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Optimal Structured Feedback Policies for ABR Flow
Control Using Two-Timescale SPSA

Shalabh Bhatnagar, Michael C. Fu, Steven |. May&edow, IEEE and Pedram J. Fard

Abstract—Optimal structured feedback control policies for flow control have since been proposed at the ATM forum. We
rate-based flow control of available bit rate service in asyn- discuss these in detail below since we use a rate-based scheme
chronous transfer mode networks are obtained in the presence of in this paper.

information and propagation delays, using a numerically efficient "
two-timescale simultaneous perturbation stochastic approxima- Initial proposals for rate-based ABR flow control were based

tion algorithm. Models comprising both a single bottleneck node 0N single bit feedback schemes [15], [23]. Using some of these
and a network with multiple bottleneck nodes are considered. schemes, the system was either found to become unstable or
A convergence analysis of the algorithm is presented. Numerical suffer from the beat-down problem [26]. In general, single-bit
experiments demonstrate fast convergence even in the presencggeadpack schemes did not work well for ATM networks. and
of significant delays. We also illustrate performance comparisons . ’
with the well-known Explicit Rate Indication for Congestion as a_resuI'F, explicit rate feedback S(?hemes [9] were proposed.
Avoidance (ERICA) algorithm and describe another algorithm The idea in these was that the switches would compute the
(based on ERICA) that does not require estimating available ABR source rates (based on the level of congestion) and feed-
bandwidth (as in ERICA). back these directly to the sources. These schemes were found
Index Terms—Network of nodes, optimal structured feedback tO substantially improve system performance and offer more
policies, rate-based ABR flow control, single bottleneck node, two- flexibility to switch designers. Several explicit-rate feedback
timescale SPSA. schemes have been proposed in recent years; amongst these are
Enhanced PRCA (EPRCA) [22], the Dynamic Max Rate Con-
I. INTRODUCTION trol AIgorithr_n (DMRCA) [1Q], and t.he well-known Explicit
] o Rate Indication for Congestion Avoidance (ERICA) [16]. We
T HE AVAILABLE bit rate (ABR) service in asynchronous sha| consider the last algorithm above in detail for compar-
transfer mode (ATM) networks is used primarily for datgson purposes with our algorithm. In [3], the controller com-
traffic. Bandwidth allocation for ABR service is done after th%utes the input rate as a linear function of past rates and queue
higher priority services such as constant bit rate (CBR) and vagyels, and the algorithm requires a complicated tuning of con-
able bit rate (VBR) have been allocated bandwidth. The avajly| parameters in order to ensure stability. In [19] and [18], the
able bandwidth is a time-varying quantity, and for proper utilizasmith principle is used with a simple controller. However, the
tion, the network requires the ABR sources to control their indjaedpack law necessarily requires that the queue length infor-
vidual traffic flows. The proposals discussed by the ATM forurfation be fed back with rate computation done at the source
for flow control in ABR service [26] were broadly classifiedand of the system, making the scheme incompatible with ATM
into two categories: rate-based and credit-based schemes. {pgm standards. In [1], the problem is formulated as a sto-
rate-based scheme [8] was finally accepted by the ATM forughastic control problem but with linearized queue dynamics,
primarily pecause of the higher hardware.complexity and cogt$ere the gueue length may become negative. In [25], a con-
involved in the latter [26]. Several algorithms for rate-baseghyous-time queueing model is studied and stability conditions
for various controllers obtained. However, performance anal-
ysis is done only under the assumptions of no delays and the

Manuscript received March 5, 1999; revised January 17, 2000 e_md Jan@%tem being continuously observed, which seem unrealistic in
25, 2001; approved by IEEE/ACMRANSACTIONS ONNETWORKING Editor S. ABR text
H. Low. This work was supported by the National Science Foundation unddte i context. ) )
Grant DMI-9713720, by the Semiconductor Research Corporations under Granin this paper, we consider both a single bottleneck node

97-FJ-491, and by DoD under Contract MDA90497C3015. model (as in [25]) and its extension to a network of such
S. Bhatnagar was with the Institute for Systems Research, University of Ma

ry- S .
land, College Park, MD 20742 USA and the Division of Mathematics and Corﬁ{Odes for eXp|ICIt rate-based ﬂow control. Thef traffic from
puter Science, Free University, Amsterdam, The Netherlands. He is now wABR sources (to be controlled) is modeled using controlled

the Department of Computer Science and Engineering, Indian Institute of Teghyisson processes. The uncontrolled traffic (representing all
nology, New Delhi, India (e-mail: shalabh@cse.iitd.ernet.in).

M. C. Fu is with the Robert H. Smith School of Business and the Instituf€ Other traffic in the network) is modeled using appropriate
for Systems Research, University of Maryland, College Park, MD 20742 uslarkov-modulated Poisson processes (MMPP). Our models
(e-mail: mfu@rhsmith.umd.edu). . ___include delays in receiving rate information and in packet

S. I. Marcus is with the Department of Electrical and Computer Engineerin . . .
and the Institute for Systems Research, University of Maryland, College Pa&"?‘nsmﬁsmns' We consider structured feedback pO|ICIeS that
MD 20742 USA (e-mail: marcus@eng.umd.edu). have several levels of control. We develop a simultaneous

P. J. Fard was with the Institute for Systems Research, University of 'V'afgerturbation stochastic approximation (SPSA) [27], [14]

land, College Park, MD 20742 USA. He is now with Hughes Network Systems, . . . . . -
Germantown, MD 20876 USA (e-mail: pfard@hns.com). variant of a two-timescale stochastic approximation algorithm

Publisher Item Identifier S 1063-6692(01)06849-2. in [5] to obtain the optimal policy with this structure. The

1063-6692/01$10.00 © 2001 IEEE



480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001

two-timescale stochastic approximation algorithm developed in MMPP
[5] (see also [2]) for simulation-based parametric optimization A -
. - u,i q
had the advantage that it updates the parameter at determinist n
instants obtained using two different step sizes (time scales)
without the need for regeneration, as is typically the case with] ABR Tm—\j—- |Explicit Rate
traditional perturbation analysis schemes [11], [12]. On thel—; g D¢ D EFeedback
other hand, like other finite-difference schemes, it requires | ﬁ_ ________ _every'nT, n=0,1,2...

(N + 1) simulations for any/N-vector parameter to obtain
the gradient estimate. In [4], this algorithm was also used fpig. 1. Single bottleneck node.
a single bottleneck node ABR problem. As a result of slow

convergence, only three-level parameterized policies WaJR and other ABR sources, and is thus very bursty in na-
considered in the numerical experiments. Here, we consid§fe An MMPP model is appropriate for this kind of traffic. The
not just the single bottleneck node case with policies thRimpp rates are setin the following manner: §&f(¢), t > 0}

have more levels of control, but also a network of multiplge 5 finite state, irreducible, aperiodic Markov process with
nodes and multiple ABR sources or virtual connections (VCSQtate—spacé‘u. WhenX (t) = ¢ € S,, the instantaneous rate

Our two-timescale SPSA algorithm requires only two parallgk ihe uncontrolled stream s, ;. For givenT > 0 fixed, let
simulations for anyV-vector parameter, with all th% -compo- '

A . .
nents of the parameter vector updated simultaneously. For fhg X(nT) represent the.state of the mo‘?'”"'?“”.‘g chain of
) € uncontrolled MMPP at timeZ. Let p(é; 7), 4, j € S,

multiple bottleneck node case, we compare the performanr%e resent the transition probabilities{oX, }. In the followin
of our algorithm using structured feedback policies with the P P i g

well-known congestion-control scheme ERICA for dif'ferenr/e assume that we observe the queue length and use that in-

settings. Furthermore, using our techniques, we also obta?rqmatlon for obtaining the ABR rate. This assumption is quite

an “optimal” ERICA-type policy which, however, does nocommon in the ABR literature, see for instance, EPRCA [22],
require an estimate of available bandwidth like ERICA. MRCA [10], and also [26]. The size of the bottleneck buffer is

observe that even though ERICA is “fairer” in some cases th% and could be large (e.g., in the simulation experiments that we

C o . . MUstrate in Section VB is taken as x 10%). Letg,, n > 0,
our policies, in all cases that we studied, our algorithm shows a :

LA . : rePresent the queue length observed at tiniEsn > 0. We
variation in the queue length process that is many times IOW§ sume that the ABR rate is held fixed in the time intervals
than ERICA. For the single bottleneck node, our numeriiE'F

experiments also highlight the substantial performance gat pds (n+ T), n 2 0, with Ac(n) representing this ABR rate

S : . i
obtained by employing structured feedback policies that iil thenth interval) and is computed using the queue length (
propose over optimal open loop policies.

o%served atthe node. The new rate is then fed back to the source.
The rest of the paper is organized as follows. In Section

\]'hus, the scheme that we propose is essentially an explicit rate
. . edback scheme. The above information however reaches the
we describe both the single bottleneck node and the netW(X

models, and formulate the optimization problem. In Section | R source with a delay),, whereupon the ABR source starts

we describe our two-timescale SPSA scheme for obtalmrsfendlng packgts with the new rate. Futher, there is a propaga
: : . - tion delay Dy in the path of packets arriving at the bottleneck

the optimal structured policy, briefly compare it with two »

) . . . ‘node from the source. We assume throughout that the quantities

previously proposed two-timescale stochastic apprOX|mat|9,n

: . , Dy, andD; are constants. Let = {0, 1, ..., B} be the set
algorithms (cf. [5]) and present our main result. The con- . ' :
vergence analysis is briefly presented in the Appendix, wi fpos_5|b_le gueue length value_s. ligepresent the pe}rameterto
' e optimized that takes values in a compactéet R" . We as-

detailed proofs provided in [6]. In Section IV, we presen . . . N - ‘
numerical experiments with both types of models. Finally e N particular, thaf is of the form] [, [Ai, min A, max],

Section V provides concluding remarks and extensions Yiith Ai,min > 0, foralli=1,..., N.Leth: 5 — R¥ bea
P 9 ' given bounded and nonnegative cost functi@r (is the space

of nonnegative reals). Our aim is to find?ahat minimizes the

Il. THE OPTIMIZATION PROBLEM long-run average cost
In this section, we present two models: the basic single bot- L&
tleneck node model and its extension to a network of bottleneck J(6) 2 lim - Z h(q;). 1)
nodes with multiple ABR sources and/or VCs. noeomn i

A. Single Bottleneck Node Model The feedback policy that governs the ratér) is given as fol-

lows. Leta;, i = 0,1, ..., N be integers such thatl =

Our basic model, shown in Fig. 1, is a bottleneck node wit) « 4, < a4y < --- < ay_; < ay = B. Then the sets
two input streams, one controlled (representing the traffic frog — 14, +1, ... a;},i=1, ..., N, form a partition ofS.
the ABR source), and the other uncontrolled (representing ghr; = 1, ..., N, let |
the other traffic in the network passing through this node). The
ABR stream is modeled as a controlled Poisson process with Ac(n) =N if g, €5;. (2)
instantaneous intensity specified by a feedback-control law de-
fined below. The uncontrolled stream is modeled as an MMPR.the aboved 2 (A1, A2, ..., Ay)T isthe controllable param-

Note that the uncontrolled stream represents traffic from CBBter. Markov decision processes (MDP) [21] represent a general
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Fig. 2. Two-node network.
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Fig. 3. Three-node network.

framework for dealing with dynamic decision making problemassumed independent of one another and have possibly different
under uncertainty (for example whe¥i = B andS; = {i} parameters. Thus, in this model, we are concerned about finding
above). However, a numerical solution based on standard MDgtimal ABR rates of several connections having (possibly) dif-
solution techniques [21] faces the “curse of dimensionality” fderent virtual paths simultaneously. We again assume (as before)
large state spaces. Our numerical experiments in Section IV, fbat the queue length at each node or switch in the network is
instance, havé® = 5 x 10°. In addition, MDP solution tech- observed ever§ units of time. Based on the queue length infor-
nigues also require explicit specification of the transition prolnation, each switch computes an ABR rate for each individual
abilities of the continuous time chain at instafits27, etc. In  VC that uses the node. This information is then transmitted with
the presence of nonzero delags and Dy, these techniques a delay from the current node to either the next switch on the
become computationally prohibitive. Our two-timescale SPS#ackward path of the VC or the ABR source itself (if there is
algorithm is very effective in solving such problems. Next, wao other node in between). Thus, in particular, rate computa-
illustrate the extension of the above model to a network witfon for individual VCs at any given node involves computing

multiple bottleneck nodes. the minimum of the rate computed by the current node and the
latest available (delayed) rate set for that VC by its successor
B. Network with Multiple Nodes node on the forward path. We present here a simple feedback

n(!flicy. Our techniques allow for various interesting modifica-

Here, we will give a precise mathematical model consideri fthi | . | licv based
zero delays, since the notation for the delayed case becomed &S Of this policy. In Section IV, we also present a policy base
1 ERICA that use#,(n) (see below) in place of an estimate

tremely cumbersome. The delayed case will, however, be & ER . i X
plained in detail. Consider, for instance, a network with sever%fl available bandwidth (that ERICA requires for rate allocation)

nodes and ABR sources (Figs. 2 and 3 are examples of n%@-d use ourtechniqu_es to obtain an optimal such policy, that we
works of bottleneck nodes with multiple sources that we cofféll ERICAwp:. If ¢; » is now the queue length at instasi’ of
sider in the numerical experiments). Thus, we consider severgftieneck nodg (this will be different for different nodes) and
VCs that use any given node. There are various feedforwatdi' * = 1,..., N;, are subsets of as in (2) corresponding to
and feedback delays on the network paths (e.g., Figs. 2 and™§d€/, we let

Note tha.t in the previous model (pf_a s?ngle bottleneck_node), hi(n) =\, ; if gj €S, 3)

we consider only one VC for optimization purposes, with the

rest of the traffic (ABR and otherwise) captured in the uncomwvhereh;(n) is some auxiliary rate computed by nogleNote
trolled MMPP stream. We, however, still assume (for the nehat the number.{;) of subsets £, ;) of S corresponding to
work case) that there is uncontrolled MMPP traffic that passasdej can be different for different nodes. Now, if there are
through any given bottleneck node. Also, a certain fraction ¢gay) L VCs that have nodg on their virtual path, then the
these packets randomly enters the next bottleneck node WABR rate set by this node for any given VC is the minimum of
the remaining uncontrolled packets dropped after service. Gui(n)/L and the (latest known) ABR rate set by the successor
model is thus very general, since there could be some CBRde of the given VC, from the current node, on the forward
VBR, and “other” ABR sources comprising an MMPP strearpath of the VC. The parameter to be tuned (now) can be written
that have more than one bottleneck node on their paths. All @sf = (f,, ..., 05,)*, whereM is the number of nodes and
ternal MMPP streams entering individual bottleneck nodes amhere eact¥; = (\; 1, ..., A;, n,)" is the vector of rates for
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the particular nodg. The objective is to minimize the averageAn alternative (proposed and used in [5]) to using ¢ 1)
cost [as in (1)], now defined by parallel simulations is to move the algorithm in cycles during
each of which only two simulations are used as follows. The

a1 . ‘ ‘ first simulation corresponds tf(¢;, X;)} and is governed by
16) = nlgr;o n ; Maris s aui) “) {6;}, defined as earlier, and the second simulation is represented
- as {(g;, X;)}, which is governed by(é;} defined byé; =
with appropriately defined real valued cost functibnin the W(?(m)‘f‘&ii) forj = nymti-1; ”N.m+i71+17 sy MNmei ™
next section, we present a computationally efficient stochastict = 1, - .., IV, m = 0. The algorithm of [5] is
approximation algorithm for finding optimuih
 ( Mgy) — 1(g;)
Ill. TWO-TIMESCALE SPSA A.GORITHM Aim+1) =i (Ai(m)Jrj:?ZH a(J)< 6 ) '
We present the algorithms here for the single bottleneck node (9)
model. Thusg 2 (A1, ..., An)¥ is the parameter vector to

be tuned in order to minimizé(#) in (1). The corresponding Here,r; = nym4q @ndr;_; = nym4i—1 (Used above for no-
algorithms for the network case are similar to these. We firttional simplicity). Thus instead of all components being up-
briefly motivate the use of stochastic approximation, i.e., whefated every:,,, steps;,m > 1, as in (8), only one component
J(6) is not available analytically but must be estimated by sints updated now every,,, steps and the algorithm thus moves
ulation (see [13], [17]). A stochastic approximation algorithrin bigger loops or cycles of x,, with all components updated
recursively update$ using gradient descent with decreasingnce at the end of the bigger loop. It is clear that one needs
step-sizes and an appropriate estimat€ #f#). The efficiency only two simulations in this manner but there is a tradeoff with
of the algorithm usually depends on the quality and computgpeed of convergence. We return to this issue after we present
tional requirements of the gradient estimate. our two-timescale SPSA algorithm next.

The advantages of using the SPSA approach are best appredror anym > 0, letA(m) € R* be avector of mutually inde-
ated after first presenting the original two-timescale algorithpendent and mean zero random variajlas, 1, ..., Ay, x},
of [5]. Let 6 > 0 be a small fixed constant. Define positiveviz., A(m) 2 (A1, -y Ay )T taking values in a com-
real-valued sequencga(n)} and{b(n)} as follows:a(0) = @, pact setZ ¢ R and having a common distribution. We as-
b(0) = b, a(i) = a/i, b(i) = b/i*, 1/2 < a < 1,4,b > 0, sume that these random variables satisfy Condition A) below.

¢ > 1. Then Condition A): There exists a constahf < oo, such that for
anym > 0,andi € {1, ..., N}, E[A %] < K.
a(n+1), bn+1) — 1, asn — oo (5) We further assume thafA(m)} is a mutually indepen-
a(n) b(n) dent sequence witl\(m) independent ofx(6(1), I < m),

Za(n) = Zb(n) = 00, ZaQ(n), ZbQ(n) < oo  the latter being the filtration generated by the sequence of
n n parameter updates upto instant Condition A) is a standard
(6) condition in SPSA algorithms [27]. Define parallel processes

n n

a(n) = o(b(n)). (7) {(q}, X})} al’ld{(q?, XJQ)} such that forn,,, < j < nma1,
_ {(q}, X})} is governed byt (6(m) — SA(m)) = (1 (A (m) —
Define {”nm m > 0} as follows: ng = 1 and N1 — 5Am’ 1)7 cee 7rN()\N(m)—5Am7N))T. Similarly,{(qf, XJQ)}

min{j > nm | 375, 41a() = b(m)}, m > 1. Leté(m) s governed byr(8(m) + 6A(m)) defined analogously. in the
represent thenth update off. Let x;(A) denote the point apove g(m) is governed by the following recursion equations.

closest toA € R in the interval [A; win, Aijmax] € R Fori=1,...., N

(defined earlier) andr(6) be defined byr(8) = (71(A1),

7w2(A2), .., Tn(An))T. Let A;(m) be themth update of);. P g1 h(gh) — h(g2)
The (N + 1) parallel simulations are obtained as follows.\;(m +1) = «; ()\i(m)—i— > a) <W>>
The first simulation generate$(g;, X;)} (recall that g¢; J=nm—+1 mst

denotes the queue length ang the state of the MMPP, both (10)
at instants;T’), governed by{f;}, wheref; = 6(m), for
Nm < J < 1. The remainingV parallel simulations gen- Note that we choosé > 0 to be a fixed small constant in this

erate the corrgsponding proces$e¢j, Yj)}, i =1,..., N, algorithm (asinthe previous algorithms above), unlike the usual
governed by{6:},i =1, ..., N, wheref; = n(6(m) + 6¢;), Kiefer-Wolfowitz algorithms that requiré to go to zero. This
i=1,...,N,n, < j < nmy1, ande; is the unit vector has been done to ensure that the variance does not blow up.
in the ith direction. Then the algorithm is as follows: FoHowever, one could modify the algorithm to allawto go to
i=1,...,N zero slowly enough so that the variance does notincrease rapidly
in the beginning of the algorithm. We observed in the numer-
Tt ( hg) - @) ical experiments that a small enou@bhosen arbitrarily works
Ai(m+ 1) = m; | Ai(m) + Z a(j) fj well. In [7], another two timescale SPSA algorithm that updates
J=nm+l the parameter after every fixed number of epochs has recently

(8) been developed and, that along with algorithm (10), have been
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applied for optimizing parameters in uncountable state hiddgme of policies described in Section 1I-B and compare the per-
Markov models under a Liapunov stability assumption. formance of the optimal policy within that class with the well-
We now discuss the reasons for the SPSA scheme in (10) tddsewn ERICA algorithm. We also provide an algorithm (based
computationally more efficient than both schemes (8) and (9)n ERICA) that does not require estimating the available band-
We begin with (9) first. It was shown in [5] that the scheme (9)idth (as ERICA does) and use our algorithm (10) to obtain an
tracks trajectories of an ordinary differential equation (o0.d.eoptimal policy within the class of ERICA-type policies.
similar to (11) below, but with a factor df/N multiplying the In implementing stochastic approximation algorithms, the
RHS of it. Also, the scheme (8) tracks trajectories of (11) aonvergence rate in practice often depends heavily on the
is. This means that even though the qualitative behavior of tbeoices of the step size sequence parametetsand . In
algorithm (9) is the same as that of (8) and (10) (as shownaur experiments, we choose= 6 = 1, anda = 2/3, as
Appendix), the factor ofi/N on the RHS of (11) essentially these values worked well in the experiments reported in [5],
serves to slow down its rate of convergence. Hence, Theorem &ntl appear to work well in all of the cases considered here.
(below) indicates that we no longer ne@dl + 1) parallel sim- However, in general, adjustments might need to be made for
ulations for anV-vector parameter as (8) would require, whilgarticular problems. For example, if the algorithm appears to
at the same time we do not compromise on the speed of conda-moving too slowly, then larger values &@fandb might be
gence. The convergence analysis proceeds through a sequeageired; similarly, an overly oscillating iterate sequence would
of steps and is given in the Appendix. However, due to lack pfobably call for scaling these parameters downwards.
space, all the details in the proofs have not been provided here,
but can be found in [6]. We state now our main result, the progf Single Bottleneck Node

of which is sketched in the Appendix. Flow control in ABR service requires balancing various con-

The 0.d.e. technique is commonly used to prove convergenge, o herformance criteria, such as mean and variance of delay

of stochastic approximation algorithms. Here, we show that tag 1 roughput. Often, this is addressed by minimizing the dis-
algorithm (10) asymptotically converges to the stable points fgnce of stationary mean queue length from a given fixed con-

= A5 i r
the o.d.e. (11) below. LeX(t) = (Zi(t), ..., Zn(t)) € RY,  stantN, [28], [25], [4]. We adopt a similar approach here and

whereZ;(t),i =1, ..., N, satisfy the o.d.e. chooseh(z) = |& — No|, to be our cost function wittV, as-
. R . . sumed given. In the concluding section, we also indicate ways
Zi(t) = 7 (‘VZJ (Z(t))) » t20, Z(0)€C 1o obtain an optimal suchly. We compare the performance of

(11) optimal structured closed loop feedback policies of type (2) ob-
' _ tained by applying the two-timescale SPSA algorithm (10), with
where, for any bounded, continuous, real-valued functioh  the optimal open-loop policy, defined by settihgn) = A\* for

‘ o all n, whereA* is obtained by applying the two-timescale algo-
7 (v(y)) = lim <7r”(y + 2v(y) W"(y)> rithm (8) for the scalar caseM = 1). Note that the optimal
0<a—0 A open-loop policy has a fixed rate, and thus does not adapt to ob-
Forz = (z1, ..., zx)7, leti(z) = (71(z1), ..., in(zy))?. Served queue lengths. _ _
The role played by the operatét-) is, in some sense, to force For the closed-loop policies, we perform experiments with
the o.d.e. (11) to evolve within the constraint €&tLet K = policies that have 5- and 11-parameter levels, respectively. We

(6 € C|7(V.J(6)) = 0} represent the set of local optima.do not show here the detai_ls of t_he experiments. with 11-level

Also, forn > 0, let K7 = {9 €C|30 e Kst|f—¢| <} poI!C|es due to space considerations and also_s_lnce the obser-

represent the set of points withinof local optima. vations there are S|m|lar to those of 5-level policies. However,
Theorem 3.1:Giveny > 0, 38 > 0 such that for any € these can b_e found in [6]. We assume throughout '_that byth

(0, 3], the algorithm (10) converges 6 almost surely. and D are integral multiples of’. The form of the five-level

Note that the above theorem only gives the existence ofglicies for obtaining\.(n) is as follows:

& > 0 such that, for anyy < 4, the algorithm will almost i
“ ” H . . 1, Magn < N() — 2¢
surely converge to a “small” neighborhood of the optimal point. L
However, as explained earlier, we found in the numerical exper- A3, if No—2¢ < gy <No—ce
iments that any small enoug@tchosen arbitrarily seems to work Ac(n) =< A5, ifNg—e<q,<No+e (12)
well. Np, if No+e < gn < No+2¢
IV. NUMERICAL RESULTS A3 i gn > No + 2e.

We divide this section into two subsections. In the first of (above) is a given fixed constant. We actually consider a gen-
these, we provide numerical results for the single bottleneekalization of the model in Fig. 1, with rate feedback done at
node case, wherein we show experiments with various paramstantsnF,, n > 1, for F, a fixed multiple ofT". This gives
eter settings using our two-timescale SPSA scheme on strus-added flexibility in studying the effect of changeshnin
tured feedback policies (2) and compare their performance wébdition to those iff’. The role played by, is, in some sense,
optimal open loop policies. Next, we show numerical experihat of an additional delay. The sequence of events is thus as fol-
ments with two and three node networks shown in Figs. 2 atavs. The ABRrate\.(-) is computed attimesT’,»n > 1, atthe
3, respectively. Here, we first use our SPSA algorithm on thde using feedback policies above. These rates are fed back to
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the source every; units of time. The source receives this rate In the simulations, we choosq, ..., A4+ € [0.10, 3.0] and
information with a delayD,, and upon receiving it, immedi- A5 € [0.10, 0.90]. We choose\; in a smaller range merely to
ately starts sending packets with the new rate. The packetsspeed up convergence, since we intuitively know #jashould
rive at the node with a propagation delBy. The uncontrolled be the lowest rate because it is applied when the queue length is
process is an MMPP with the underlying Markov chain chosén the “highest” region. We observed that any other choice for
for simplicity to be an irreducible two-state chain. To simplifithe range of\; works well, too, as long as the range is smaller
the simulation code, we assume that the underlying chain uhan that ofAq, ..., A4; for instance\; € [0.1, 1.5] works
dergoes state transitions evéryunits of time. The buffer size as well. Moreover, the choice of this range does not depend on
Bis 5 x 10°. We tested our SA scheme on various combinaghe number of ABR connections. We choose the same range
tions of the parameter®,, D;, Ny, ¢, T, Fy, A, i, p(4; j). as above for our experiments with two ABR sources feeding
We also show experiments with two controlled sources feediigo the same bottleneck node in Table V and also for our ex-
into the same bottleneck node, but with rate informatiorf4)) periments with networks of bottleneck nodes described in Sec-
fed back with different delays (almost without any delay to thiéon 1V-B. If we, however, choose; € [0.10, 3.0] (the same
first and with a significant delay to the second). We observe thange as\i, ..., A4), our algorithm takes longer to converge
the bandwidth is shared equally by the two sources using qarticularly when delays are high because of initial oscillations.
closed-loop policies (2). We found that\} is higher when delays are high than when they
Let #* denote the parameter value for the correspondirage low. Thus, the range of should not be made too small ei-
optimal policy, i.e.,0* = (X}, ..., A%)T for the closed-loop therl.
policy andé* = A* for the open-loop policy. In the following, We choose the service time process to be i.i.d., exponential
subscriptf* is used in the definition of various performancewith rate s = 1.0. In [4], more general service time processes
measures to indicat®* -parameterized stationary distributionshave been considered for a similar model with a Poisson un-
of the various quantities. Thus, Vafq,) represents the sta-controlled stream, and similar results as for exponential service
tionary variance ofg, } parameterized b§*. Let B, represent were obtained. Tha\,,, ;,i =1, ..., N,in {A(m)} in our al-
the segment or band (of queue length valydg)— ¢, No +¢].  gorithm (10) are chosen as i.i.d. symmetric Bernoulli distributed
We compare performance in terms of parameters of quewgh A,, ; = +1 w.p. 1/2. We arbitrarily choosé = 0.12
length distributions and throughput ratg:Pyana, o2, A, Pale  in the experiments. In the following, we consider two settings
and.J(6*). These quantities and their estimates are definedfas the uncontrolled traffic{a) A\, 1 = 0.05, A,,» = 0.15,

follows: p(l; 1) = p(l; 2) = p(2; 1) = p(2; 2) = 0.5, and
L. D) Adu,1 = 02, Ay 2 = 04, p(1; 1) = p(2; 1) = 0.6,
7 gEe* [gn] ~ Li Z 4 p(l; 2) = p(2; 2) = 0.4. In Tables I-V, the two settings are
a i summarized by the value o, (the mean rate of the uncon-
| L trolled MMPP), which is 0.10 and 0.28 in casgs and (b),
o) SVarg(g,) ~ <L_ q?) — () respectively.
@ =1 We show experiments for thé), = D; = 0 and
A 1 L Dy, Dy > 0 cases, respectively, under nonzéfoand £;,.
Pyand =Py (qn € Ba) = I Z I{q; € Ba} Throughout, “O.L.” represents the optimal open-loop policy.
@ =1 For D, = Dy = 0, we perform experiments with fixet¥y, ¢
A 1 L and uncontrolled MMPP parameters (Tables | and Il), and
Pale =Pp (g, = 0) ~ I Z I{q; =0} varying7Z and F,. Also in Table IV, we choos#& and F}, fixed
¢ i=l along with Vg, ¢ and the uncontrolled MMPP parameters, and
— A 1 Lo . vary D, andD;. In Table Ill, we study the effect of varying,
Ao =Ep-[Ac(n)] ~ L. Z Ae(?) with all other parameters fixed. For smdW,, Dy, T and F,
L =t our algorithm converges in about 130-150 iterations, whereas
J(6%) ~ 1 lgs — No| forlarge Dy, Dy, T and £y, it takes about 200-250 iterations.
L, — On a Sun Sparc Ultral0 work station, our algorithm takes less

than 10 min in most cases to converge. The same is also true of
whereL, is taken ad0> in our experiments. Note that all thesehe network case (cf. Section IV-B). We also ran the algorithm
performance estimates are computed after the SPSA algoritt8j of [5] for 5-level policies with no delaysif, = Dy = 0).
converges. The last performance measure is the one that thdtallid not converge even after 350 iterations after running
gorithm seeks to minimize, but clearly the others are closetjose to 200 minutes, indicating that our algorithm is orders of
related. One desireB},,,q to be high in order to satisfy var- magnitude faster than the one of [5]. We discuss our results for
ious other performance criteria. The meashg. gives the sta- the single bottleneck node case in detail below.
tionary probability of the server lying idle and should be close to The closed-loop solution utilizes almost the entire bandwidth
zero. The average ABR throughput rateis often considered (. + A, ~ u) even whenD,, D, T, and I}, are sufficiently
the most important measure of performance in ABR, becausgiigh. The performance degrades when the delyandD in-
is this measure which tells us whether the available bandwidtrease, but remains better than the optimal open-loop case even
has been properly utilized or not. Also, clearly any good schem#en D, and Dy become significantly high. In Table 1V, per-
should provide a low varianoeg. formance can be seen to be better than the optimal open-loop
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TABLE | _ TABLE Il
No =10,e=1,A, = 0.1 T=1,F,=2,¢=1,X,=0.1

F @ | Poand | 02 | A | Biate | J(6%)
2 10.1 | 0.45 7.3 | 0.90 0 2.0
5 9.5 0.34 | 12.8 | 0.90 0 2.7
10 10.0 | 0.26 | 21.310.80 | 0.01 3.5
L. 53 0.08 | 3231 0.76 | 0.15 6.4
10 9.8 0.26 | 21.6 | 0.89 | 0.02 3.6
25 8.2 0.17 | 34.1 § 0.82 | 0.07 4.8
50 6.4 0.12 | 383 | 0.75 | 0.16 6.0
OL.| 51 0.09 | 31.9 | 0.75 | 0.16 6.4

d [ Pana | o2 | A [ Pae | J(6%)
1.5 055 | 23] 0.55| 0.34 1.3
2.7 051 [ 40| 0.74 | 0.14 1.6
3.8 0.48 | 49| 0.83 | 0.07 1.8
49 0.46 | 5.8 | 0.85 | 0.04 1.9
. K 6.4 | 0.87 | 0.02 2.0
6.9 0.46 | 6.5 | 0.89 | 0.01 20
8.2 044 | 690289 | 0.01 2.0
8.9 045 | 7.2 | 0.90 0 2.0
10.1 | 045 | 7.3 1 0.90 0 2.0
114 | 043 | 74| 0.90 4] 2.1

(S I B e
Qo
e

E5 om0 o w2
o
-3
o

TABLE Il
Nog =10, e =1,A, = 0.28
TABLE IV _
Fb q- Pband 0.3 Ac I’idle J(ot) T=1,F, =2, Ng=10,e=1,A, = 0.1
2 102 | 044 | 7.9 | 0.72 0 22 2

D, Df q Pyand g, Ac Pige J(B.)

X . . . 2. q
3 104 033 ) 13.2 | 0.72 0 4 1 0 (101 038 | 9.7 | 0.89 0 24

10 99 | 026 | 205071} 001 | 35

DU DTG G = = e N
@]
[

L.| 531|008 |332|060]|013| 65 111198038 )97 108] 0 | 24
25 | 73 | 016 | 279|064 | 007 | 48 10 | 10 | 88 | 020 | 280 | 0.87 | 003 | 45

: 20 | 10 | 84 | 0.14 | 395|084 | 0.06 | 5.2
50 | 7.3 | 012 | 39.4 059 014 | 56 2
OL.| 53 | 009 |311]058] 015 | 64 20 | 40 | 82 ) 0.3 | 440 0.80 ) 0.06 } 5.

30 20 | 81 | 0.13 | 48.0 | 0.79 | 0.08 | 5.7
40 10 | 64 | 012 | 527 | 0.78 | 0.12 | 5.8
40 [ 30 | 69 | 0.12 | 564 | 0.78 | 0.12 | 59

case even foD, + D; = 150 for all performance measures 50 | 50 | 7.1 | 012 | 652|078 | 0.10 | 6.0
excepto. The variance; for the open-loop case is lower pos- 50 | 100§ 6.7 | 0.11 |59.50.77 | 0.13 | 6.1
OL.| - | 53| 008 [323]076]0.15 | 64

sibly because of its mean queue lengtibeing much lower
than the desired mean queue length of 10. Also as expected,
we get the best performance for lower valuegadnd F;, (see

Table 1 and I1). When the settings of the uncontrolled MMPP TABLE V B
stream are changed such that the mean Xatef the stream T=1F=2N=10,e=1,, =01
is increased, the performance c_;legrades as expected (cf. Table | Dn Du | D D | e | P [T
versus Table Il). We also consider the case of two controllers 1T 10 | 4 10 | 044 [0.45 | 3.6
feeding arrivals into the same bottleneck node in addition to the 1 30 | 4 10 | 044 | 044 | 39
uncontrolled MMPP stream (Table V). Explicit rate informa- 1 50 | 4 20 (042)043) 44
1 80 | 4 100 {041 | 042 | 4.7

tion is fed back to the two sources with different deldys
andDy,. Furthermore, there are different delayg, and D,

in packets arriving to the bottleneck node from the two SOUrCesy ncontrolled MMPP streams with different parameters
We observe that the stationary mean ratesand .. for the  ,554ing through each node in both cases. We again assume,
two sources are almost the same even when the difference infie-impjicity (as in the case of a single bottleneck node),
lays is significantly high. In Table Ill, we varVy and fix other ot the respective underlying Markov chain corresponding to
parameters with), = Dy = 0 to see the effect on performanceg,ch, of these streams switches states eFempits of time. In
As expected for smalNo, . is low, and subsequentliaic IS the two-node network case (Fig. 2), we assume that 40% of
high. But as\Vy increases). becomes high, anfiqi. becomes . qomiy selected uncontrolled packets from the first MMPP
close to zero. Also, as expected, the vgr|am3:also_|ncrea§es stream (MMPR) enter Node 2 with the remaining uncontrolled
with No. In the light of these observations, we discuss in the, - ats dropped after service at Node 1. Thus, we assume
concluding section a method of finding an optind&J. We now 14t on an average 40% of the uncontrolled traffic from Node
discuss our experiments for networks of bottleneck nodes. 1 5i5 passes through Node 2. We also make this assumption
in the three-node network case (Fig. 3). We further assume,
B. Network of Nodes in the latter case, that 40% of randomly selected uncontrolled
packets (comprising those from MMPPas well as the ones
Here we consider two cases—a two-node network in Fig.feom MMPP; that pass through Node 2), enter Node 3 after
and a three-node network in Fig. 3, respectively. There are twervice at Node 2, while the remaining uncontrolled packets are
VCs in the two-node network case (Fig. 2); the virtual pattiropped after service at Node 2. Thus, we consider very general
of the first ABR source passes through Nodes 1 and 2, whiettings here. We consider three possible Poisson rates for each
that of the second passes only through Node 2. Both VCs hau®&PP stream for both the two-node and three-node network
the same destination. Similarly, in the three-node network casases, respectively. Our main feedback policy (described in
(Fig. 3), there are three VCs with a common destination. TheBection II-B) is as follows. Foi = 1, 2, for the two-node case
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(respectively, fori = 1, 2, 3, for the three-node case), let TABLE VI
[PoLicy (13)]: T =1, N, =7, N, = 30

)\: L If Qi’ n < NZ - 26i Aul Au2 Acl Ac2 MV

My, I Ni—26 < qin <Ni—e 02 0.2 044086 9.27
' ) ’ 02 040500801271
hi(n) =49 Ala HNi—€ <qin<Nite (13) 04 04 |050| 0552166

04 0.2 ] 050|080 12.72

if Qi,n > N; + 2¢;.

Ay BN+ <qin <N+ 2¢

TABLE VII
[PoLicy (13)]: T =1, Ny = 10, N, = 25
In the above,q; , is the queue length at Nodeé Also,

in the above,N; and ¢ are similar to Ny, and ¢, re- Adut Az | Aa | A | MV
spe_ctively, for the single bottleneck case. I_n all our ex- g:g 8::‘; g:gg 8:3:’ 192_‘1192
periments here, we let; = 1 (for simplicity) for all 04 04 |0370.73]| 9.90
nodes. Let). ;(n) represent the ABR rate for source 64 02 ]052]|0.78]| 1253
Then, for the two-node case, we skts(n) = ha(n)/2,

Xe,1(n) = min(hi(n), ha(n)/2). The ABR rates in TABLE VIII

the three-node network case are determined as follows: (ERICA): T =1, N1 =7, N, = 30
Aea(n) = (Lg(n)/& Ae,2(n) = min(ha(n)/2, ha(n)/3), VPR W B i v i 71 1
Ace,1(n) = min(hi(n), A, 2(n)). In what follows, we refer to 02 02 055 | 0.74 | 1.58
our main policy simply as Policy (13) for convenience. Next, let 02 0.4 |046 ] 0.64 | 1091

us briefly explain the ERICA algorithm [16]. ERICA computes 04 04033077 889
the available bandwidth ABRy according to ABRyyw = 04 02]035)095| 894
Target utilizationx (Link Capacity — (VBR + CBR)gw).

Target utilization is typically set at 0.90-0.95. We choose this _TABLE IX N
quantity to be 0.95 in our experiments. If there dreVCs (ERICAp): T =1, M1 = 10, No = 25
using a link at any time, ERICA computes the Fairshare of i Mz | o | A | MV
each VC according to Fairshaze ABR gy /L. Next, ERICA 02 02050079 100
computes VG,... = CCR/z, where CCR is the source current 02 04040049 110
cell rate stored in the resource management (RM) cellszand g:i 8:; g:‘;g g:gg };3‘;

is the load factor computed as = ABRyputrate/ABR W .

Th imal i intis = 1. Finally, th lici
e optimal operating point is inally, the explicit rate TABLE X

(ER) marked by the switch for the VC is calculated as follows: (ERICA): T = 1
ERcalculatea < min(max(FairshareVCuyare ), ABRBw,
ERin RM Cell) . Aul /\u2 Az:l A1:2 MV
We also provide here an alternative policy (based on ERICA) 02 02062063 31.26
" . o 02 0.4 | 055 |0.55 | 35.96
that uses quantiti's; () in (13) (for bottleneck nodg) in place 04 04 | 047 | 059 | 3818
of ABR gy~ with the rest of the algorithm the same as in ERICA. 04 0.2 |052]0.72 | 26.11

Note that a key advantage in so doing is that one does not require
estimation of ABRsyw (as ERICA does and which is very dif-aS follows. LetA, 2 (L AL ADT = (02, 04, 0.6)T and
ficult to obtain in practice), and instead, one directly observes "7 1T 1> 72 73 T I
the queue lengths at the nodes as in Policy (13). Moreover, & = (A1, Az, A3)" = (0.1, 0.2, 0.3) represent tond|fferent
use algorithm (10) [as in Policy (13)] to find the optimum pa\_/ectors of uncontrollgd rates. Let; _(9.3, 0.4, 0.3)* repre-
rameter in the class of ERICA-type policies as well. We call tpeent the vector of stationary probabilities. When MMPP stream
resulting optimal policy (in this class) ERIGA. (A1, ) is used, the mean uncontrolled rate is 0.4 and when the
For the case of two-node (respectively, three-node) networREher stream{A,, 7) is used, the same is 0.2. In Tables VI-X,
we assume a similar parameter constraint region as for {f{g USe various combinations of these streams in the two nodes.
single bottleneck node caséz A 1, ..., A4 € [0.10, 3.0] We represent the uncontrolled traffic simply by the mean rates
and \; 5 € [0.10,0.90], i — 12 for two-node 7(resp. M. and X2 at Node 1 and Node 2, respectively, in Fig. 2.
i — 1.2.3 for th}ee-nc;de) networks. We assume for sim{Ve arbitrarily set the delays in the two-node case as follows:
plicity in the ERICA implementation that the MMPP streamd?1 = 10, D2 = 1, Dy = 20, Dy = 10 and D* = 10
comprise only CBR and VBR traffic (and not ABR from(see Fig. 2). For the three-node case, in Tables XI-XIII, we
other sources). Note that ERICA does not require threshol§ Poth MMPR and MMPR be (A, f)’ and for '\QMP% we
N;. For the two-node case, using Policy (13) and ERIGA consider two d|ff§rent scenarifds, =) and(A4, 7), respec-
we perform experiments for two different case¥; = 7, tively, whereA; = ()\‘i”/)\g’, AT =1(0.1,03,0.65)7, 7' =
N, = 30 (Tables VI and VIII) andN, = 10, N, = 25 (0.2, 0.3, O.S)T,andA4é()\‘f_, AL AHT = (0.05, 0.2, 0.4)7,
(Tables VII and IX), respectively. We also set the service time€ = (0.3, 0.5, 0.2)L". Thus, )\, is either 0.435 or 0.195. We
asp; = 1.0 anduy = 1.5, respectively, for the two nodes inarbitrarily setV; = 7, N, = 10 andN3 = 25 for the three-node
the two-node case. The MMPP stream parameters are selectsk. We also vary the service rate for Node 3 in Tables XI-XIlI
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TABLE XI TABLE XIV
[PoLicy (13)]: T =1 [PoLicy (13)]: T =1
Aus 83 | Aa | A2 | Az | MV Delays | Aa | Az | A3 | MV
0.435 1.8 |0.39 | 042 | 0.54 | 6.86 0 0.46 | 0.48 | 0.62 | 5.92
0.435 2.0 (041|050 0.65 | 7.42 1.0 0.47 | 0.50 { 0.59 | 8.01
0435 2.2 (044|054 078 | 7.81 2.0 0.47 | 0.49 | 0.60 | 9.70
0.195 1.810.38 | 048 | 0.74 | 6.32 3.0 0.46 | 0.48 | 0.62 | 10.39
0.195 2.0 | 0.25 | 0.67 | 0.88 | 8.66 4.0 0.47 | 0.50 | 0.59 | 12.04
0.195 2.2 |0.47 | 0.55 | 0.99 | 8.12 5.0 0.45 ] 0.54 | 0.58 | 13.02
TABLE XII
TABLE XV

ERICAL): T =1 (ERICA,,.): T = 1

Aus B3 | Aa | A2 | Az | MV
Delays /\cl /\52 1\53 MV
0.435 1.8 |0.36 | 045 | 0.55 | 6.80 0 0.48 1050 | 0.58 | 7.14

0.435 2.0 | 0.40 | 0.47 | 0.68 | 8.30
1.0 |051{048|057 | 9.33
0435 2.2 |0.41 048|087 | 7.11
2.0 |0.46 | 0.46 | 0.65 | 9.60
0.195 1.8 | 0.42 | 0.51 | 0.67 | 8.12
30 | 0.46 | 0.46 | 0.64 | 10.44
0.195 2.0 |0.44 | 0.54 | 0.82 | 7.70
0.195 22 |0.43 | 058 | 0.99 | 7.51 40 1048049 | 0.59 | 12.00
50 |0.45| 051|060 | 12.88

TABLE XIlI

(ERICA):T =1 TABLE XVI

(ERICA): T = 1

Az B3 | A | Az [ Az | MV

0435 1.8 | 040 | 043 | 0.48 | 28.83 Delays | de1 | Aez | Aes | MV
0435 2.0 |0.43 | 048 | 0.58 | 27.55 0 049 | 0.50 | 0.52 | 41.57
0435 2.2 (045|051 |0.71 | 26.04 1.0 | 052|050 | 0.51 | 42.34
0195 1.8 |0.44 | 0.49 | 0.60 | 24.76 2.0 |052|052]0.52| 14756
0.195 2.0 { 0.45 | 0.53 | 0.73 | 25.52 30 |o0s521052]| 05223907
0.195 2.2 | 0.46 | 0.56 | 0.89 | 28.39 40 | 052|052/ 052 | 183.81
50 | 052|052 052 248.60

(with all delays zero) between three different valwes pi3 =
1.8, 2.0 and 2.2, respectively. In Tables XIV-XVI, we vangeRICA,, is lower than that for ERICA, while that for the
delays between 1.0 and 5.0 (here a delayramplies that second source)(.) for these policies is higher than that for
each of the delay®;,, D;1, D}?, etc. are equal ta), when ERICA. For the three-node network case, a similar behavior
sampling time in all cases 6 = 1. Also, here we let the un- js observed, except that the difference between corresponding
controlled streams MMPPand MMPR be (both)(Az, ) with  source rates using both Policy (13) and ERIGA with that
amean rate\,; = X,2 = 0.2, and MMPR be (As, 7*) (with  of ERICA is much lower now. However, our key observation
Aus = 0.435). We compare the performance of Policy (13) anglere is that the measure of variation of the queue length
ERICA,,; using our algorithm, with that of ERICA in terms of processes for all two-node and three-node cases, using Policy
ABR rate allocations of each scheme and the variation in the3) and ERICA,,, is many times lower (almost an order of
resulting queue length processes as follows. X.gt k = 1,2, magnitude in some cases) than that using ERICA. We observe
in Fig. 2 (resp.k = 1, 2, 3, in Fig. 3) represent the meanin Tables XIV-XVI that, in the presence of delays, the measure
ABR rate of thekth ABR source in Fig. 2 (resp. Fig. 3). Thesef variation using our policies does not degrade as much as
are defined in exactly the same mannerasfor the single ERICA does. ERICA is known to exhibit highly oscillatory
bottleneck node case in Section IV-A. Also, e} ; represent pehavior and our experiments seem to confirm this fact. Our
the variance of queue length ith queue defined in the samea|gorithm, on the other hand, is much more robust to delays and
manner ag’; in Section IV-A. We define the measure of variavariations in other parameters. This fact is further illustrated in
tion (MV)i in queue lengths as follows: M¥ (o2 741 +aq 2)/?  Figs. 4 and 5. We observe in the experiments for the three-node
for the system in Fig. 2, and M\& ( 1t a 2 +a 3)1/2 network shown in Tables XIV-XVI that all three policies
for the system in Fig. 3. We select the cost functlon nofPolicy (13), ERICA,:, and ERICA] have a similar mean
as h(q1 n @2n) = (lai,n — N1| + |g2,» — N2|)/2 queue length in the first two nodes. In the first node, the mean
for the two-node case andi}(qun, 92,n> G3,n) = queue length for all three policies is in the range 2.1-3.5. In
(lg1,n — N1| + lg2,n — N2| + |gs,n — N3|)/3 for the the second node, the same is in the range 3.6-5.6. In the third
three-node case. We choase- 0.12 as earlier. The step-sizesnode, the mean queue length using Policy (13) and ERJCA
{a(n)} and{b(n)} are as before. The random variables, ; is in the range 24-27, while that using ERICA is 43.5 with zero
are assumed to be symmetric Bernoulli distributed as in tdelays and becomes 245 when all delays are equal to five. A
single bottleneck node case. similar deterioration in the variance performance for the third
For the two-node network (Fig. 2), for most cases, the megneue is observed using ERICA, which is the reason for the
ABR rate for the first sourceX.;) using both Policy (13) and high MV using this scheme.
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N ' ' S estimate of available bandwidth using it. We observed that even
N L though ERICA is “fairer” in some cases than Policy (13) and
B ~. e | ERICA,; however, in all the cases we considered, both Policy
4 (13) and ERICA,,; have a measure of variation in queue length
— P processes that is many times lower than ERICA.
' e ] One natural extension of this work is to apply similar methods
/ for selecting thresholdd, andV;. For instance, for the single
v bottleneck node case, by incorporatiig into the parameter
y vectord, i.e.,d is now represented #&= ()1, ..., An, No)%,
B an optimal Ny can be determined by optimizingas earlier.
; However, note that if we continue with the same form of the cost
function(g,,) = |g, — No|, then this would in fact give rise to a
family of parameterized cost functions (parameterizedviy.
Table I11in our numerical experiments suggests choosing a band
0 . . ; s : s : s : [a, b] (depending upon acceptable levels of performance) within
0 05 1 15 2 25 3 35 4 4.5 5 . .
Delays which one can expecY, to lie. One can then select a cost func-

tion that takes (say) value zero @n b] and increases sharply

8
=]
T
~
/
N

g

Mean Queue Length in Third Queue for 3-Node Case
2
T
~
L

8
N

_Fig. 4. Comparist_)n of mean queue lengths using all Policies in the third ”°88tside. The two-timescale SPSA algorithm (10) applied to suit-
in the network in Fig. 3. . .. - .
able parameterized policies similar to (2) with the parameter
250 . - . - - - . - — 0 = ()1, ..., An, No)? can then give rise to an optimaly
_/‘-\_ within that class of policies. The only problem is with the fact
3 / \'\.\_ _,-" that Vg is continuous-valued now. However, one can use the in-
21 / \,\ ] tegral part ofNg-updates in the policy as an approximation. A
3 / ) similar approach can also be used for finding optiftWafor the
§ — ol 49 case of network of nodes.
Bsor s - erica 7 Finally, we mention an open problem here. The problem is to
g / prove Theorem A.1 (see the Appendix) for the system in Fig. 1
s Fe with i.i.d. general service times (we assumed exponential distri-
£'°T S 1 bution) and with afinite or an infinite buffer. The rest of the con-
s S vergence analysis for such a system can be shown as remarked
H J at the end of Theorem A.1.
| /
............ APPENDIX
I R S B I S CONVERGENCEANALYSIS

Delays
" We show the convergence analysis for the single bottleneck

Fig. 5. Comparison of measure _of variation performance using all Policiesiipde case. The analysis for the network case follows in a similar
the third node in the network in Fig. 3. manner with minor changes in the proof of Theorem A.1. How-
ever, due to considerations of space, some of the proofs have
been shortened, with the details found in [6]. We assume for

We studied the problem of ABR rate-based flow control isimplicity here that the service time process is i.i.d. with expo-
the presence of information and propagation delays, by deveéntial distribution. This assumption is however only required in
oping a numerically efficient two-timescale SPSA algorithnthe proof of Theorem A.1 (below), which along with Corollary
In particular, we studied two models, the single bottlenecdk.1 establishes the preliminary hypotheses for convergence of
node and a network of such nodes. The convergence of thigorithm (10). The remark at the end of Theorem A.1 explains
algorithm was theoretically proven, and numerical experimerttse difficulty with the general service time case.
were conducted to investigate the performance of the structureWhenD, = D; = 0, the rate\.(n) becomes effective in the
feedback policies. For the case of a single bottleneck nodiee interval[n7’, (n + 1)T). Then, under the type of policies
multilevel closed-loop feedback policies were compared wil), it is clear that{(¢,, X,)}, » > 0, is a Markov chain.
optimal open-loop policies and were found to perform bett&henD,, D; are nonzero, we will assume for simplicity that
than the latter even in the presence of significant delays. We db; + Dy = M1 for some integedd > 0. In this case, the
served that our algorithm converges orders of magnitude faséBR rate A.(n) computed at time:7Z" at the node is in fact
than the algorithm of [5]. We also performed experiments witffective in the time interval(n + M)T, (n + M + 1)T).
two and three node networks. We compared the performarideus, in the interva[nT, (n + 1)T'), packets from the ABR
of our structured policy [Policy (13)] with ERICA. Further,source that arrive at the node were in fact sent from the source
using our techniques, we also obtained another “optimakith rate A.(n — M) computed at timgn — M)T at the
structured policy (ERICA),;) that is based on ERICA, which node. For such a system, it can be seen that the joint process
has the advantage (over ERICA) that it does not require &0y,., X, ¢n-1, Xn-1, -+ @-m, Xn-m)}, 7 > 0is a

V. CONCLUSION AND EXTENSIONS
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Markov chain. In a related paper [1], it is shown that a systefi(6, 6 + h) = (P(6 +h) — P(6))Z(6) — 0 as|h| — 0. Inthe

as in Fig. 1 with (say)D, + Dy = M1 is equivalent to one above0 is the matrix (of appropriate dimension) with all zero
with Dy = 0 andD, = MT. We define a Markov process thatelements. It thus follows tha (6 + h) — Z(8) as|h| — 0.

is aperiodic, irreducible and positive recurrent to be ergodibloreover from (14),.(6) is continuous. Thus from above,
It is easy to see that, since we have a finite buffer system(#) is continuous ird and the claim follows. For vectdt,
and becaus¢X,,} is ergodic, forD, = D; = 0, the joint a similar proof as above verifies the claim. The proof for the
process (g, X5 )}, under policies (2) is ergodic. Similarly for delayed cas®),, D; # 0 follows in a similar manner. O

the delayed case (whefl, + Dy = MT), the joint process = Remark: Let V,, represent the work load at instatif’. For a

{(@ny Xny -1, X1, -+, @n—n, Xn_nr)} under policies system asin Fig. 1 (but) with general i.i.d. service times, under
(2) is ergodic as well. For ease of exposition, we consider tpelicies (2){(V,,, X,,)} for D, = D; = 0, is ergodic Markov.
caseD, = D; = 0 in detail from now on and explain the Similarly, {(V,,, X.., V.1, Xoz1, ..., Vo s, Xooar) P is er-

changes necessary for nonzddg, D; as we proceed. Thus, godic Markov forD, + Dy = MT'. The above Markov chains
for any giverd, {(¢., X,,)} is ergodic Markov with{ \.(n)} as are however uncountable and [24, Th. 2] (which holds for a fi-
in (2). Letug(gq, ) be the stationary distribution of this Markovnite state system) is no longer valid. However, Corollary A.1
chain onS x S, for givené € C. Letry(q) be the marginal below can be shown easily for this system using sample path
of pe(g, ) on S that corresponds to the stationary disarguments [4]. Moreover, the remainder of the analysis can be

tribution of {g.} alone. Thus,s(q) = > s pe(g, ). shown inamanner similar to that below. Thus, the problem of
The average cost/(8) in (1) can now be written as proving Theorem A.1 fori.i.d. general service times remains an
J(0) =2 ics POve(i) = Dics 2ones, MDue(i, ). open problem. As a first step, one can try to prove this result

Next, we establish some preliminary hypotheses necessarydomore general distributions, for instance, mixture of sums of
prove Theorem 3.1. Lety(¢, z; ¢/, 2'), i, ¢ € S, z, 2’ € exponentials (in a similar manner as above). Moreover, as men-
S, represent the transition probabilities for the Markov chaitioned in Section IV-A, in [4] more general service time distri-
{(g, X,)} forgivend. Let D,, denote the number of departuredutions were tried on a similar model with uncontrolled arrival
from the queue in the time intervglT, (n 4+ 1)T"), AS denote stream Poisson and similar experimental results as for exponen-
the number of arrivals from the controlled sourcé:iff’, (n + tial service times were obtained. We conjecture that Theorem
1)T) and A be the number of arrivals from the uncontrollecA.1 holds for general service distributions as well.

stream during the same time interval. Corollary A.1: Under all policies (2), the map
Theorem A.1:Under all policies of type (2)J(6) is contin- 8 — py(¢, x1; 7, x2) iS continuous irp.
uously differentiable ir#. Proof: The above map is differentiable th(see above),
Proof: WhenD, = D; = 0, for J(6) to be continu- and hence continuous. O
ously differentiable, it is enough to show thai(-, -) is con- We now proceed with the rest of the convergence analysis.

tinuously differentiable irf. For ease of exposition, let us cond et 7, 2 o’(q}‘7 qu X]l, Xf éj, A], 1 < j < n) represent
sider for the moment that is a scalar. Writing in matrix no- the s-algebra associated with information up to peridt and
tation, let for fixedd, P(6) := [[pe(i, x; j, )] be the transi- whered,; = §(m) andA; = A(m), for n,, < j < nmyr. We
tion probability matrix of{(g,., X,.)} and(8) := [ne(i, )]  consider the undelayed case,(= D; = 0) here. The delayed
denote the vector of stationary probabilities. Also2t) := case is treated in detail in [6]. For any setsc S andD C
[l — P(9) — POC(Q)]_I, where is the identity matrix and g, define sequences\; (A x D)} and{M, ,(Ax D)} as
P>(0) = lim,,, 0o (P(0)+- - -+P™(6))/m. Itisshownin [24] follows. Fork = 1, 2

that P=°(6) and Z(9) exist for all finite-dimensional Markov

chains. Also, from [24, Th. 2], we can write

Mk,n A x D)
(0 +h) = p(O)(I + (P(6 + h) — P(6))2(0) + o(h)). (14) no1 S
= m) a(y k k
Thus,.’(8) = ()P’ (8)Z(6). The proof of existence and con- B g;o bm) jzgﬂ U)iltg; € 4, X7 e D}

tinuity of the derivativel”’ () (of P(8)) is straightforward (see

6]). Thus, the derivativey’(8) [of 1.(8)] exists. We also have ) )

b+ =1 O andn > 1, wherel{-} is the indicator or characteristic func
/ / = 4 ) -
< |p6 + PO+ R)Z(6 + h) — pl6) (6 + h)Z(0 + h)] tion. One can then'proceed to show (see [6] for details) that
— WO P'(0 + h)Z(0 + h) — () P'(6) Z(6 + h)| {M, .(A x D)} and{M, (A x D)} are zero mean, square
— |w(8)P(6)Z(6 + h) — u(6)P'(8) Z(6)]. integrable martingale sequences with a.s. convergent quadratic
variation processes. Thus, we have the following.

Now, from [24, Th. 2], we can writeZ(¢ + h) as Lemma A.1:GivenA C S andD C S,, {M: .(A x D)},
Z6 + h)y = Z(@)H(H,6 + h) — P*(0)H(6,60 + and{M, (A x D)} converge a.s.
U, 0 + h)Z(0)H(0, 6 + h), where, H(6, 0 + h) = Proof: Follows from [20, Proposition VI.2.3(c), pp.
I — (PO +h)—PO)' — Ias|h] — 0 and 149-150]. O

h
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Now form > 1, define random variablelg:.,} and{y2,} as Theorem A.2 and the fact thaf; """ | a(i)/b(m) — 1 as

=Ny

follows: LetA C S andD C S, be any two sets. Then, m — oo, that the algorithm (10) can be written as
Pt 1 Ai(m+1)
> a(i)I{d € A, X} e D} = mi(Ai(m) + (b(m)
FATTY) e - — Ck—L2 I (B(m) — 62 (m))) — J(x(6(m) + 6A(m)))]
Z a(j) /264, :]) + b(m)&i(m))
J=nm+l withz = 1, ..., N, where&;(m), ..., &év(m) are asymptot-

. ) . ically diminishing error terms. The second term on the RHS
Recall thatye(z, z) represents the invariant measure COMmey, e can then be replaced by its conditional expectation
sponding to the ergodic Markov proce§y,., X»)} that has yayen wrt.o(6(1), ..., 6(m)), the sigma field generated by
transition probabilitieg[ps (¢, =; j, ¥)II. TheNuxe—sa) (1. ) g1y g(m), since the difference of these terms forms

[resp. yix(e+s54) (¢, 2)]is the invariant measure of the ergodic, " 4 rtingale difference sequence with the martingale thus
obtained being almost surely convergent. Nad(m) is

Markov process{(q,, X,,)} that has transition probabilities

[Pr(o—sa) (s 25§ )] (resD-[[pw(HéAl) (1’2“75 7, - independent of(6(1), ..., 8(m)) for all m. Hence, using
Theorem  A.2:Almost  surely, (1, 4, 8(m), Alm)),  aporopriate Taylor series expansionsiéh(8(m) — 6A(m)))
m =z 0, converges to the —compact Sehnq ;i:(g(m) + 5A(m))) around the poinf(m), one obtains
{(hn(o—s0), tix(o4sa), 0, A) [0 € C, A € B} the claim under Condition A) in the limit a | 0, with the

Proof: Let us consider{}; ,(A x D)} first. From
Lemma A.1 and the fact thgf ;""" | a(j)/b(m) — 1 as
m — oo, one has

terms corresponding to components other thaveraging to
zero. We refer the reader to [6] for the detailed proof. [
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