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Abstract

The problem of admission control of packets in communication networks is studied
in the continuous time queueing framework under different classes of service and delayed
information feedback. We develop and use a variant of a simulation based two timescale
simultaneous perturbation stochastic approximation (SPSA) algorithm for finding an
optimal feedback policy within the class of threshold type policies. Even though SPSA
has originally been designed for continuous parameter optimization, its variant for
the discrete parameter case is seen to work well. We give a proof of the hypothesis
needed to show convergence of the algorithm on our setting along with a sketch of
the convergence analysis. Extensive numerical experiments with the algorithm are
illustrated for different parameter specifications. In particular, we study the effect of
feedback delays on the system performance.

Key Words Admission control, communication networks, regularized semi-Markov
modulated Poisson process, two timescale stochastic approximation, simultaneous per-
turbation stochastic approximation, threshold type policies.



The problem of finding optimal policies for admission control / resource allocation [2], [12],
[17], [20], [22], [23], [21], [30] is a very important problem particularly in high speed networks.
The key objectives here are to maximize network revenues or profits and at the same time
provide good quality of service (QoS) to the customers. For instance, in asynchronous
transfer mode (ATM) networks, customers can choose between higher priority services like
constant bit rate (CBR) and variable bit rate (VBR) on the one hand, and a lower priority,
best effort, service like available bit rate (ABR) on the other. A new connection is typically
admitted in the network only if there are sufficient resources available for it, taking into
account the resource requirements of the existing connections. Moreover, the switches need
to perform admission control over packets (in particular) from low priority connections, in
the case of networks that provide service guarantees like low delay and high throughput to
the high priority services.

Admission control in communication networks has been a well studied research area with
various (stochastic and deterministic) models and settings considered by researchers over
the last several years. For instance, in [22], a fluid flow model of call admission control on
a link in ATM networks is considered. In [23], certain schedulability conditions that ensure
a bounded delay in packet switched networks are presented in a deterministic setting. A
fuzzy logic neural network based controller is used for this problem in [12]. A probabilistic
framework for packet based networks where admission control decisions are made by end
systems instead of network resources is considered and analyzed in [20]. In [24], the setting
of integrated services networks is considered and a neuro-dynamic programming (NDP) [3]
based temporal difference algorithm is used for admission control.

In this paper, we consider a stochastic setting with a continuous time queueing model of
the system under quite general assumptions on system / process dynamics. We provide a
simulation based stochastic approximation algorithm to compute an optimal policy within

the class of threshold type feedback policies. Markov decision processes (MDP) [1], [26] is



a general methodology for finding optimal control policies for stochastic dynamic systems.
However, finding optimal policies using MDP is computationally expensive in most cases of
interest. Moreover, in order to use an MDP based approach, one needs complete knowledge
of system dynamics or transition probabilities which may be hard to obtain in practice. We
present in this paper an efficient, simulation based optimization approach for finding an
optimal threshold type policy in a general setting that does not require any knowledge of
state transition probabilities.

The algorithm that we consider is motivated by recent advances in perturbation anal-
ysis type approaches [13], [14], [15] [19] for parameter optimization. Approaches based on
infinitesimal perturbation analysis (IPA) typically use only one simulation of the system for
computing the optimum parameter value. This is however achieved through an interchange
between the gradient and expectation of the associated cost, for which certain constraining
regularity requirements are typically imposed on the system parameters and cost function.
In [4] and [5], two stochastic approximation algorithms were developed as alternatives to tra-
ditional IPA based schemes. The idea in these is to use two timescales or step-size schedules,
with aggregation / averaging of data done on the faster timescale and parameter updated
on the slower one. The advantage in doing so is that one directly estimates the gradient of
average cost and thus the (above) interchange between gradient and expectation operators
as in IPA based schemes is not required. The disadvantage in the above schemes, however,
is that both of them use finite difference gradient estimates and hence need (NN + 1) paral-
lel simulations to update an N-dimensional parameter vector. In a related work [28], a one
timescale simultaneous perturbation stochastic approximation (SPSA) algorithm for parame-
ter optimization was developed that uses only two parallel simulations for any N-dimensional
parameter vector by simultaneously perturbing all parameter components randomly, most
commonly by using independent, symmetric, Bernoulli distributed random variables. In [7],
the SPSA based analogs of the two timescale algorithms in [4] and [5] were developed for

parameter tuning in the framework of hidden Markov models. In [8], the SPSA variant of



the algorithm in [4] was used for finding an optimal feedback policy within a parameterized
class of policies for rate based flow control in ABR service in ATM networks.

We use in this paper the discrete parameter variant of one of the algorithms in [7] for
finding an optimal policy amongst threshold type policies for admission control. Our main
model is described in Section 1. The search space is a finite, discrete set and not a con-
tinuously valued one. In [16], a variant of the one-timescale SPSA algorithm [28] is used
for finding the optimal policy in a resource allocation problem by projecting the algorithm
after each update on to the finite search grid so that the algorithm moves only on the grid.
We use a similar idea except for the difference that even though we project the parameter
after each update on to the finite grid, we use the projected updates only in the feedback
policies. Our algorithm essentially updates the parameter in the convex hull of points on the
finite grid and is hence more efficient. In particular, we can work with diminishing step-size
sequences as with regular stochastic approximation algorithms, unlike [16] that requires con-
stant step-sizes for proper convergence behaviour. The main contribution of this paper lies
in the application of a computationally efficient, simulation based, two-timescale stochastic
approximation algorithm adapted to a discrete parameter setting that uses SPSA type gradi-
ent estimates towards finding an optimal admission control policy within a prespecified class
of feedback policies. The framework of Markov decision processes (MDP) that is normally
used for solving stochastic control problems is not considered here because of the amount of
computation that would otherwise be required. Our algorithm yields an optimal multilevel
threshold type feedback policy and has low computational requirements since it uses SPSA
gradient estimates, and performs a search in a continuously valued set.

The rest of the paper is organized as follows: We present the model and problem for-
mulation in Section 1. We also state there the basic results that are required for proving
convergence of the algorithm. The algorithm itself is described in Section 2. The main
convergence theorem is also stated there. Numerical results are shown in Section 3. The

concluding remarks are presented in Section 4. Finally, proofs of all the results described in



this paper are given in an appendix at the end.

1 Model and Problem Formulation

By a regularized semi-Markov modulated Poisson process (SMMPP) stream, we mean a
Poisson process with rate \; at time ¢, where ); is determined by an underlying regularized
semi-Markov process { X;}. We assume that state transitions of this process take place every
T > 0 units of time for some 7" fixed. Further, transitions from any state to itself are allowed.
Let {X;} take values in a finite set S, of cardinality NV, which we simply assume has the form
Su ={1,..., N}. The transitions of {X;} at instants nT', n > 0, starting from a given initial
value are Markovian in nature, i.e., are independent of past values of X, given the current
value. Let X, 2 Xnr be the state at time nT of {X,;}. Then {X,} is an embedded Markov
chain for the regularized semi-Markov process {X;} that we assume is time homogeneous
i.e., its transition probabilities are time invariant. In addition, we assume {X,} is ergodic.
Let p(x1;z2) denote the probability of transition from X,, = 1 to X, 41 = z, n > 0 that
is assumed independent of n. The rate \; of the SMMPP is determined as follows: For
te[nT,(n+1)T], \y = A(@) if X,, =14,7=1,..., N. For simplicity, we can write the above
as Ay = A(X}) to indicate that the rate of the SMMPP at any time ¢ depends on its state at
that instant.

Our model is shown in Figure 1. We consider two streams of packets, one controlled and
the other uncontrolled. The uncontrolled stream corresponds to higher priority traffic, while
the controlled stream characterizes lower priority traffic that is bursty in nature and receives
best effort service. For instance, in the context of an ATM network, the uncontrolled stream
may correspond to traffic from CBR or VBR sources while ABR traffic would constitute
the controlled stream. The controlled stream is assumed to be an SMMPP while packets
from the uncontrolled stream arrive as a Poisson process with rate A\,. The controlled traffic
could largely comprise of data as it can tolerate delays due to packet drops and subsequent

retransmissions (for instance, as for ABR sources in ATM networks) while uncontrolled



traffic could comprise of real time voice and video that have higher quality of service (QoS)
requirements. An SMMPP stream suitably models the bursty nature of the controlled traffic
as it also takes into account the fact that connections can come in and leave the system at
arbitrary instants of time leading to variability in traffic flows. For simplicity of analysis, we
have assumed the uncontrolled stream to be a Poisson process. However, with little extra
effort, the uncontrolled stream can also be modelled as another SMMPP.

Packets from both streams are collected at an interim control node (or switch) CN during
time intervals [(n — 1)7,nT), n > 1, in course of which they are stored in different buffers.
(These correspond to the input buffers at node CN.) We assume both buffers have infinite
capacity. At instants n7T', the queue length ¢,, n > 1, in the main queue is observed and
this information is fed back to node CN. On the basis of this information, a decision on the
number of packets to accept from either stream (that are stored in the control buffers) is
instantly made. Packets that are not admitted to the main queue from either stream are
immediately dropped and they leave the system. Thus the interim buffers at the control
node CN are emptied every 7T units of time with packets from these buffers either joining
the main queue or getting dropped. The main queue thus corresponds to a bottleneck node
that receives packets from both uncontrolled and controlled streams.

We assume that packets from the uncontrolled source have higher priority and are admit-
ted to the main queue first (from node CN), whenever there are vacant slots available in the
main queue buffer which we assume is of size B. Thus if ¢, = ¢ and number of uncontrolled
packets at node CN are 7, then all j uncontrolled packets are admitted to the main queue if
j < B — 1, otherwise only the first B — ¢ of these packets are admitted. Admission control
(in the regular sense) is performed (at node CN) only on packets from the SMMPP stream
that are stored at node CN (which is also the reason that we refer to the latter stream as the
controlled stream). Packets from this stream are admitted to the main queue at instants nT
based on the queue length ¢, of the main queue, the number of uncontrolled stream packets

admitted at time nT and also the state X,,_; (during interval [(n — 1)T,nT)) of the under-



lying Markov process of the SMMPP. Note that node CN plays the role of a multiplexor or
scheduler that gives higher priority to the uncontrolled traffic for admitting packets to the
main queue. We assume that packets (from either stream) that are accepted in the main
queue cannot be dropped subsequently. Moreover, the scheduling policy followed in the main
queue is a non-preemptive FCFS (first come, first serve) policy, irrespective of the stream
from which the packets arrive (to the main queue).

We assume, however, that information about queue length at the main queue that is
fed back to the control node CN every 7' time instants, reaches node CN with a delay D,
assumed to be a finite and nonnegative constant. Thus the decision on number of packets
from either stream to be admitted to the main queue at instants n7T’, n > 1, is made based
on the latest available queue length information. The packets released from node CN are
assumed to reach the main queue instantaneously. We thus assume that transmission delays
from node CN to the main queue are negligible. Note, however, that because of the delay D,
in information feedback, we do not have precise instantaneous information on queue length
at the main queue i.e., we do not know ¢, at instant n7" but only its value at some previous
instant. It may thus happen that packets released from the control node CN get dropped at
the main queue because of unavailable vacant slots at the latter. Packets that are dropped
from the main queue because of buffer overflow also immediately leave the system. For ease
of exposition, we assume D, to be a multiple of T', i.e., D, = MT for some given integer
M > 0. Simple modifications to the analysis can however take care of the case D, # MT
for any integer M.

For the controlled stream, we assume that the feedback policies are of the threshold type.
Suppose Ly, ..., Ly, are given integers satisfying 0 < L; < B,V j € {1,..., N}. Here each
L; serves as a threshold for the controlled SMMPP stream when the state of the underlying
Markov chain is X,y =j, j =1,...,N, n > 1. Let A?_; and AS_, denote the number
of arrivals from the uncontrolled and controlled streams, respectively, at node CN during

the time interval [(n — 1)T,nT). Let 7, denote the residual service time of the customer in



service at time nT" at the main queue. Also let D,, be the number of departures from the main
queue in the interval [nT, (n+1)T). Note that since the controlled packets corresponding to
A¢_, are transmitted to the control node CN during the time interval [(n — 1), nT), these
depend on state X,,_; of the underlying Markov chain of the SMMPP in that interval. Let
g2 (Li,...,Ly)T represent the vector of all thresholds. Thus # takes values in the set C
= {0,1,...,B}". Suppose for D, = 0, let us denote the form of the feedback policies using

the function Fy(gn, Xy—1,A%_;, AS_;). The precise form of this function (that we use in this

n—17
paper) is given below. For any given 6, it is easy to see that in the absence of feedback delay
(i.e., Dy = 0), the joint process {(¢n, Xn_1,7s)} is Markov. When D, > 0 (D, = MT), {(¢n,
Try Xn-1y Qn-1s Tn1y Xn-2y -« Gn-M, Tn-Ms Xn-nm—-1)} is Markov. One can also see that

for fixed f, the above processes are in addition ergodic. Let h : {0,1,...,B} x {1,...,N}
— R be a given cost function and let
1 &

J(0) = lit ﬁzh i, Xi—1) (1.1)
denote the long-run average cost. The limit in (1.1) exists because of ergodicity of the
associated Markov process. Our aim is to find a 6* on the grid {0,1, ..., B}" that minimizes
J(@). Note that this is a discrete optimization problem. However, in what follows, we
shall use an SPSA based two timescale algorithm that is originally designed for continuous
parameter optimization, for the above problem along some what similar lines as in [16].
Broadly the idea in [16] is that for purposes of analysis, a smooth approximation of the
cost function is considered for parameter values that lie in between two neighbouring grid
points. However, after each iteration the parameter updates are projected onto the original
grid (cf. pp.1793 of [16]). We consider a slight modification of this procedure. Basically,
even though we project the parameter iterates after each iteration onto the grid, we use
these projections only in the feedback policies below. We consider the constraint set for
the continuously valued approximation of the parameter vector to be C = [0, B]Y which
is the convex hull of C. Further, for any = € {1,...,N}, let h(-,z) denote a continuous

interpolation of A (-, ) on the interval [0, B]. Also, let J(f) be defined analogously as in (1.1)
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with h(-, ) in place of h(-,z) and 6 = (Ly,...,Ly)T € C.

We now describe the form of the feedback policies. For simplicity in exposition, we assume
Dy, = 0 in the description below. Let us fix values for the various quantities of interest as
Gn =1, Xpn_1 =7, AY_; = a" and AY_, = a°, respectively, for some 0 < < B,1<j <N,

0 < a*, a® < oco. We then have
Feedback Policies Fj(i, j, a*, a®)

o Ifa">B—1

{

Accept first (B — ¢) uncontrolled packets and no controlled packets.

}

eIfi<Ljand L; —i<a*<B—i

{

Accept all uncontrolled packets and no controlled packets.

}

) Ifz<f/9andl_/]—z>a“
{

Accept all uncontrolled packets and

—Ifac<l_Lj—z'—a”

{

Accept all controlled packets
}
—Ifa*>L; —i—a"

{

Accept first L; — i — a® controlled packets

}
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e Ifi>L;and B—i>a"
{

Accept all uncontrolled packets and no controlled packets.

}

In Theorem 1.1, we show that J(6) is continuously differentiable in § under the assump-
tion that service times are exponentially distributed. This result is needed in order to push
through a Taylor series argument on the function J(-), that in turn is required to prove
convergence of the algorithm to the desired limit points (see proof of Theorem 2.1 given in
Appendix for the details). We give the proof of Theorem 1.1 and also of the other results in

Appendix.

Theorem 1.1 Under the above feedback policies and under exponential service times,

J(0) is continuously differentiable in 6.
From Theorem 1.1, we obtain

Corollary 1.1 Under the assumptions of Theorem 1.1, for any given ¢, q¢', x,z’, the

transition probabilities py(g, x; ¢', ') are continuous in 6.

Note that we require in Theorem 1.1 - Corollary 1.1 that service times in the main queue
have exponential distribution. This is mainly needed because the result from [27] that is
used in the proof (see Appendix) is valid only for finite state Markov chains. In [29], certain
sufficient conditions for differentiablity of the parameterized stationary distribution w.r.t.
the parameter for general state chains are given. These are however difficult to verify in
practice. If on the other hand, we assume that J(#) is continuously differentiable in 6, then
the analysis of the algorithm that follows carries through even when service times have the
general distribution. Next, we present the adaptation (on our setting) of the two timescale
SPSA algorithm of [7] for finding the optimum parameter and sketch its convergence analysis

in Appendix.
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2 The Algorithm

For ease of exposition, we describe the algorithm for the case of zero feedback delay, viz.,
Dy = 0. A similar analysis (of the algorithm) as given in Appendix also works for the case
when D, > 0. We use the discrete parameter version of the two timescale SPSA algorithm
of [7] for computing the optimum parameter. The two timescales correspond to the two

step-size schedules {a(n)} and {b(n)} that satisfy:

ia(n) = ib(n) = 00, ia(n)Q, 2()(71)2 < o0, (2.1)

a(n) = o(b(n)). (2.2)
Note that (2.1) are standard requirements on step-size sequences in stochastic approximation
algorithms. Note also that as a consequence of (2.1), a(n),b(n) — 0 as n — oo. The
requirement a(n) = o(b(n)) given in (2.2) basically means that a(n) goes to zero faster than
b(n) does. In other words, recursion (2.6) of the algorithm (below) proceeds on the slower
timescale (specified by a(n)), while recursions (2.4)-(2.5) proceed on the faster scale (as given
by b(n)). Note that the L-epoch additional averaging of iterates in (2.4)-(2.5) results in an
equivalent ‘even faster’ timescale. For our numerical experiments, we choose the following

as our parameter sequences {a(n)} and {b(n)}, respectively.
. - 1
a(0) = a, b(0) = b, a(n) = a/n, b(n) =b/n%, n>1, g <a <1, (2.3)

with @ = b = 1. One can in general consider sequences with different values of a and 13, and
also any other step-size sequences that satisfy (2.1) and (2.2), respectively.

Let (i), >0,i=1,..., N, be mutually independent and mean zero random variables
taking values in a compact set F C RY and having a common distribution. Also, let A(1)
denote the vector A(l) = (N(1), ..., (N))T. We assume that random variables /\(7)

satisfy Condition (B) below.

Condition (B) There exists a constant K < oo, such that for any I > 0, and i €

{1,...,N}, E[(A6) 7] < K.
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Further, each A(7) is assumed to be independent of the o-field o(0(l),! < 7). Condition
(B) is a some what standard condition in SPSA algorithms, see for instance, [28], [11] for
similar conditions. Most often, as we do in our numerical experiments, one simply assumes
/\(7) as independent, symmetric, Bernoulli distributed random variables, say, /(i) = +1,
w.p.1/2foralll >0,i=1,...,N.

Suppose 6 > 0 is a given constant. Consider two parallel, independent simulations
{(g}, XL, r])} and {(¢?, X2 ,,r%)} that are governed by parameter sequences {#'(n)} and
{0%(n)}, respectively, where 0'(n) (resp. 6%(n)) is the projection of #(n) —6/\(n) (resp. 6(n)
+d/\(n)) on the grid C. Here n = [i

L
the algorithm updates the parameter 6(-) once every L epochs, while cost corresponding to

], for some given integer L > 1. The idea here is that

the two simulations is aggregated and averaged at each instant on the faster scale. Here
an epoch corresponds to 7' time instants in the basic model. Both §(n) and A(n) are held
fixed between updates of #(n) (for L epochs). Alternatively, writing [ = nL + m, for n > 0
and m € {0,...,L — 1}, {(¢}, X1 ,,7})} and {(¢?, X2 ,,r?)} are governed by {#'(n)} and
{6%(n)}, respectively.

The parameter sequence {#(n)} is updated according to the following algorithm: Let
{Z*()} and {Z?(I)} be sequences that are defined according to Z'(0) = Z2(0) = 0 and for
n>0me{0,...,L—1},

Z*nL+m+1)=Z'(nL+m) +b(n)(h(gnrm) — Z' (nL +m)), (2.4)

Z*(nL+m+1) = Z*(nL +m) 4+ b(n)(h(gzrsm) — Z°(nL + m)). (2.5)

Now fort=1,...,N, n >0,

Litn+1) =1 (L,-(n) + a(n) [Z : (”Z)La) A_Z ;(”L)D . (2.6)

Note that {Z'(1)} and {Z?(I)} are used to average the cost function in the two simulations.
Also (2.6) corresponds to the parameter update recursion. Here 7(-) is the projection oper-

ator such that 7 : R — [0, B] and is defined by 7(r) = max(min(z, B),0). The operator =

13



forces O(n) = (Ly(n), ..., Ly(n))" to evolve within the constraint set C. Note that in the
feedback policies described in the previous section, we use the parameter 6(n) = (L,(n), ...,
Ly(n))T which is obtained from #(n) by further projecting #(n) on the grid C. This is done
by setting each value of L;(n), : =1,..., N, to the nearest integer in the set {0, 1, ..., B}.

Suppose K 2 {6 € C | VJ(0) = 0} denotes the set of all stable fixed points for the

ordinary differential equation (ODE): Fori =1,..., N,
Li(t) = # (=V:J(0)), (2.7)

where, [;(t) is the derivative of L;(t) and § = (L1, ..., Ly)*. Also, #(-) is defined according

to:

n
for any bounded and continuous v(-). The operator 7(-) forces the ODE (2.7) to evolve

O(t 0(t))) —0(t

F(l0) = g (FCOE 00 00
within the constraint set C'. Suppose also that for e > 0, K¢ denotes the set K¢ = {6 € C |
|0 —6"| <eV@ € K}. Thus K¢ is the set of all points that are within an e-neighborhood
of the set K. In particular, K¢ includes all points in the set K. The following theorem (proof
of which is given in Appendix) gives the convergence of the algorithm to a point in the set
K.

Theorem 2.1 Given € > 0, there exists dy > 0 such that for any 6 € (0, dp], the algorithm

(2.4)-(2.6) converges to some 0* € K°¢.

Note above that K is the set of all Kuhn-Tucker points and not just those that correspond
to local minima. However, points in K that do not correspond to local minima will be
unstable equilibria. In principle, any stochastic approximation scheme may get trapped in
an unstable equilibrium. In [25], with noise assumed to be sufficiently ‘omnidirectional’
in addition, it is shown that convergence to unstable fixed points is not possible; see also
[10] for conditions on avoidance of unstable equilibria that lie in certain compact connected
chain recurrent sets. However, in most cases (even without extra noise conditions) due to

the inherent randomness, stochastic approximation algorithms converge to stable equilibria.
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Our algorithm would then converge to an e-neighborhood of a local minimum. Note also
that Theorem 2.1 merely gives the existence of a dy, given € > 0, such that if one uses § < g
in the algorithm, one is guaranteed convergence to an e-local minimum. However, it does not
give any guidance as to how such a dy can a priori be chosen. We observe in our numerical
experiments (as also with settings studied in other papers [7], [8], [9]) that a small enough
value of § chosen arbitrarily works well in most cases.

Suppose now that the algorithm converges to a point #* which is in an e-neighborhood
of the above minimum. Note that the minimum is however one of J(f) and not J(#). Also,
the computed policy would correspond to 8%, or the projection of §* on to the finite grid of
points C. However, since J(#) = J(f) for all § € C, and J(-) is continuous (in fact, it is
continuously differentiable), one expects that the difference between J(#*) and J(6*) would
in most cases be negligible, by using a suitable choice of §. We now present our numerical

results.

3 Numerical Results

In the numerical experiments, we consider a regularized SMMPP stream with four states,
numbered, 1,...,4. The transition probability matrix of the underlying Markov chain of

this process is chosen to be

0 06 04 0
04 0 06 0
P= 0 0 0 1
0 07 0 03

The corresponding rates of the associated Poisson processes in each of these states are chosen
as A\(1) = 0.5, A(2) = 1.0, A(3) = 1.5 and A(4) = 2.5, respectively. The service times in the
main queue are considered to be exponentially distributed with rate ; = 1.3. The values of
d and L in the algorithm are chosen to be 0.1 and 100, respectively. The step-sizes {a(n)}
and {b(n)} in the algorithm are taken as a(0) = b(0) = 1 and for n > 1, a(n) = 1 and

n

1
b(n) = NOYEL respectively. We show here the results of experiments with different values of
n

parameters T, D, and the uncontrolled rate \,.
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In Figures 2-5, we show the convergence behaviour for the four threshold values, respec-
tively, for the case T'= 3, D, = 6 and A, = 0.4. The convergence behaviour for the other
cases is similar and is hence not shown. Here we refer to the threshold values as N1, N2, N3
and N4, respectively, for convenience. Also, we refer to the optimal values of these thresholds
(as given by our algorithm) by N1*, N2* N3* and N4*, respectively. Thus the parameter
6* (after convergence of our algorithm) is given by 6* = (N1*, N2*, N3*, N4*)T. We assume
that if any packet is accepted in the main queue, the cost incurred is the amount of time that
the packet spends in the main queue. In Tables 1-3, we assume that the cost of rejection
(which we denote by RC) of a packet is 50. In Table 4, we vary the rejection cost (RC) over
a range of values keeping the cost of accepting a packet the same as before (viz., the time
that the given packet spends in the main queue). We assume that the size of the buffer in
the main queue is 60. Thus the projection operator 7(-) in algorithm (2.4)-(2.6) projects
all threshold update values on to the interval [0,60]. In the following tables, we present the
values of the average cost J(6*) and the average fraction (fr*) of packets rejected under 6*.
These values are obtained after convergence of the algorithm. Initially, we run the system
for 20,000 updates of the parameter in all cases. We observe that the parameter converges in
all cases in the above number of runs. Further, for computing the performance metrics J(6*)
and fr*, we run the system with the converged values of the parameter (6*) for another
20,000 iterations. The initial values of all the four thresholds in all cases are chosen to be 40.
Note that even though we uniformly use the notation 6* to denote the value of the parameter
to which the algorithm converges, however, this value in general is a function of the system
parameters 7', Dy, and A, for fixed SMMPP rates and service rate p (as considered here).

It can be seen that the results obtained are along expected lines. Note from Tables 1
and 2, that as the value of T is increased keeping all other system parameters fixed, both
the values of the average cost and average fraction of rejected packets under corresponding
values of #* increase. This happens because when 7' is increased, the average number of

packets that arrive into the control node buffers in any given interval increases and as a
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result the system has lesser control over its performance in terms of average cost; more so,
since the threshold values are themselves updated after longer time intervals. Because of
the above, a small increase in fr* is observed as well. Also from Table 2 (as expected),
note that as the uncontrolled rate A, is increased to 1.0, the values of both the average
cost and the average fraction of packets rejected increase significantly over corresponding
values of these for A\, = 0.1 (in Table 1). This is again expected since the higher priority
uncontrolled packets now have a significant presence in the main queue buffer leading to an
over all increase in values of J(6*) and fr*, respectively, as packets from the control stream
are more frequently rejected. In Table 3, we keep T and A, fixed and vary the feedback
delay Dy. Note that as D, increases, both J(6*) and fr* increase as well, since node CN
gets increasingly delayed information on queue length (at the main queue) which results in
the controller having lesser control over system performance. In Table 4, we keep T', D, and
Ay fixed but vary the rejection cost (RC). In this case, the average cost J(6*) increases while
the average fraction of rejected packets decreases as RC is increased, which is also expected.
Note, however, that in all cases studied, there is no particular order in which the various

threshold values converge.

4 Conclusions

We studied the problem of admission control in communication networks in the continuous
time queueing framework under delayed information feedback. The system model we con-
sidered consists of a single queue that is fed with arrival streams from a control node every
T instants of time (for given 7" > 0). The control node in turn has two infinite buffers that
are fed with a regularized SMMPP (corresponding to controlled traffic) and an uncontrolled
Poisson stream, respectively. Traffic from the uncontrolled stream is assumed to have higher
priority and hence is admitted to the main queue first, followed by that from the lower
priority controlled source.

We used a discrete parameter variant of a recently developed two timescale SPSA algo-
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rithm for computing an optimal feedback policy within the class of threshold type policies.
The convergence analysis for our algorithm has been briefly presented in Appendix. Finally,
we presented numerical experiments using our algorithm for various values of observation
instants, uncontrolled source rates, and feedback delays. We also studied the system be-
haviour when one of the cost components namely the cost of rejection is increased. All our
results are along expected lines.

Recently, two timescale SPSA algorithms that use certain deterministic perturbation
sequences in place of randomized, have been developed in [9] in a simulation based parameter
optimization setting. The use of deterministic perturbation sequences is seen to considerably
improve performance over randomized perturbations in this setting. Further, in [6], the use
of certain chaotic iterative sequences for random number generation have also been found to
improve performance in SPSA type algorithms. The algorithms of [6] and [9] have primarily
been designed for continuous parameter optimization. Variants of these for the discrete

parameter case can also be tried on the model considered in this paper.
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Table 1: A\, =0.1, Dy, =0

N1* N2* N3* N4* | J(0°) ] fr*
12 43 36 8 | 13.56]0.14
31 14 33 19 |14.14|0.16
13 20 15 51 |17.98|0.18

= o w| N
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Table 2: A\, =1.0, D, =0

T | N1* N2* N3* N4*| J(6*) | fr*
3| 58 31 21 17 | 23.46 | 0.42
5| 10 16 11 2 125.8910.45
10 | 51 10 27 7 | 28.22 047
Table 3: \, =04, T =3
Dy | N1* N2* N3* N4* | J(6*) | fr*
0| 38 42 29 11 | 16.96 | 0.25
3 | 51 32 59 39 | 17.61 | 0.26
6 3 44 53 13 | 18.35 | 0.27
9 | 42 59 27 7 | 18.76 | 0.29

Table 4: T =3, D, =0, A\, =04

Regularized
SMMPP
Stream

RC | N1* N2* N3* N4 [JO") ]| fr
40 21 26 31 7 14.90 | 0.28
50 38 42 29 11 | 16.96 | 0.25
60 23 36 15 23 | 21.40 | 0.24
70 27 25 9 10 | 23.00 | 0.23
80 23 41 44 59 | 26.65 | 0.22
90 17 40 41 16 | 28.56 | 0.20
100 4 53 58 7 32.09 | 0.19
Uncontrolled
Source
Poisson (A u)
u
A (n-1)
U
e |l Accept ‘HHH
= 1l T < >
A? N ; Mai ; Feedback
(n-1) | ain Queue at AT n>0.
\ \
Reject| - _ __ _ _ _ _| D, —=-— _

Figure 1: The Model
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Figure 2: Convergence of the Values of Threshold N1 for T'=3, D, = 6 and A\, = 0.4
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Figure 3: Convergence of the Values of Threshold N2 for T'= 3, D, =6 and A\, = 0.4
Appendix

We provide here proofs of the various results presented in this paper.

Proof of Theorem 1.1 Let us first consider the case D, = 0. We consider here service
times to be exponentially distributed according to exp(u) for some p > 0. For this case,
the process {(gn, Xn—1)} itself is Markov and is ergodic for every 6 fixed, under the feed-
back policies considered here. Let py(g,z) denote the stationary distribution of the process
{(qn, Xn_1)}. Suppose for given 6, py(q, x; ¢', ") represent the transition probabilities of this

Markov process. Writing in vector - matrix notation, let u(6) := [ug(g, z)] and P(f) :=

23



60 T T T T T T
o [\V\/\W"W

Value of Threshold N3
W B
o o

N
o
T

10

0

. . . . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of Parameter Updates x 10*
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Figure 5: Convergence of the Values of Threshold N4 for T'=3, D, = 6 and A\, = 0.4

[[pe(q,x; ¢, x")]], respectively, denote the vector and matrix of stationary distribution and
transition probabilities. Note that for J(6) to be continuously differentiable, it is sufficient
to show that py(,-) is continuously differentiable in 6. Let Z(0) = [I — P(8) —P>(0)] ",
where I is the identity matrix and P>(0) = lim (P(6) +P?(¢) +--- P™(¢))/m. Then from

Theorem 2, pp.402-403 of [27], we can write
w0+ h) = p@)(I + (PO + h) — P(0))Z(0)) + o(h)). (A1)

Thus,
1(0) = u(0)P'(0)Z(), (A.2)

24



where p/(0) and P'(0) are the derivatives of u(6) and P(@), respectively. From (A.2) it is
clear that u'(0) exists if P'(f) does. Let us assume for the moment that P'(f) exists and is

continuous. Then
'@+ h) — (@) < |u@+h)P(O+h)Z(O+h)—u@)P'(0+h)Z(0+h)|

+H @) P'(0 +h)Z(0 + h) — uO)P'(0)Z(0 + h)| + [u(0) P'(0) Z (6 + h) — u(0) P'(6) Z(0) -

Now from Theorem 2, pp.402-403 of [27], one can write Z(6 + h) as
Z@+h)=Z(0)H(0,0+h) — P*(O)H(9,0 + h)U(0,0 + h)Z(0)H(0,0 + h),

where

H@O,0+h)=[I—(P@+h)—P@®)] " =T as |h] =0,

and

U(0,0 + h) = (P + h) — P(6))Z(6) — [0] as |h| — 0.

In the above, [0] is the matrix (of appropriate dimension) with all elements zero. It is now
clear that Z(60 + h) — Z(0) as |h| — 0. Moreover from (A.1), u(f) is continuous. Thus,
1'(0) is continuous in # as well and the claim follows.

We finally need to show now that P'(f) exists and is continuous in order to show that

1'(0) indeed exists. Note that
pe(laya.jax) = Pr(q’n—l—l = ]aXn =X | qn = Z.aXn—l = yae)
= Pr(qn—kl =] | n = ZaXn = x,anl = yae)Pr(Xn =T | n = iaanl = y,0)

= Pr(qn—l—l :.7 ‘ dn = ZaXn =7, G)ﬁ(y,x)

In the above, p(y; z) is independent of . We now evaluate Pr(g,+1 = Jj | ¢ =i, X, = =z,
6). For this, we consider various cases based on the form of the feedback policies. Let us
fix g, =1, X, =z, A*_; = a" and AS_, = a°, for some arbitrary 0 <7 < B, 1 < j < N,

0< A2 |, A | < 0o. We now have the following cases:
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1. a* > B —1.
Here

Pr(qn—l—l :.7 | QH:Zaanxag)

= PT(Dn:B—j,Ag_IZCLu|qn:i,Xn::C,0)
at=B—1
= Z Pr(Dp,=B—j| ¢g.=1,X,=z,A%_; =a" 0)x
at*=B—
Pr(Ay_,=a" | ¢, =1, X, = x,0)
_ 9 i) e (AT
av=B—i (B—1J) at

2. i< L, (B—i)>a"> L, —1.

There are two cases that follow here:

o j<1i+a"
Pr(Qn—H :.7 | qn = Z,Xn = .’13,0)
B-i-1
= Z Pr(D,=i+a"—jA* ;=a" | g, =1, X, =x,0)
a¥=Lg,—1
B—i-1
= Z Pr(Dp=i+a"—j | go=19,X,=x,A_; =a",0)X
at=L,—1
Pr(Ay_,=a" | g, =1, X, =x,0)
S () ) exp (AT T
a¥=Lg—i (i +a* —J) a* .
e j >1i+4a".

Pr(gui1=J | @n=14,X,=1,0)=0.

3. i< Ly, L, —1i>a"

Two cases follow from this:

e a¢ < L, —1—a"

Two cases follow again from here:
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- 7<1+a"+a.

PT(qn-{—l =7 ‘ qn = ZaXn = xﬂe)
Lo—i—1 Ly—i—a®—1
= Y > Pr(4f_, =a% At =a*, D, =i+a"+a‘—j | ¢, =1, X, = z,0)
a*=0 ac=0
Lo—i—1Ly—i—a®—1
= > > Pr(D,=i+a"+a—j | ¢, =1, A, | =a% AL =a", X, =z,0)

a*=0 ac=0

XPr(AS_,=a | ¢ =1,A;_ =a", X, =2x,0)%

PT‘(AZ?l =qg" ‘ dn = Z,Xn = iE,Q)
Lot Laiza® 1 oxp (—puT) (uT)+ +9° =7 exp(—A(z)T) (A(z)T)

X

e (i + a* + a¢ — j) ac
exp(—A\,T) (A T)*"
av ’

- 7>1+a"+a"
Pr(qn—l—l:j ‘ qn:Z,Xn:xae)ZO

e a¢> L, —1—a"
Two cases follow again from here:

Pr(gny1 =7 | ¢o =1, X, =2,0)

Ly—i—1 oo
= > > Pr(Af  =aAL =d"Dy=L;—j | ¢, =1%,X,=2,0)

a*=0 a°=Lz—i—a%

Ly—i—1 o0
= Z Z Pr(Dp,=Ly—j | gn =1, Xp=2,A, | =0 Ar_, =a",0)

a*=0 a°=Ly—i—a"%

XPr(AS_=a° | g. =1, X, =x,A,_, =a", 0)x

Pr(A; ,=a" | ¢, =1,X, =1,0)
IS e l) T (A D) M@

. X
av=0 a¢=Lg—i—av (Le = J) ac
exp(—A\,T) (A T)*"
av ’
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— s>,
PT(qn-{—l:j ‘ qn:Z,Xn:$,0)20

4. > L, and B —1 > a".

Two cases follow from here:

o j<i+4a".
PT(Qn+1 :.7 | qn = ZaXTL = .’E,g)
B—i—1
= Y Pr(A_=a"Dy=i+a"—j| ¢, =10,X,=u,0)
=0
B—i-1
= > Pr(Dp=i+a"—j | ¢=1,Xn=2,A}_ =a"0)x
a*=0
Pr(Ay_,=a" | g, =1,X, =,0)
S el ) exp(AT) D)
av=0 (7’ +a" — ]) a* '
e j > 14 a".

PT(Qn—H:j | QH:iaXn:x:H):O'

It is now easy to see that for any given ¢, = 7, X;, 1 = ¥, ¢,+1 = 7 and X,, = x, the transition
probabilities py(i,y; j, z) are continuously differentiable in 6. The claim follows. Finally, an

exactly similar argument as above works for the delayed case with Dy, > 0, D, = MT, for

some integer M > 0. O

Proof of Corollary 1.1 We showed in Theorem 1.1 that the above quantities are con-

tinuously differentiable in §. Hence they are continuous as well. O

We finally have
Proof of Theorem 2.1 The proof proceeds through a series of approximation steps as
in [7]. We briefly sketch it below. Let us define a new sequence {b(n)} of step-sizes according

to B(n) =b ([%D, where, [%] denotes the integer part of % It is then easy to see that

b(n) satisfies



In fact b(n) goes to zero faster than b(n) does and thus b(n) corresponds to an even faster

timescale than b(n). Now define {¢(n)} according to ¢(0) = 0 and t(n) = ) _ b(m). Tt is
m=1

then easy to see that the algorithm (2.4)-(2.6) on this timescale tracks the trajectories of the

system of ODEs:

o(t) =0, (A.3)
Z't) = J(O(t) — A () — ZH (1), (A.4)
Z(t) = JO(t) + 6A (L)) — Z2(1), (A.5)

in the following manner: Suppose we define continuous time processes { X' ()} and {X?(¢)}
according to X'(¢(n)) = Z'(nL), X?(t(n)) = Z?(nL) and for t € [t(n),t(n + 1)], X'(¢) and
X?2(t) are continuously interpolated from the values they take at the boundaries of these
intervals. Further, let us define a real-valued sequence {T},} as follows: Suppose T' > 0 is a

given constant. Then Ty = 0 and for n > 1,
T, = min{t(m) | t(m) > T,_1 +T}.

Thus T,, — T,, 1 = T, Vn > 1. Also, for any n, there exists some integer m,, such that 7, =
t(my). Now define processes {X1"(¢)} and {X?"(¢)} according to X1V"(T,,) = X*(t(m,))
= ZY(nL), X?>"(T,) = X?(t(m,)) = Z*(nL) and for t € [T, Tp;1), X""(t) and X?"(t)
evolve according to the ODEs (A.4)-(A.5). Using Gronwall’s inequality, it is easy to see that
sup || XB"(t) = X'@) ||, sup || X*"(t) — X%(t) ||— 0 n — oo.
t€[Tn,Tn+1) t€[Tn,Tn+1)

Now note that iteration (2.6) of the algorithm can be written as: Fori=1,..., N,

Li(n +1) = m(Li(n) + b(n)ni(n)),

where 7;(n) = o(1), Vi = 1,..., N, since a(n) = o(b(n)). Let us now define two continuous
time processes {0(t)} and {8(t)} as follows: 6(t(n)) = 0(n) = (Li(n), ..., Lx(n))T, n > 1.
For ¢t € [t(n),t(n + 1)], 6(¢) is continuously interpolated from the values it takes at the

boundaries of these intervals. Also 8(T}) = 6(t(my)) = 6(n) = (L1(n),..., Ly(n))T and for
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t € [Ty, Tyir), O(t) evolves according to the ODE (A.3). Thus given T, 7 > 0, IM such that

Vn> M, sup || X"(t) —=X'(t) || <n i=1,2 Also sup | 8() —0@) | <n It
tE[TnyTn+1) te[TnaTTH—l)

is easy to see (cf. [18]) that || Z} —J(8(n) —6A(n)) || and || Z2 —J(O(n) +6A(n)) | — 0 as

n — 00.

Now note that because of the above, the iteration (2.6) of the algorithm can be written

as follows: Fori=1,..., N,

Li(n+1) = (L,-(n) + a(n) (‘] (6(n) = M(’;? - (‘i ge(n) i M(”))) + a(n){f(n)) ,

where £(n) = o(1). Using Taylor series expansions of J(0(n) —6A(n)) and J(8(n) +A(n))

around the point §(n), one obtains

J(0(n) —6A(n)) = J(0(n)) — 0 Zl Aj(n)V;J(0(n)) + o(9)
and

J(O(n) +6A(n)) = J(@B(n)) + (52_: Aj(n)V;J(0(n)) + o(d),
respectively. Thus,

J(0(n) — A (n)) — J(8(n) + 0A(n))

=—ViJ(0(n))

Y Aj(n)
P> Ai(n)

=Lt
Now let {F,, n > 0} denote a sequence of o-fields defined by F,, = o(8(m), m < n, A(m),

V;J(@(n)) + o(d). (A.6)

m < n), with A(=1) = 0. It is now easy to see that the processes {Mi(n)}, ..., {Mn(n)}

defined by
My(n) = Z_O a(m)(J(O(m) —dA(m 235)A (J()H( m) + 6/A(m))
i=1,...,N, form convergent martingale sequences because of (2.1). From (A.6), we have
E[J(H(n) —0A(n)) — J(@(n) +dA(n)) | F]
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=-V,JOn)- Y E[Zgzs]vjj(e(n))ﬂ(a).

J=Lj#
.. Aj(n) . . . . .
By Condition (B), E[A(n)] = 0Vj # i, n> 0. The iteration (2.6) of the algorithm can
now be written as follows: Forz=1,..., N,
Li(n+1) = 7(Li(n) — a(n)ViJ(6(n)) + a(n) B(n)), (A.7)

where 3(n) = o(1) by the above. Thus (A.7) can be seen to be a discretization of the ODE
(2.7) except for some additional terms which however vanish asymptotically. The claim

follows. O
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