on the metered ramps, the average speed still increased 20%. However, performing 

ramp metering might alter the pattern of traffic flow entering the freeway. Due to the 

delay incurred by motorists waiting for access at metering sites, a portion of ramp flow 

might shift to other freeway entries with less delay. The majority of diverted trips were 

short distance trips since their wait times spent at metered ramps were relatively longer 

than that of long distance trips [2, 5]. 

     A variety of models developed for ramp metering control can be categorized 

into four categories, including Pre-timed Linear Programming Models [1, 5, 7], Local 

Traffic Responsive Models [8, 9, 10, 11], System-wide Non-linear Programming Models 

[12, 13], and Large-scale Heuristic Models [14, 15, 16, 17]. In classic optimization of 

nonlinear programming problems, such as a ramp metering control problem, the gradient 

of the objective function with respect to the decision variables needs to be derived. 

However, the degree of difficulty for deriving gradient depends on the complexity of the 

objective function, number of decision variable, and constraints. Thus, an efficient 

optimization method such as SPSA is desirable. The SPSA - based method has been 
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demonstrated its efficiency to optimize complicated problems. Detailed description of the 

method may be found in Spall [18, 19], Kleinman [20], and Ting et al [21].  

 

3. Model Development 

The objective function developed here is total throughput that will be maximized subject 

to geographical and operational constraints, such as link densities, capacities, queue 

length, and the boundaries of metering rates. In order to formulate the dynamic metering 

control model, the following assumptions are made: 

■ The traffic flow on the mainline is steady without incidents blocking the freeway, 

which can represent the steady relationship among flow, speed and density. 

■ Each vehicle passes through a meter separately from other vehicles based on a 

first-come first-released discipline. 

■ The average vehicle length is in 20 feet for approximating the storage capacity of 

the metered ramp.  

     A general N-segment freeway network with multiple on-ramps and off-ramps shown 

in Fig. 1 has been derived by Chang et al [3, 5] as shown in Eq. 1. The metering control 

period can be divided into a series of equal intervals. Thus, the time varying density 

equation of link i at interval k, called ρi(k) can be formulated as: 

ii
iii

off
ii

on
iiii lL

TkqkQkkRkqkk )]()()()()([)1()( 1 −−++−= − θδδρρ            i∀         (1)  

where   li       : number of through lanes on link i; 

Li    : length of link i (miles); 

qi(k): traffic volume from link i to link i+1 at interval k (vph);  

Qi(k): mean flow rate of link i at interval k (vph); 
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Ri(k): metering rate of link i at interval k (vph);  

T     : duration of a time interval (hours);  

δi
o n    : binary variable (1 if link i is an on-ramp; otherwise, 0);  

δi
off   : binary variable (1 if link i is an off-ramp; otherwise, 0); and 

θi(k): the turning percentage of mainline flow from link i to the off-ramp at 

interval k (%). 

     Eq. 1 shows that the projected density ρi(k) of link i at interval k is dependent on that 

at the previous interval denoted as k-1, and the entering and exiting volumes from and to 

ramps. The transition flow rate denoted as  qi(k) can thus be approximated by using Eq. 2: 

)]()()][(1[)()](1)[()( 111 kRkQkkQkkkq i
on
iiiii

off
iii +++ −−+−= δαθδα     i∀         (2)  

where αi(k) is the weighted factor representing the interaction between flows on links i 

and i+1 at interval k. A value of 0.5 for αi(k) is used here and that indicates the influences 

to flows on links i and i+1 and the same, and to simplify the solution procedure. Note that 

αN(k) is equal to 1 on link N, which is the last link of the studied network. Eq. 3 

represents a density function of link 1 through N, which can be derived by substituting 

qi(k) obtained from Eq. 2 into Eq. 1.  Thus: 

)(1{)()](1)[()1()( 11111 k
lL

TkQkk
lL

Tkk i
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ii
off
ii

ii
ii −−−−− −+−+−= αθδαρρ  

             )(]1)([)()}()](1[)( 1 kQk
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TkQkkk ii
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iii
off
ii +−+−−− αθαδα  
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T
i
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ii

ii
i

on
ii

ii
++− −++ δαδα                            i∀         (3) 

where α0(k) = αN(k) = 1; Q0(k) = q0(k); δ0
o n = 0; and θ0(k) = 0. In addition, the relationship 

[22] among speed, flow and density can be expressed as:  
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)()()( kSkkQ iii ρ=                                                                                                        (4) 

where Si(k), representing the speed of link i at interval k , can be collected by loop 

detectors. Note that the total traffic throughput denoted as TTT is the total number of 

vehicles discharged from exit links over the control interval. Thus, TTT can be 

formulated as: 

=TTT TkQkQk
K

k

N

i
Nii

off
i∑ ∑

=

−
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 +
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1

1
)()()(θδ                                                                      (5) 

where K is the last time interval of the control period. By substituting Eq. 4 into Eq. 5, 

TTT can be derived as: 

=TTT  ∑ ∑
=

−

=
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The equivalent objective function of Eq. 6 can be formulated as Eq. 7: 

L(λ) = Z � ∑ ∑
=

−

=







 +
K

k

N

i
NNiii

off
i kSkkSkkT

1

1

1
)()()()()( ρρθδ                                  (7) 

where Z represents a big number and through this conversion, the objective total 

throughput can be maximized by minimizing L(λ) subject to a set of constraints 

formulated in Eqs. 8, 9, and 10: 

0 max)( ρρ ≤≤ ki              i∀  , k                                                                                  (8) 

 0 max)( ii QkQ ≤≤            i∀  , k                                                                                    (9) 

maxmin )( iii RkRR ≤≤       i∀  , k                                                                                 (10) 

     Eq. 8 defines that the density of link i at interval k should be positive and less than the 

maximum density ρmax. Similarly, the flow of link i at interval k in Eq. 9 must be positive 

and less than the link capacity Qi
max. The constraint formulated in Eq. 10 defines the 
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range of feasible solutions, where Ri
min

 and Ri
max represent the lower and upper boundaries 

of metering rates, respectively.  

     Assume that vehicles approach a ramp meter with a mean arrival rate m. The relation 

between storage capacity denoted as qL  (called queue in number of vehicles) and 

metering rate )(kRi  can be expressed by an M/M/1 queuing model formulated in Eq. 11. 

Thus,  

qL = 
mkR

m

i −)(
τ                         (11) 

where τ  is the ratio of m and )(kRi . Under this setting, the vehicular queue will not 

spillback onto the local street. Ri
min can be derived from Eq. 11 as:  

min
iR = m

L
L

q

q










 +τ
                      (12) 

     According to a previous study [2], the maximum metering rate Ri
max is suggested to be 

900 vph (4.0 seconds/vehicle), which considers the driver�s reaction and operation time 

and that consumed for vehicle acceleration required a single vehicle to pass the meter. 

 

4. The Solution Algorithm - SPSA 

The SPSA algorithm, a recursive optimization technique for finding local optimizers of 

liner or nonlinear objective functions, was first introduced by Spall [20]. Based on the 

measurement of the objective function (not on the measurement of the gradient of the 

objective function), SPSA iteratively computes the positively and negatively perturbed 

objective function values. SPSA is like other Kiefer and Bolfowitz stochastic 

approximation algorithms, such as finite difference stochastic approximation (FDSA), in 
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that SPSA requires only measurements (possibly noisy) of an objective function to form 

gradient estimates and converge to a local optimum. However, SPSA differs significantly 

from FDSA in requiring only two objective function evaluations per gradient estimate, 

whereas FDSA requires 2p evaluations, where p is the number of system parameters 

being estimated. This gives SPSA a significant advantage in high-dimensional problems, 

especially when evaluating the objective function is expensive or time-consuming [21].  

The SPSA algorithm uses objective function measurements to iteratively update 

system control parameters until parameter values are reached that locally optimize the 

objective function. Let λ∈ R
p
 be a vector whose components represent system parameters 

to be controlled, for example, the ramp metering rates and mainline traffic flow in the 

freeway system. Suppose L(λ) represents the objective function to be optimized. The goal 

is to find a root 
∗

hλ  of the gradient g(λ) of this objective function. That is, λ should be 

conducted from: 

g(λ)=
λ
λ

∂
∂ )(L = 0                                                                                                           (13) 

Assume that the measurement y(λ) of the objective function can be represented by Eq. 14 

for any λ. Thus, 

y(λ) = L(λ)+noise                                                                                                       (14) 

     There is no direct measurement of the gradient g(λ) that can be expressed in an 

equation .The SPSA algorithm gives an initial guess of the optimal λ represented by 0

∧
λ  

and uses y(λ) to update λ recursively until the optimal solution 
∗

hλ is approximated. In the 
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approximation process, SPSA produces a sequence of estimates (e.g., 0

∧
λ , 1

∧
λ , 2

∧
λ , � , 

1+

∧

hλ ) in each iteration generated by the following. 

Step 0: Initialization 

Set counter index h equal to 0. Pick initial guess 0

∧
λ  and non-negative 

coefficients, a, c, β and γ in the SPSA gain sequences as shown in Eqs. 15 and 

16. A large a enhances performance in the later iterations by producing a larger 

step size, while it will be effective to set c as some small positive number. 

Recommended values for β and γ are 0.602 and 0.01, respectively.  

ah = a(h +1) � β                                                                                  (15) 

ch = c(h +1) � γ                                                                                   (16) 

Step 1: Generate Simultaneous Perturbation Vector 

Generate a p-dimensional random vector ∆h where each of the p components of 

∆h is independently generated from a zero-mean probability distribution. An 

effective (and theoretically valid) choice for each component of ∆h is to use a 

Bernoulli ±1 distribution with probability of ½ for each ±1 outcome. Since 

uniform and normal random variables have infinite inverse moments, they are 

not allowed for the elements of ∆h. 

Step 2: Evaluate Objective Function 

Obtain two measurements of the objective function L(λ) based on a simultaneous 

perturbation around the current h

∧
λ  (e.g.,  y( h

∧
λ + ch ∆h) and y( h

∧
λ - ch ∆h) ) with 

the ch and ∆h obtained from Steps 0 and 1, respectively.  

 



Chien and Luo 

 10

Step 3: Approximate Gradient 

Generate the simultaneous perturbation approximation to the (unknown) p-

dimensional gradient as 

where ∆hi is the ith component of the ∆h vector. In Eq. 17, the denominators 

change in the p components of )( hg
∧∧
λ . The numerators indicate the simultaneous 

perturbation of all components of h

∧
λ . 

 Step 4: Update h

∧
λ   

Use the standard stochastic approximation form  

              1+

∧

hλ = h

∧
λ - ah )( hg

∧∧
λ                                                                                       (18)  

and update h

∧
λ  to a new value 1+

∧

hλ .   

Step 5: Iteration or Termination 

Return to Step 1 and increase the counter index from h to h+1. Terminate the 

algorithm if the difference between successive iterations is less than a pre-set 

value that is very small to approximate zero; and the last h

∧
λ is the estimate of the 

optimum
∗

hλ . 

�
 

)( hg
∧∧
λ = 

y( h

∧
λ + ch ∆h) - y( h

∧
λ - ch ∆h)

                     2 ch ∆h1 

y( h

∧
λ + ch ∆h) - y( h

∧
λ - ch ∆h)

                     2 ch ∆h2 

y( h

∧
λ + ch ∆h) - y( h

∧
λ - ch ∆h)

                     2 ch ∆hp 

(17)
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     In the real world, traffic volumes feeding into a freeway network vary over space and 

time. The studied freeway should be modeled with dynamic and stochastic approach to 

mimic traffic and geometric situations. Thus, CORSIM is applied to model traffic 

operation, and the developed SPSA algorithm (see Fig. 2) is applied to search optimal 

metering rates that maximize the total throughput.  

 

5. Case Study   

The study site for testing the developed dynamic metering control model is a 12-mile 

route segment of eastbound I-80 in New Jersey. The segment contains seven on-ramps 

and five off-ramps for receiving and emitting flows spatially. The studied ramp junction 

in the network shown in Fig. 3 contains a three-lane 4-mile segment on the mainline with 

one-lane on-ramp and off-ramp, and a meter is located at Node 307.  

    CORSIM, a microscopic corridor traffic simulator developed by Federal Highway 

Administration (FHWA), is applied for emulating traffic operation and evaluating the 

developed control model. CORSIM has been used extensively to wide variety of areas by 

both practitioners and researchers and is one of the most wildly used traffic simulation 

models. 

     Considering dynamic system control and real-time application, time dependent 

demand over a series of time intervals (16 time intervals with 3-min per interval) is 

designed and simulated with CORSIM. In order to quantify the benefits under different 

conditions, various demand distributions are considered in the following cases: 

■ Case 1  Exiting Traffic Condition (See Table 1) 

■ Case 2  Increase the Entry Flow but Fix the Ramp Flow 
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■ Case 3  Fix the Entry Flow but Increase the Ramp Flow 

■ Case 4  Fix both the Entry and Ramp Flows 

The time-varying results of delays and throughput for Case 1 with and without 

metering control are shown in Fig. 4. The maximum benefit of total throughput is found 

of 6.2% at the fifth time interval, while the total delay is found of 3 % at the fourth time 

interval after the implementation of proposed metering control. There is almost no benefit 

under light demand condition. For Case 2, the results show that the total throughput 

increases from the 3rd to the 9th time interval (see Fig. 5), while the total delay may be 

reduced during the period between the 8th and 15th time intervals. The maximum achieved 

delay is 6.17% below that in Case 1. Results also showed that the developed model is 

efficient specifically when the entry flow ranges between 3360 vph (vehicle per hour) 

and 4560 vph with fixed ramp flow of 489 vph.  

     In Case 3, the developed control model performed well and the throughput was found 

increasing as demand of the ramp ranges between 373 vph and 579 vph (see Fig. 6). 

Meanwhile, the delay benefit is found from the 1st to 12th intervals. It indicates that the 

total delay may decrease before the traffic reaches the saturated condition. Finally in Case 

4, the impacts of ramp storage capacity (number of queuing vehicles) to the total delay 

and throughput are investigated. Fig. 7 shows that the total throughput may be increased 

as the ramp storage capacity increases. However, the ratio of increased throughput and 

storage capacity may decrease as the length of the ramp exceeds the threshold point. 

Thus, the effectiveness of increasing total throughput subject to costly expansion of 

storage capacity should be evaluated. 
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6. Conclusions 

The optimal metering rate depends on the relationship among upstream demand, 

downstream capacity, and the traffic volume entering the freeway from the ramp. As the 

analyses conducted in this study, the SPSA algorithm has been applied to optimize the 

ramp metering control problem subject to the queue storage area on ramps and time 

varying traffic condition. The total throughput can be increased without significantly 

increasing the delay. The benefit of applying the developed dynamic ramp metering 

control model has been compared other control strategies, such as Speed Control, 

Demand/Capacity Control, and Gap Acceptance Control. Results were summarized in a 

project report [23]. It was found that the developed model outperformed the control 

strategies listed above. Further research of this study includes: 

■ Conduct Benchmark-type analysis for evaluating the performance of the 

developed model and other demand responsive models, 

■ Collect real world data to calibrate the developed simulation model for testing the 

effectiveness and efficiency of the developed model, and 

■ Develop an enhanced model to optimize metering rate for multiple on-ramps in a 

corridors and/or a network. 
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Table 1 Traffic Demand Distribution 

Entry Flow (vph) at Node 301 Ramp Flow at Node 307 (vph) Index of 
Time 

Interval* Case1 Case2 Case3 Case1 Case2 Case3 
1 1472 2960 4160 173 489 240 
2 3523 3160 4160 414 489 262 
3 5082 3360 4160 597 489 286 
4 4446 3560 4160 523 489 313 
5 3962 3760 4160 466 489 341 
6 3291 3960 4160 387 489 373 
7 2626 4160 4160 309 489 407 
8 2429 4360 4160 286 489 445 
9 2331 4560 4160 274 489 486 
10 2371 4760 4160 279 489 530 
11 2453 4960 4160 288 489 579 
12 2553 5160 4160 300 489 633 
13 2703 5360 4160 318 489 691 
14 2898 5560 4160 341 489 755 
15 2315 5760 4160 272 489 824 
16 1769 5960 4160 208 489 900 

        *: The duration of each time interval is 3 minutes. 
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Figure 1:  general freeway configuration.  
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Figure 2: the real-time metering control system. 
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Figure 4:  before and after analysis of total delay and total throughput (Case 1). 

Figure 3:  configuration of the study site.  
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Figure 6:  before and after analysis of total delay and total throughput (Case 3).    
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Figure 7:  the benefits of total delay and total throughput (Case 4).                           

Figure 5:  before and after analysis of total delay and total throughput (Case 2).   


