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Optimal Structured Feedback Policies for ABR Flow
Control Using Two-Timescale SPSA
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Abstract—Optimal structured feedback control policies for
rate-based flow control of available bit rate service in asyn-
chronous transfer mode networks are obtained in the presence of
information and propagation delays, using a numerically efficient
two-timescale simultaneous perturbation stochastic approxima-
tion algorithm. Models comprising both a single bottleneck node
and a network with multiple bottleneck nodes are considered.
A convergence analysis of the algorithm is presented. Numerical
experiments demonstrate fast convergence even in the presence
of significant delays. We also illustrate performance comparisons
with the well-known Explicit Rate Indication for Congestion
Avoidance (ERICA) algorithm and describe another algorithm
(based on ERICA) that does not require estimating available
bandwidth (as in ERICA).

Index Terms—Network of nodes, optimal structured feedback
policies, rate-based ABR flow control, single bottleneck node, two-
timescale SPSA.

I. INTRODUCTION

T HE AVAILABLE bit rate (ABR) service in asynchronous
transfer mode (ATM) networks is used primarily for data

traffic. Bandwidth allocation for ABR service is done after the
higher priority services such as constant bit rate (CBR) and vari-
able bit rate (VBR) have been allocated bandwidth. The avail-
able bandwidth is a time-varying quantity, and for proper utiliza-
tion, the network requires the ABR sources to control their indi-
vidual traffic flows. The proposals discussed by the ATM forum
for flow control in ABR service [26] were broadly classified
into two categories: rate-based and credit-based schemes. The
rate-based scheme [8] was finally accepted by the ATM forum
primarily because of the higher hardware complexity and costs
involved in the latter [26]. Several algorithms for rate-based
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flow control have since been proposed at the ATM forum. We
discuss these in detail below since we use a rate-based scheme
in this paper.

Initial proposals for rate-based ABR flow control were based
on single bit feedback schemes [15], [23]. Using some of these
schemes, the system was either found to become unstable or
suffer from the beat-down problem [26]. In general, single-bit
feedback schemes did not work well for ATM networks, and
as a result, explicit rate feedback schemes [9] were proposed.
The idea in these was that the switches would compute the
ABR source rates (based on the level of congestion) and feed-
back these directly to the sources. These schemes were found
to substantially improve system performance and offer more
flexibility to switch designers. Several explicit-rate feedback
schemes have been proposed in recent years; amongst these are
Enhanced PRCA (EPRCA) [22], the Dynamic Max Rate Con-
trol Algorithm (DMRCA) [10], and the well-known Explicit
Rate Indication for Congestion Avoidance (ERICA) [16]. We
shall consider the last algorithm above in detail for compar-
ison purposes with our algorithm. In [3], the controller com-
putes the input rate as a linear function of past rates and queue
levels, and the algorithm requires a complicated tuning of con-
trol parameters in order to ensure stability. In [19] and [18], the
Smith principle is used with a simple controller. However, the
feedback law necessarily requires that the queue length infor-
mation be fed back with rate computation done at the source
end of the system, making the scheme incompatible with ATM
forum standards. In [1], the problem is formulated as a sto-
chastic control problem but with linearized queue dynamics,
where the queue length may become negative. In [25], a con-
tinuous-time queueing model is studied and stability conditions
for various controllers obtained. However, performance anal-
ysis is done only under the assumptions of no delays and the
system being continuously observed, which seem unrealistic in
the ABR context.

In this paper, we consider both a single bottleneck node
model (as in [25]) and its extension to a network of such
nodes for explicit rate-based flow control. The traffic from
ABR sources (to be controlled) is modeled using controlled
Poisson processes. The uncontrolled traffic (representing all
the other traffic in the network) is modeled using appropriate
Markov-modulated Poisson processes (MMPP). Our models
include delays in receiving rate information and in packet
transmissions. We consider structured feedback policies that
have several levels of control. We develop a simultaneous
perturbation stochastic approximation (SPSA) [27], [14]
variant of a two-timescale stochastic approximation algorithm
in [5] to obtain the optimal policy with this structure. The
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two-timescale stochastic approximation algorithm developed in
[5] (see also [2]) for simulation-based parametric optimization
had the advantage that it updates the parameter at deterministic
instants obtained using two different step sizes (time scales),
without the need for regeneration, as is typically the case with
traditional perturbation analysis schemes [11], [12]. On the
other hand, like other finite-difference schemes, it requires

simulations for any -vector parameter to obtain
the gradient estimate. In [4], this algorithm was also used for
a single bottleneck node ABR problem. As a result of slow
convergence, only three-level parameterized policies were
considered in the numerical experiments. Here, we consider
not just the single bottleneck node case with policies that
have more levels of control, but also a network of multiple
nodes and multiple ABR sources or virtual connections (VCs).
Our two-timescale SPSA algorithm requires only two parallel
simulations for any -vector parameter, with all the -compo-
nents of the parameter vector updated simultaneously. For the
multiple bottleneck node case, we compare the performance
of our algorithm using structured feedback policies with the
well-known congestion-control scheme ERICA for different
settings. Furthermore, using our techniques, we also obtain
an “optimal” ERICA-type policy which, however, does not
require an estimate of available bandwidth like ERICA. We
observe that even though ERICA is “fairer” in some cases than
our policies, in all cases that we studied, our algorithm shows a
variation in the queue length process that is many times lower
than ERICA. For the single bottleneck node, our numerical
experiments also highlight the substantial performance gains
obtained by employing structured feedback policies that we
propose over optimal open loop policies.

The rest of the paper is organized as follows. In Section II,
we describe both the single bottleneck node and the network
models, and formulate the optimization problem. In Section III,
we describe our two-timescale SPSA scheme for obtaining
the optimal structured policy, briefly compare it with two
previously proposed two-timescale stochastic approximation
algorithms (cf. [5]) and present our main result. The con-
vergence analysis is briefly presented in the Appendix, with
detailed proofs provided in [6]. In Section IV, we present
numerical experiments with both types of models. Finally,
Section V provides concluding remarks and extensions.

II. THE OPTIMIZATION PROBLEM

In this section, we present two models: the basic single bot-
tleneck node model and its extension to a network of bottleneck
nodes with multiple ABR sources and/or VCs.

A. Single Bottleneck Node Model

Our basic model, shown in Fig. 1, is a bottleneck node with
two input streams, one controlled (representing the traffic from
the ABR source), and the other uncontrolled (representing all
the other traffic in the network passing through this node). The
ABR stream is modeled as a controlled Poisson process with
instantaneous intensity specified by a feedback-control law de-
fined below. The uncontrolled stream is modeled as an MMPP.
Note that the uncontrolled stream represents traffic from CBR,

Fig. 1. Single bottleneck node.

VBR, and other ABR sources, and is thus very bursty in na-
ture. An MMPP model is appropriate for this kind of traffic. The
MMPP rates are set in the following manner: Let
be a finite state, irreducible, aperiodic Markov process with
state–space . When , the instantaneous rate
of the uncontrolled stream is . For given fixed, let

represent the state of the modulating chain of
the uncontrolled MMPP at time . Let ,
represent the transition probabilities of . In the following,
we assume that we observe the queue length and use that in-
formation for obtaining the ABR rate. This assumption is quite
common in the ABR literature, see for instance, EPRCA [22],
DMRCA [10], and also [26]. The size of the bottleneck buffer is

and could be large (e.g., in the simulation experiments that we
illustrate in Section IV, is taken as ). Let , ,
represent the queue length observed at times, . We
assume that the ABR rate is held fixed in the time intervals

, , with representing this ABR rate
(in the th interval) and is computed using the queue length ()
observed at the node. The new rate is then fed back to the source.
Thus, the scheme that we propose is essentially an explicit rate
feedback scheme. The above information however reaches the
ABR source with a delay , whereupon the ABR source starts
sending packets with the new rate. Further, there is a propaga-
tion delay in the path of packets arriving at the bottleneck
node from the source. We assume throughout that the quantities

, , and are constants. Let be the set
of possible queue length values. Letrepresent the parameter to
be optimized that takes values in a compact set . We as-
sume, in particular, that is of the form ,
with , for all . Let be a
given bounded and nonnegative cost function (is the space
of nonnegative reals). Our aim is to find athat minimizes the
long-run average cost

(1)

The feedback policy that governs the rate is given as fol-
lows. Let , be integers such that

. Then the sets
, , form a partition of .

For , let

if (2)

In the above, is the controllable param-
eter. Markov decision processes (MDP) [21] represent a general
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Fig. 2. Two-node network.

Fig. 3. Three-node network.

framework for dealing with dynamic decision making problems
under uncertainty (for example when and
above). However, a numerical solution based on standard MDP
solution techniques [21] faces the “curse of dimensionality” for
large state spaces. Our numerical experiments in Section IV, for
instance, have . In addition, MDP solution tech-
niques also require explicit specification of the transition prob-
abilities of the continuous time chain at instants, , etc. In
the presence of nonzero delays and , these techniques
become computationally prohibitive. Our two-timescale SPSA
algorithm is very effective in solving such problems. Next, we
illustrate the extension of the above model to a network with
multiple bottleneck nodes.

B. Network with Multiple Nodes

Here, we will give a precise mathematical model considering
zero delays, since the notation for the delayed case becomes ex-
tremely cumbersome. The delayed case will, however, be ex-
plained in detail. Consider, for instance, a network with several
nodes and ABR sources (Figs. 2 and 3 are examples of net-
works of bottleneck nodes with multiple sources that we con-
sider in the numerical experiments). Thus, we consider several
VCs that use any given node. There are various feedforward
and feedback delays on the network paths (e.g., Figs. 2 and 3).
Note that in the previous model (of a single bottleneck node),
we consider only one VC for optimization purposes, with the
rest of the traffic (ABR and otherwise) captured in the uncon-
trolled MMPP stream. We, however, still assume (for the net-
work case) that there is uncontrolled MMPP traffic that passes
through any given bottleneck node. Also, a certain fraction of
these packets randomly enters the next bottleneck node with
the remaining uncontrolled packets dropped after service. Our
model is thus very general, since there could be some CBR,
VBR, and “other” ABR sources comprising an MMPP stream
that have more than one bottleneck node on their paths. All ex-
ternal MMPP streams entering individual bottleneck nodes are

assumed independent of one another and have possibly different
parameters. Thus, in this model, we are concerned about finding
optimal ABR rates of several connections having (possibly) dif-
ferent virtual paths simultaneously. We again assume (as before)
that the queue length at each node or switch in the network is
observed every units of time. Based on the queue length infor-
mation, each switch computes an ABR rate for each individual
VC that uses the node. This information is then transmitted with
a delay from the current node to either the next switch on the
backward path of the VC or the ABR source itself (if there is
no other node in between). Thus, in particular, rate computa-
tion for individual VCs at any given node involves computing
the minimum of the rate computed by the current node and the
latest available (delayed) rate set for that VC by its successor
node on the forward path. We present here a simple feedback
policy. Our techniques allow for various interesting modifica-
tions of this policy. In Section IV, we also present a policy based
on ERICA that uses (see below) in place of an estimate
of available bandwidth (that ERICA requires for rate allocation)
and use our techniques to obtain an optimal such policy, that we
call ERICA . If is now the queue length at instant of
bottleneck node (this will be different for different nodes) and

, , are subsets of as in (2) corresponding to
node , we let

if (3)

where is some auxiliary rate computed by node. Note
that the number ( ) of subsets ( ) of corresponding to
node can be different for different nodes. Now, if there are
(say) VCs that have node on their virtual path, then the
ABR rate set by this node for any given VC is the minimum of

and the (latest known) ABR rate set by the successor
node of the given VC, from the current node, on the forward
path of the VC. The parameter to be tuned (now) can be written
as , where is the number of nodes and
where each is the vector of rates for
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the particular node. The objective is to minimize the average
cost [as in (1)], now defined by

(4)

with appropriately defined real valued cost function. In the
next section, we present a computationally efficient stochastic
approximation algorithm for finding optimum.

III. T WO-TIMESCALE SPSA ALGORITHM

We present the algorithms here for the single bottleneck node
model. Thus, is the parameter vector to
be tuned in order to minimize in (1). The corresponding
algorithms for the network case are similar to these. We first
briefly motivate the use of stochastic approximation, i.e., when

is not available analytically but must be estimated by sim-
ulation (see [13], [17]). A stochastic approximation algorithm
recursively updates using gradient descent with decreasing
step-sizes and an appropriate estimate of . The efficiency
of the algorithm usually depends on the quality and computa-
tional requirements of the gradient estimate.

The advantages of using the SPSA approach are best appreci-
ated after first presenting the original two-timescale algorithm
of [5]. Let be a small fixed constant. Define positive
real-valued sequences and as follows: ,

, , , , ,
. Then

as (5)

(6)

(7)

Define as follows: and
, . Let

represent the th update of . Let denote the point
closest to in the interval
(defined earlier) and be defined by ,

. Let be the th update of .
The parallel simulations are obtained as follows.
The first simulation generates (recall that
denotes the queue length and the state of the MMPP, both
at instants ), governed by , where , for

. The remaining parallel simulations gen-
erate the corresponding processes , ,
governed by , , where ,

, , and is the unit vector
in the th direction. Then the algorithm is as follows: For

(8)

An alternative (proposed and used in [5]) to using ( )
parallel simulations is to move the algorithm in cycles during
each of which only two simulations are used as follows. The
first simulation corresponds to and is governed by

, defined as earlier, and the second simulation is represented
as , which is governed by defined by

for
, , . The algorithm of [5] is

(9)

Here, and (used above for no-
tational simplicity). Thus instead of all components being up-
dated every steps, , as in (8), only one component
is updated now every steps and the algorithm thus moves
in bigger loops or cycles of with all components updated
once at the end of the bigger loop. It is clear that one needs
only two simulations in this manner but there is a tradeoff with
speed of convergence. We return to this issue after we present
our two-timescale SPSA algorithm next.

For any , let be a vector of mutually inde-
pendent and mean zero random variables ,

[viz., ] taking values in a com-
pact set and having a common distribution. We as-
sume that these random variables satisfy Condition A) below.

Condition A): There exists a constant , such that for
any , and , .

We further assume that is a mutually indepen-
dent sequence with independent of ,
the latter being the filtration generated by the sequence of
parameter updates upto instant. Condition A) is a standard
condition in SPSA algorithms [27]. Define parallel processes

and such that for ,

is governed by
. Similarly,

is governed by defined analogously. In the
above, is governed by the following recursion equations.
For

(10)

Note that we choose to be a fixed small constant in this
algorithm (as in the previous algorithms above), unlike the usual
Kiefer–Wolfowitz algorithms that require to go to zero. This
has been done to ensure that the variance does not blow up.
However, one could modify the algorithm to allowto go to
zero slowly enough so that the variance does not increase rapidly
in the beginning of the algorithm. We observed in the numer-
ical experiments that a small enoughchosen arbitrarily works
well. In [7], another two timescale SPSA algorithm that updates
the parameter after every fixed number of epochs has recently
been developed and, that along with algorithm (10), have been
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applied for optimizing parameters in uncountable state hidden
Markov models under a Liapunov stability assumption.

We now discuss the reasons for the SPSA scheme in (10) to be
computationally more efficient than both schemes (8) and (9).
We begin with (9) first. It was shown in [5] that the scheme (9)
tracks trajectories of an ordinary differential equation (o.d.e.)
similar to (11) below, but with a factor of multiplying the
RHS of it. Also, the scheme (8) tracks trajectories of (11) as
is. This means that even though the qualitative behavior of the
algorithm (9) is the same as that of (8) and (10) (as shown in
Appendix), the factor of on the RHS of (11) essentially
serves to slow down its rate of convergence. Hence, Theorem 3.1
(below) indicates that we no longer need parallel sim-
ulations for an -vector parameter as (8) would require, while
at the same time we do not compromise on the speed of conver-
gence. The convergence analysis proceeds through a sequence
of steps and is given in the Appendix. However, due to lack of
space, all the details in the proofs have not been provided here,
but can be found in [6]. We state now our main result, the proof
of which is sketched in the Appendix.

The o.d.e. technique is commonly used to prove convergence
of stochastic approximation algorithms. Here, we show that the
algorithm (10) asymptotically converges to the stable points of
the o.d.e. (11) below. Let ,
where , , satisfy the o.d.e.

(11)

where, for any bounded, continuous, real-valued function

For , let .
The role played by the operator is, in some sense, to force
the o.d.e. (11) to evolve within the constraint set. Let

represent the set of local optima.
Also, for , let s.t.
represent the set of points withinof local optima.

Theorem 3.1:Given , such that for any
, the algorithm (10) converges to almost surely.

Note that the above theorem only gives the existence of a
such that, for any , the algorithm will almost

surely converge to a “small” neighborhood of the optimal point.
However, as explained earlier, we found in the numerical exper-
iments that any small enoughchosen arbitrarily seems to work
well.

IV. NUMERICAL RESULTS

We divide this section into two subsections. In the first of
these, we provide numerical results for the single bottleneck
node case, wherein we show experiments with various param-
eter settings using our two-timescale SPSA scheme on struc-
tured feedback policies (2) and compare their performance with
optimal open loop policies. Next, we show numerical experi-
ments with two and three node networks shown in Figs. 2 and
3, respectively. Here, we first use our SPSA algorithm on the

type of policies described in Section II-B and compare the per-
formance of the optimal policy within that class with the well-
known ERICA algorithm. We also provide an algorithm (based
on ERICA) that does not require estimating the available band-
width (as ERICA does) and use our algorithm (10) to obtain an
optimal policy within the class of ERICA-type policies.

In implementing stochastic approximation algorithms, the
convergence rate in practice often depends heavily on the
choices of the step size sequence parameters, and . In
our experiments, we choose , and , as
these values worked well in the experiments reported in [5],
and appear to work well in all of the cases considered here.
However, in general, adjustments might need to be made for
particular problems. For example, if the algorithm appears to
be moving too slowly, then larger values ofand might be
required; similarly, an overly oscillating iterate sequence would
probably call for scaling these parameters downwards.

A. Single Bottleneck Node

Flow control in ABR service requires balancing various con-
flicting performance criteria, such as mean and variance of delay
and throughput. Often, this is addressed by minimizing the dis-
tance of stationary mean queue length from a given fixed con-
stant [28], [25], [4]. We adopt a similar approach here and
choose , to be our cost function with as-
sumed given. In the concluding section, we also indicate ways
to obtain an optimal such . We compare the performance of
optimal structured closed loop feedback policies of type (2) ob-
tained by applying the two-timescale SPSA algorithm (10), with
the optimal open-loop policy, defined by setting for
all , where is obtained by applying the two-timescale algo-
rithm (8) for the scalar case ( ). Note that the optimal
open-loop policy has a fixed rate, and thus does not adapt to ob-
served queue lengths.

For the closed-loop policies, we perform experiments with
policies that have 5- and 11-parameter levels, respectively. We
do not show here the details of the experiments with 11-level
policies due to space considerations and also since the obser-
vations there are similar to those of 5-level policies. However,
these can be found in [6]. We assume throughout that both
and are integral multiples of . The form of the five-level
policies for obtaining is as follows:

if

if

if

if

if .

(12)

(above) is a given fixed constant. We actually consider a gen-
eralization of the model in Fig. 1, with rate feedback done at
instants , , for a fixed multiple of . This gives
us added flexibility in studying the effect of changes in in
addition to those in . The role played by is, in some sense,
that of an additional delay. The sequence of events is thus as fol-
lows. The ABR rate is computed at times , , at the
node using feedback policies above. These rates are fed back to
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the source every units of time. The source receives this rate
information with a delay , and upon receiving it, immedi-
ately starts sending packets with the new rate. The packets ar-
rive at the node with a propagation delay . The uncontrolled
process is an MMPP with the underlying Markov chain chosen
for simplicity to be an irreducible two-state chain. To simplify
the simulation code, we assume that the underlying chain un-
dergoes state transitions everyunits of time. The buffer size

is . We tested our SA scheme on various combina-
tions of the parameters , , , , , , , .
We also show experiments with two controlled sources feeding
into the same bottleneck node, but with rate information ( )
fed back with different delays (almost without any delay to the
first and with a significant delay to the second). We observe that
the bandwidth is shared equally by the two sources using our
closed-loop policies (2).

Let denote the parameter value for the corresponding
optimal policy, i.e., for the closed-loop
policy and for the open-loop policy. In the following,
subscript is used in the definition of various performance
measures to indicate -parameterized stationary distributions
of the various quantities. Thus, Var represents the sta-
tionary variance of parameterized by . Let represent
the segment or band (of queue length values) .
We compare performance in terms of parameters of queue
length distributions and throughput rate:, , , ,
and . These quantities and their estimates are defined as
follows:

Var

where is taken as in our experiments. Note that all these
performance estimates are computed after the SPSA algorithm
converges. The last performance measure is the one that the al-
gorithm seeks to minimize, but clearly the others are closely
related. One desires to be high in order to satisfy var-
ious other performance criteria. The measure gives the sta-
tionary probability of the server lying idle and should be close to
zero. The average ABR throughput rateis often considered
the most important measure of performance in ABR, because it
is this measure which tells us whether the available bandwidth
has been properly utilized or not. Also, clearly any good scheme
should provide a low variance .

In the simulations, we choose and
. We choose in a smaller range merely to

speed up convergence, since we intuitively know thatshould
be the lowest rate because it is applied when the queue length is
in the “highest” region. We observed that any other choice for
the range of works well, too, as long as the range is smaller
than that of ; for instance, works
as well. Moreover, the choice of this range does not depend on
the number of ABR connections. We choose the same range
as above for our experiments with two ABR sources feeding
into the same bottleneck node in Table V and also for our ex-
periments with networks of bottleneck nodes described in Sec-
tion IV-B. If we, however, choose (the same
range as ), our algorithm takes longer to converge
particularly when delays are high because of initial oscillations.
We found that is higher when delays are high than when they
are low. Thus, the range of should not be made too small ei-
therl.

We choose the service time process to be i.i.d., exponential
with rate . In [4], more general service time processes
have been considered for a similar model with a Poisson un-
controlled stream, and similar results as for exponential service
were obtained. The , , in in our al-
gorithm (10) are chosen as i.i.d. symmetric Bernoulli distributed
with w.p. 1/2. We arbitrarily choose
in the experiments. In the following, we consider two settings
for the uncontrolled traffic: , ,

, and
, , ,

. In Tables I–V, the two settings are
summarized by the value of (the mean rate of the uncon-
trolled MMPP), which is 0.10 and 0.28 in cases and ,
respectively.

We show experiments for the and
cases, respectively, under nonzeroand .

Throughout, “O.L.” represents the optimal open-loop policy.
For , we perform experiments with fixed
and uncontrolled MMPP parameters (Tables I and II), and
varying and . Also in Table IV, we choose and fixed
along with and the uncontrolled MMPP parameters, and
vary and . In Table III, we study the effect of varying
with all other parameters fixed. For small , and ,
our algorithm converges in about 130–150 iterations, whereas
for large , and , it takes about 200–250 iterations.
On a Sun Sparc Ultra10 work station, our algorithm takes less
than 10 min in most cases to converge. The same is also true of
the network case (cf. Section IV-B). We also ran the algorithm
(9) of [5] for 5-level policies with no delays ( ).
It did not converge even after 350 iterations after running
close to 200 minutes, indicating that our algorithm is orders of
magnitude faster than the one of [5]. We discuss our results for
the single bottleneck node case in detail below.

The closed-loop solution utilizes almost the entire bandwidth
( ) even when , , , and are sufficiently
high. The performance degrades when the delaysand in-
crease, but remains better than the optimal open-loop case even
when and become significantly high. In Table IV, per-
formance can be seen to be better than the optimal open-loop
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TABLE I
N = 10, � = 1, � = 0:1

TABLE II
N = 10, � = 1, � = 0:28

case even for for all performance measures
except . The variance for the open-loop case is lower pos-
sibly because of its mean queue lengthbeing much lower
than the desired mean queue length of 10. Also as expected,
we get the best performance for lower values ofand (see
Table I and II). When the settings of the uncontrolled MMPP
stream are changed such that the mean rateof the stream
is increased, the performance degrades as expected (cf. Table I
versus Table II). We also consider the case of two controllers
feeding arrivals into the same bottleneck node in addition to the
uncontrolled MMPP stream (Table V). Explicit rate informa-
tion is fed back to the two sources with different delays
and . Furthermore, there are different delays and
in packets arriving to the bottleneck node from the two sources.
We observe that the stationary mean ratesand for the
two sources are almost the same even when the difference in de-
lays is significantly high. In Table III, we vary and fix other
parameters with to see the effect on performance.
As expected for small , is low, and subsequently is
high. But as increases, becomes high, and becomes
close to zero. Also, as expected, the variancealso increases
with . In the light of these observations, we discuss in the
concluding section a method of finding an optimal. We now
discuss our experiments for networks of bottleneck nodes.

B. Network of Nodes

Here we consider two cases—a two-node network in Fig. 2
and a three-node network in Fig. 3, respectively. There are two
VCs in the two-node network case (Fig. 2); the virtual path
of the first ABR source passes through Nodes 1 and 2, while
that of the second passes only through Node 2. Both VCs have
the same destination. Similarly, in the three-node network case
(Fig. 3), there are three VCs with a common destination. There

TABLE III
T = 1, F = 2, � = 1, � = 0:1

TABLE IV
T = 1, F = 2, N = 10, � = 1, � = 0:1

TABLE V
T = 1, F = 2, N = 10, � = 1, � = 0:1

are uncontrolled MMPP streams with different parameters
passing through each node in both cases. We again assume,
for simplicity (as in the case of a single bottleneck node),
that the respective underlying Markov chain corresponding to
each of these streams switches states everyunits of time. In
the two-node network case (Fig. 2), we assume that 40% of
randomly selected uncontrolled packets from the first MMPP
stream (MMPP) enter Node 2 with the remaining uncontrolled
packets dropped after service at Node 1. Thus, we assume
that on an average 40% of the uncontrolled traffic from Node
1 also passes through Node 2. We also make this assumption
in the three-node network case (Fig. 3). We further assume,
in the latter case, that 40% of randomly selected uncontrolled
packets (comprising those from MMPP, as well as the ones
from MMPP that pass through Node 2), enter Node 3 after
service at Node 2, while the remaining uncontrolled packets are
dropped after service at Node 2. Thus, we consider very general
settings here. We consider three possible Poisson rates for each
MMPP stream for both the two-node and three-node network
cases, respectively. Our main feedback policy (described in
Section II-B) is as follows. For , for the two-node case
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(respectively, for , for the three-node case), let

if

if

if

if

if .

(13)

In the above, is the queue length at Node. Also,
in the above, and are similar to and , re-
spectively, for the single bottleneck case. In all our ex-
periments here, we let (for simplicity) for all
nodes. Let represent the ABR rate for source.
Then, for the two-node case, we set ,

. The ABR rates in
the three-node network case are determined as follows:

, ,
. In what follows, we refer to

our main policy simply as Policy (13) for convenience. Next, let
us briefly explain the ERICA algorithm [16]. ERICA computes
the available bandwidth ABR according to ABR
Target utilization (Link Capacity (VBR CBR) ).
Target utilization is typically set at 0.90–0.95. We choose this
quantity to be 0.95 in our experiments. If there areVCs
using a link at any time, ERICA computes the Fairshare of
each VC according to Fairshare ABR . Next, ERICA
computes VC CCR , where CCR is the source current
cell rate stored in the resource management (RM) cells and
is the load factor computed as ABR ABR .
The optimal operating point is . Finally, the explicit rate
(ER) marked by the switch for the VC is calculated as follows:
ER FairshareVC , ABR ,
ER .

We also provide here an alternative policy (based on ERICA)
that uses quantities in (13) (for bottleneck node) in place
of ABR with the rest of the algorithm the same as in ERICA.
Note that a key advantage in so doing is that one does not require
estimation of ABR (as ERICA does and which is very dif-
ficult to obtain in practice), and instead, one directly observes
the queue lengths at the nodes as in Policy (13). Moreover, we
use algorithm (10) [as in Policy (13)] to find the optimum pa-
rameter in the class of ERICA-type policies as well. We call the
resulting optimal policy (in this class) ERICA .

For the case of two-node (respectively, three-node) networks,
we assume a similar parameter constraint region as for the
single bottleneck node case,viz.
and , , for two-node (resp.

, for three-node) networks. We assume for sim-
plicity in the ERICA implementation that the MMPP streams
comprise only CBR and VBR traffic (and not ABR from
other sources). Note that ERICA does not require thresholds

. For the two-node case, using Policy (13) and ERICA,
we perform experiments for two different cases: ,

(Tables VI and VIII) and ,
(Tables VII and IX), respectively. We also set the service times
as and , respectively, for the two nodes in
the two-node case. The MMPP stream parameters are selected

TABLE VI
[POLICY (13)]: T = 1,N = 7,N = 30

TABLE VII
[POLICY (13)]: T = 1,N = 10,N = 25

TABLE VIII
(ERICA ): T = 1,N = 7,N = 30

TABLE IX
(ERICA ): T = 1,N = 10,N = 25

TABLE X
(ERICA): T = 1

as follows. Let and

represent two different
vectors of uncontrolled rates. Let repre-
sent the vector of stationary probabilities. When MMPP stream

is used, the mean uncontrolled rate is 0.4 and when the
other stream is used, the same is 0.2. In Tables VI–X,
we use various combinations of these streams in the two nodes.
We represent the uncontrolled traffic simply by the mean rates

and at Node 1 and Node 2, respectively, in Fig. 2.
We arbitrarily set the delays in the two-node case as follows:

, , , and
(see Fig. 2). For the three-node case, in Tables XI–XIII, we
let both MMPP and MMPP be , and for MMPP we
consider two different scenarios and , respec-
tively, where ,

, and ,
. Thus, is either 0.435 or 0.195. We

arbitrarily set , and for the three-node
case. We also vary the service rate for Node 3 in Tables XI–XIII
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TABLE XI
[POLICY (13)]: T = 1

TABLE XII
(ERICA ): T = 1

TABLE XIII
(ERICA): T = 1

(with all delays zero) between three different valuesviz.
1.8, 2.0 and 2.2, respectively. In Tables XIV–XVI, we vary
delays between 1.0 and 5.0 (here a delay ofimplies that
each of the delays , , , etc. are equal to ), when
sampling time in all cases is . Also, here we let the un-
controlled streams MMPPand MMPP be (both) with
a mean rate , and MMPP be (with

). We compare the performance of Policy (13) and
ERICA using our algorithm, with that of ERICA in terms of
ABR rate allocations of each scheme and the variation in the
resulting queue length processes as follows. Let, ,
in Fig. 2 (resp. , in Fig. 3) represent the mean
ABR rate of the th ABR source in Fig. 2 (resp. Fig. 3). These
are defined in exactly the same manner asfor the single
bottleneck node case in Section IV-A. Also, let represent
the variance of queue length inth queue defined in the same
manner as in Section IV-A. We define the measure of varia-
tion (MV) in queue lengths as follows: MV
for the system in Fig. 2, and MV
for the system in Fig. 3. We select the cost function now
as
for the two-node case and

for the
three-node case. We choose as earlier. The step-sizes

and are as before. The random variables
are assumed to be symmetric Bernoulli distributed as in the
single bottleneck node case.

For the two-node network (Fig. 2), for most cases, the mean
ABR rate for the first source ( ) using both Policy (13) and

TABLE XIV
[POLICY (13)]: T = 1

TABLE XV
(ERICA ): T = 1

TABLE XVI
(ERICA): T = 1

ERICA is lower than that for ERICA, while that for the
second source ( ) for these policies is higher than that for
ERICA. For the three-node network case, a similar behavior
is observed, except that the difference between corresponding
source rates using both Policy (13) and ERICA, with that
of ERICA is much lower now. However, our key observation
here is that the measure of variation of the queue length
processes for all two-node and three-node cases, using Policy
(13) and ERICA is many times lower (almost an order of
magnitude in some cases) than that using ERICA. We observe
in Tables XIV–XVI that, in the presence of delays, the measure
of variation using our policies does not degrade as much as
ERICA does. ERICA is known to exhibit highly oscillatory
behavior and our experiments seem to confirm this fact. Our
algorithm, on the other hand, is much more robust to delays and
variations in other parameters. This fact is further illustrated in
Figs. 4 and 5. We observe in the experiments for the three-node
network shown in Tables XIV–XVI that all three policies
[Policy (13), ERICA , and ERICA] have a similar mean
queue length in the first two nodes. In the first node, the mean
queue length for all three policies is in the range 2.1–3.5. In
the second node, the same is in the range 3.6–5.6. In the third
node, the mean queue length using Policy (13) and ERICA
is in the range 24–27, while that using ERICA is 43.5 with zero
delays and becomes 245 when all delays are equal to five. A
similar deterioration in the variance performance for the third
queue is observed using ERICA, which is the reason for the
high MV using this scheme.
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Fig. 4. Comparison of mean queue lengths using all Policies in the third node
in the network in Fig. 3.

Fig. 5. Comparison of measure of variation performance using all Policies in
the third node in the network in Fig. 3.

V. CONCLUSION AND EXTENSIONS

We studied the problem of ABR rate-based flow control in
the presence of information and propagation delays, by devel-
oping a numerically efficient two-timescale SPSA algorithm.
In particular, we studied two models, the single bottleneck
node and a network of such nodes. The convergence of this
algorithm was theoretically proven, and numerical experiments
were conducted to investigate the performance of the structured
feedback policies. For the case of a single bottleneck node,
multilevel closed-loop feedback policies were compared with
optimal open-loop policies and were found to perform better
than the latter even in the presence of significant delays. We ob-
served that our algorithm converges orders of magnitude faster
than the algorithm of [5]. We also performed experiments with
two and three node networks. We compared the performance
of our structured policy [Policy (13)] with ERICA. Further,
using our techniques, we also obtained another “optimal”
structured policy (ERICA ) that is based on ERICA, which
has the advantage (over ERICA) that it does not require an

estimate of available bandwidth using it. We observed that even
though ERICA is “fairer” in some cases than Policy (13) and
ERICA ; however, in all the cases we considered, both Policy
(13) and ERICA have a measure of variation in queue length
processes that is many times lower than ERICA.

One natural extension of this work is to apply similar methods
for selecting thresholds and . For instance, for the single
bottleneck node case, by incorporating into the parameter
vector , i.e., is now represented as ,
an optimal can be determined by optimizingas earlier.
However, note that if we continue with the same form of the cost
function , then this would in fact give rise to a
family of parameterized cost functions (parameterized by).
Table III in our numerical experiments suggests choosing a band

(depending upon acceptable levels of performance) within
which one can expect to lie. One can then select a cost func-
tion that takes (say) value zero on and increases sharply
outside. The two-timescale SPSA algorithm (10) applied to suit-
able parameterized policies similar to (2) with the parameter

can then give rise to an optimal
within that class of policies. The only problem is with the fact
that is continuous-valued now. However, one can use the in-
tegral part of -updates in the policy as an approximation. A
similar approach can also be used for finding optimalfor the
case of network of nodes.

Finally, we mention an open problem here. The problem is to
prove Theorem A.1 (see the Appendix) for the system in Fig. 1
with i.i.d. general service times (we assumed exponential distri-
bution) and with a finite or an infinite buffer. The rest of the con-
vergence analysis for such a system can be shown as remarked
at the end of Theorem A.1.

APPENDIX

CONVERGENCEANALYSIS

We show the convergence analysis for the single bottleneck
node case. The analysis for the network case follows in a similar
manner with minor changes in the proof of Theorem A.1. How-
ever, due to considerations of space, some of the proofs have
been shortened, with the details found in [6]. We assume for
simplicity here that the service time process is i.i.d. with expo-
nential distribution. This assumption is however only required in
the proof of Theorem A.1 (below), which along with Corollary
A.1 establishes the preliminary hypotheses for convergence of
algorithm (10). The remark at the end of Theorem A.1 explains
the difficulty with the general service time case.

When , the rate becomes effective in the
time interval . Then, under the type of policies
(2), it is clear that , , is a Markov chain.
When are nonzero, we will assume for simplicity that

for some integer . In this case, the
ABR rate computed at time at the node is in fact
effective in the time interval .
Thus, in the interval , packets from the ABR
source that arrive at the node were in fact sent from the source
with rate computed at time at the
node. For such a system, it can be seen that the joint process

, is a
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Markov chain. In a related paper [1], it is shown that a system
as in Fig. 1 with (say) is equivalent to one
with and . We define a Markov process that
is aperiodic, irreducible and positive recurrent to be ergodic.
It is easy to see that, since we have a finite buffer system
and because is ergodic, for , the joint
process , under policies (2) is ergodic. Similarly for
the delayed case (when ), the joint process

under policies
(2) is ergodic as well. For ease of exposition, we consider the
case in detail from now on and explain the
changes necessary for nonzero as we proceed. Thus,
for any given , is ergodic Markov with as
in (2). Let be the stationary distribution of this Markov
chain on , for given . Let be the marginal
of on that corresponds to the stationary dis-
tribution of alone. Thus, .
The average cost in (1) can now be written as

.
Next, we establish some preliminary hypotheses necessary to

prove Theorem 3.1. Let , ,
represent the transition probabilities for the Markov chain

for given . Let denote the number of departures
from the queue in the time interval , denote
the number of arrivals from the controlled source in

and be the number of arrivals from the uncontrolled
stream during the same time interval.

Theorem A.1:Under all policies of type (2), is contin-
uously differentiable in .

Proof: When , for to be continu-
ously differentiable, it is enough to show that is con-
tinuously differentiable in . For ease of exposition, let us con-
sider for the moment that is a scalar. Writing in matrix no-
tation, let for fixed , be the transi-
tion probability matrix of and
denote the vector of stationary probabilities. Also let

, where is the identity matrix and
. It is shown in [24]

that and exist for all finite-dimensional Markov
chains. Also, from [24, Th. 2], we can write

(14)

Thus, . The proof of existence and con-
tinuity of the derivative (of ) is straightforward (see
[6]). Thus, the derivative [of ] exists. We also have

Now, from [24, Th. 2], we can write as

, where,
as and

as . In the
above is the matrix (of appropriate dimension) with all zero
elements. It thus follows that as .
Moreover from (14), is continuous. Thus from above,

is continuous in and the claim follows. For vector,
a similar proof as above verifies the claim. The proof for the
delayed case follows in a similar manner.

Remark: Let represent the work load at instant . For a
system as in Fig. 1 (but) with general i.i.d. service times, under
policies (2), for , is ergodic Markov.
Similarly, , , , , , , is er-
godic Markov for . The above Markov chains
are however uncountable and [24, Th. 2] (which holds for a fi-
nite state system) is no longer valid. However, Corollary A.1
below can be shown easily for this system using sample path
arguments [4]. Moreover, the remainder of the analysis can be
shown in a manner similar to that below. Thus, the problem of
proving Theorem A.1 for i.i.d. general service times remains an
open problem. As a first step, one can try to prove this result
for more general distributions, for instance, mixture of sums of
exponentials (in a similar manner as above). Moreover, as men-
tioned in Section IV-A, in [4] more general service time distri-
butions were tried on a similar model with uncontrolled arrival
stream Poisson and similar experimental results as for exponen-
tial service times were obtained. We conjecture that Theorem
A.1 holds for general service distributions as well.

Corollary A.1: Under all policies (2), the map
is continuous in .

Proof: The above map is differentiable in(see above),
and hence continuous.

We now proceed with the rest of the convergence analysis.
Let , , , represent
the -algebra associated with information up to period and
where and , for . We
consider the undelayed case ( ) here. The delayed
case is treated in detail in [6]. For any sets and

, define sequences and as
follows. For

and , where is the indicator or characteristic func-
tion. One can then proceed to show (see [6] for details) that

and are zero mean, square
integrable martingale sequences with a.s. convergent quadratic
variation processes. Thus, we have the following.

Lemma A.1:Given and , ,
and converge a.s.

Proof: Follows from [20, Proposition VII.2.3(c), pp.
149–150].
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Now for , define random variables and as
follows: Let and be any two sets. Then,

Recall that represents the invariant measure corre-
sponding to the ergodic Markov process that has
transition probabilities . Then
[resp. ] is the invariant measure of the ergodic
Markov process that has transition probabilities

(resp. ).
Theorem A.2:Almost surely, ,

, converges to the compact set
.

Proof: Let us consider first. From
Lemma A.1 and the fact that as

, one has

a.s.

for any and . Hence

a.s. (15)

Now any limit point of must be of
the form . From (15), Corollary A.1, the def-
inition of and (5), it follows that must satisfy

. Thus
. An analogous argument applies to . The claim

now follows since any continuous image of a compact set is
compact.

The proof of Theorem 3.1 proceeds through a sequence of
steps and is given in detail in [6]. We sketch it below very briefly.

Proof of Theorem 3.1:(sketch) One proceeds through a
series of approximation steps, first noting as a consequence of

Theorem A.2 and the fact that as
, that the algorithm (10) can be written as

with , where are asymptot-
ically diminishing error terms. The second term on the RHS
above can then be replaced by its conditional expectation
taken w.r.t. , the sigma field generated by

, since the difference of these terms forms
a martingale difference sequence with the martingale thus
obtained being almost surely convergent. Now, is
independent of for all . Hence, using
appropriate Taylor series expansions of
and around the point , one obtains
the claim under Condition A) in the limit as , with the
terms corresponding to components other thanaveraging to
zero. We refer the reader to [6] for the detailed proof.
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