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We develop in this article, four adaptive three-timescale stochastic approximation algorithms for
simulation optimization that estimate both the gradient and Hessian of average cost at each up-
date epoch. These algorithms use four, three, two, and one simulation(s), respectively, and update
the values of the decision variable and Hessian matrix components simultaneously, with estimates
based on the simultaneous perturbation methodology. Our algorithms use coupled stochastic re-
cursions that proceed using three different timescales or step-size schedules. We present a detailed
convergence analysis of the algorithms and show numerical experiments using all the developed
algorithms on a two-node network of M/G/1 queues with feedback for a 50-dimensional parameter
vector. We provide comparisons of the performance of these algorithms with two recently devel-
oped two-timescale steepest descent simultaneous perturbation analogs that use randomized and
deterministic perturbation sequences, respectively. We also present experiments to explore the sen-
sitivity of the algorithms to their associated parameters. The algorithms that use four and three
simulations, respectively, perform significantly better than the rest of the algorithms.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Simulation Theory; G.3.8
[Probability and Statistics]: Probabilistic Algorithms (including Monte Carlo); I.6.0 [Simula-
tion and Modeling]: General

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Adaptive three-timescale stochastic approximation algo-
rithms, simulation optimization, simultaneous perturbation stochastic approximation, Newton-
type algorithms

1. INTRODUCTION

Simulation-based approaches for continuous valued parameter optimization
have largely been studied using gradient-based algorithms. Among these, per-
turbation analysis (PA) type approaches (see for instance Chong and Ramadge
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[1993]; Chong and Ramadge [1994]; Ho and Cao [1991]; Fu [1990]) assume
knowledge of sample path gradients and typically use only one simulation. Like-
lihood ratio (LR)-based approaches (Andradóttir [1996], L’Ecuyer and Glynn
[1994]) also use only one simulation, assuming knowledge of pathwise gra-
dients, and rely on a change of measure with respect to which the average
cost expectation is taken. Both PA and LR-based approaches, however, re-
quire constraining regularity conditions on the underlying system model and
performance functions. Moreover, in many of these approaches, the param-
eter is updated only at certain regeneration epochs which can be sparse in
practice.

Among stochastic approximation algorithms based on estimating gradients,
the simultaneous perturbation stochastic approximation (SPSA) algorithm, in-
troduced in Spall [1992], is applicable in a wide range of settings (see for
instance, Bhatnagar et al. [2001a]; Chen et al. [1999]; Fu and Hill [1997];
Kleinman et al. [1999]) and is, in general, found to be particularly effective
in cases where the parameter dimension is high. SPSA typically uses only two
samples of the objective function and updates the entire parameter vector at
each update epoch by randomly perturbing all parameter components simulta-
neously, unlike Kiefer-Wolfowitz (K-W) type algorithms (Kiefer and Wolfowitz
[1952]) based on (symmetric) finite difference estimates that require 2N sam-
ples for an N-dimensional parameter vector. K-W algorithms with one-sided
differences require (N + 1) samples. Another version of SPSA, proposed in
Spall [1997], uses only one sample but does not show as good performance as
its two-simulation counterpart. Adaptive stochastic approximation algorithms,
based on computing the Hessian (in addition to the gradient) estimates, typ-
ically require many more samples of the objective function than those that
estimate only the gradient. For instance, in Fabian [1971], the Hessian is es-
timated using finite differences that are, in turn, based on finite difference
estimates of the gradient. This requires O(N 2) samples of the objective func-
tion at each update epoch. In Ruppert [1985], an adaptive multivariate version
of the Robbins-Monro algorithm (Robbins and Monro [1951]) is obtained for the
case where the objective function gradients are known and the Hessian is esti-
mated using finite gradient differences. In Dippon and Renz [1997], algorithms
that use gradient estimates based on certain weighted averages over a finite
number of sample paths are shown to have similar asymptotic mean squared
error as in Newton-type algorithms. Regular averages over all sample paths up
to each update epoch are considered in Polyak and Juditsky [1992] and shown
to improve performance.

Recently, in Spall [2000], a simultaneous perturbation-based Newton-type
stochastic adaptive algorithm has been proposed. The Hessian estimates in this
algorithm are obtained using four objective function samples at each update
epoch in cases where the gradient estimates are not known, and three samples
in cases where the latter are known. This is achieved by using two indepen-
dent perturbation sequences with random variables in these that are assumed
bounded, zero-mean, symmetric, and that have a common distribution and are
mutually independent of one another. This method is an extension of the steep-
est descent SPSA algorithm of Spall [1992] that uses only one such perturbation
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sequence. The adaptive algorithms of Spall [2000] have been shown to perform
better than SPSA under the settings considered in Spall [2000] and Luman
[2000]. In order to ensure positive definiteness of the Hessian estimates, these
are first projected at the parameter update step onto the set of positive defi-
nite matrices. Certain mappings for this purpose have been described in Spall
[2000] (see also Bertsekas [1999]). In Zhu and Spall [2002], another such map-
ping based on projecting the eigenvalues of Hessian updates on the positive
half line is given, and an algorithm that replaces the inverse of the projected
Hessian update with that of the geometric mean of the projected eigenvalues
in the parameter recursion step is found to show good performance.

In this article, we develop four adaptive algorithms for simulation-based
parameter optimization for cases where both the gradient and Hessian are
unknown and need to be estimated. These use four, three, two and one simula-
tion(s), respectively, at each update epoch. All our algorithms work with three
different step-size schedules, or timescales, and use coupled stochastic recur-
sions. Even though these algorithms are based on the simultaneous perturba-
tion concept, the form of the gradient estimate in the two-simulation (2SA) and
one-simulation (1SA) algorithms is considerably different from corresponding
two-simulation and one-simulation SPSA algorithms. We present a detailed
convergence analysis of our four-simulation algorithm (4SA) where the above
ideas are formalized, and describe the key changes required in the analysis
for the rest of the algorithms. Algorithm 4SA uses a similar estimate for the
Hessian as the corresponding algorithm of Spall [2000] except that we do not
impose the constraint that each Hessian update be symmetric as Spall does.
The same is true with the Hessian estimates in our other algorithms as well.
We feel that the above symmetry constraint is not needed unless the projection
mechanism itself requires that it be so, as, for instance, in the projection scheme
described in Zhu and Spall [2002] where the symmetry of each Hessian update
is required by the former. However, the Hessian estimates in our algorithms
can easily be modified as in Spall [2000] to make them symmetric (if required)
at each iteration and the convergence analysis that we present would still go
through with minor changes. We show numerical comparisons of our algorithms
on a two-node network of M/G/1 queues with feedback, with parameters of di-
mension 4 and 50, respectively. Note that projecting the Hessian estimates onto
the set of positive definite matrices and obtaining their inverses typically in-
volves a lot of computation. For this reason, in our experiments, we consider
in place of the Hessian, a suitable diagonal matrix with each diagonal element
in it representing the estimate of the second partial derivative of average cost
with respect to the corresponding component of the decision variable. This is
usually recommended for high-dimensional parameters (see for instance, Spall
[2000]; Bertsekas [1999]) so as to keep in check the computational complexity
of the procedure.

The rest of the article is organized as follows: In Section 2, we start with
a brief overview of deterministic optimization algorithms and describe their
stochastic analogs. We then present the framework and problem formulation,
and also describe the SPSA based two-timescale algorithm of Bhatnagar et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 1, January 2005.



Adaptive Three-Timescale Stochastic Approximation • 77

[2001a]. We present our adaptive three-timescale algorithms in Section 3 and
state the main convergence results. In Section 4, we first briefly describe
the deterministic perturbation two-timescale SPSA algorithm of Bhatnagar
et al. [2003]. Next, we present our numerical results using the various algo-
rithms. Finally, in the Appendix, we present the detailed convergence analysis
of Algorithm 4SA and the key changes required in the analysis for the other
algorithms.

2. MODEL AND ALGORITHMS

2.1 Overview of Deterministic Optimization Algorithms

Most standard algorithms for deterministic optimization problems (see for in-
stance, Bertsekas [1999]; Bertsekas and Tsitsiklis [1989]) in which the aim is
to find a parameter θ∗ ∈ RN that minimizes a continuously differentiable func-
tion Ĵ : RN → R, require knowledge (either an exact computation or estimate)
of the gradient ∇ Ĵ (·). A typical algorithm is of the form

θ̂ (n + 1) = θ̂ (n) − γ [D(θ̂ (n))]−1∇ Ĵ (θ̂ (n)), (1)

where D(θ̂ (n)) is a positive definite N × N matrix, and γ > 0 is a given step-
size parameter. Suppose for any vector y ∈ RN , yT denotes its transpose.
Given θ ∈ RN such that ∇ Ĵ (θ ) �= 0, any x ∈ RN satisfying xT ∇ Ĵ (θ ) < 0 is a
descent direction since the directional derivative xT ∇ Ĵ (θ ) along the direction
x is negative, and thus by a Taylor series expansion of Ĵ (θ + γ x) around θ , one
has

Ĵ (θ + γ x) = Ĵ (θ ) + γ xT ∇ Ĵ (θ ) + o(γ ),

which means that Ĵ (θ + γ x) < Ĵ (θ ) for γ sufficiently small. Now since D(θ̂ (n))
is a positive definite matrix, both D(θ̂ (n))T and D(θ̂ (n))−1 are positive definite
matrices. Hence it is easy to see that x = −D(θ̂ (n))−1 ∇ Ĵ (θ̂ (n)) is a descent di-
rection. Algorithms that update along descent directions are also called descent
algorithms. The following well known algorithms are special cases of (1):

(1) Gradient Algorithm. Here D(θ̂ (n)) = I (the N -dimensional identity matrix).
This is also called the steepest descent algorithm since it updates strictly
along the direction of negative gradient.

(2) Jacobi Algorithm. In this algorithm, D(θ̂ (n)) is set to be an N × N -diagonal
matrix with its ith diagonal element ∇2

i,i Ĵ (θ̂ (n)). For D(θ̂ (n)) to be a positive
definite matrix in this case, it is easy to see that all elements ∇2

i,i Ĵ (θ̂ (n)),
i = 1, . . . , N , should be positive.

(3) Newton Algorithm. Here D(θ̂ (n)) is chosen to be ∇2 Ĵ (θ̂ (n)), or the Hessian
of Ĵ (θ̂ (n)).

The D(θ̂ (n)) matrices in Jacobi and Newton algorithms, respectively, need not be
positive definite, in general, and hence should be projected appropriately after
each parameter update so as to ensure that the resulting matrices are positive
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definite (Bertsekas [1999] pp. 88–98). Note that both Jacobi and Newton algo-
rithms require that the function Ĵ be twice continuously differentiable. With
proper scaling provided by the D(θ̂ (n)) matrix, the descent directions obtained
using Jacobi and Newton algorithms are preferable to the one using gradient
algorithm. However, computation of the inverse of the (projected) Hessian ma-
trix at each iteration in the Newton algorithm can result in a significant com-
putational overhead, in particular when the parameter dimension N is high.
Computing the inverse in the case of the Jacobi algorithm is much simpler as
D(·) is a diagonal matrix.

2.2 Stochastic Approximation Algorithms for Optimization

Consider now the problem of finding the zeroes of a function F (θ ), with θ ∈ RN ,
given certain ‘noisy’ observations/estimates f (θ , ξ ) of F (θ ), where ξ is a random
variable such that the expectation E[ f (θ , ξ )] (with respect to the distribution
of ξ ) equals F (θ ). Consider now an infinite sequence of such observations such
that the corresponding noise terms ξn, n ≥ 1, are independent. The Robbins-
Monro algorithm (2) (Robbins and Monro [1951]) converges to a parameter θ∗

for which F (θ∗) = 0.

θ (n + 1) = θ (n) + a(n) f (θ (n), ξn), (2)

where {a(n)} is a sequence of step-sizes that satisfy
∞∑

n=0

a(n) = ∞,
∞∑

n=0

a(n)2 < ∞.

If, on the other hand, the aim is to find θ∗ that minimizes Ĵ (θ ), then this prob-
lem can be seen to be equivalent to the one above by setting F (θ ) = −∇ Ĵ (θ).
Direct measurements of ∇ Ĵ (θ ), in general, are not possible. However, in cases
where perturbation analysis (PA) type schemes (Chong and Ramadge [1993,
1999]; Ho and Cao [1991]; Fu [1990]) apply, the sample pathwise gradients of
the cost function are obtained, and under certain constraining requirements on
the system parameters, an interchange between the gradient and expectation
operators is shown. Likelihood ratio (LR)-based approaches (see for instance,
Andradóttir [1996]; L’Ecuyer and Glynn [1994]) also rely on an interchange be-
tween the gradient and expectation operators and are applicable in this setting.
The expected cost in these is typically written via a change of measure (the new
measure being independent of the parameter) as the expectation of the prod-
uct of cost and a likelihood ratio term. LR approaches also require regularity
conditions on the system parameters and cost functions. In many of the above
schemes, the algorithm is updated at certain regeneration epochs of the basic
underlying process which can be sparse in practice. The Kiefer-Wolfowitz (K-W)
algorithm (Kiefer and Wolfowitz [1952]) with forward difference estimates, on
the other hand, estimates ∇ Ĵ (θ ) using two measurements (if θ is a scalar) J̄ (θ
+δ, ξ1) and J̄ (θ , ξ2), respectively, of the loss function Ĵ (θ ). Here ξ1 and ξ2 are
independent of one another, and are such that

Eξ i [ J̄ (θ , ·)] = Ĵ (θ ), (3)
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where the expectation is with respect to the distribution of ξ i, i = 1, 2. Note
that, in general, the distributions of ξ1 and ξ2 could be different as long
as (3) is satisfied. The K-W algorithm with forward difference estimates is
thus the same as (2), if the estimate of ∇ Ĵ (θ (n)) (= −F (θ (n))) has the form
( J̄ (θ (n) + δ, ξ1(n)) − J̄ (θ (n), ξ2(n)))/δ, where {ξ i(n)}, i = 1, 2, are two mutu-
ally independent sequences of independent random variables such that (3)
holds (with ξ i(n) in place of ξ i). As stated previously, one needs two loss func-
tion measurements for estimating the gradient of Ĵ (θ ), if θ is a scalar. For
an N -dimensional θ , with N > 1, one needs (N + 1) loss function measure-
ments using the K-W algorithm with forward difference estimates as previ-
ously stated. K-W with symmetric differences requires 2N loss finction mea-
surements. In Spall [1992], an alternative algorithm that uses only two loss
function measurements at each parameter update epoch has been proposed.
Here the estimate for the ith partial derivative of Ĵ (θ ), i = 1, . . . , N , has the
form ( J̄ (θ (n) +δ	(n), ξ+(n)) − J̄ (θ (n) −δ	(n), ξ−(n)))/2δ	i(n), where J̄ (·, ξ+(n))
and J̄ (·, ξ−(n)) are noisy estimates of Ĵ (·), with {ξ+(n)}, and {ξ−(n)} being mu-
tually independent sequences of independent random variables that satisfy (3)
(with ξw(n), w = −, +, in place of ξ i). Also 	i(n) are most often taken to be
mutually independent, mean-zero, ±1-valued, Bernoulli distributed, random
variables. Further, 	(n) is the vector 	(n) = (	1(n), . . . , 	N (n))T . More general
conditions on 	i(n) are given in Section 2.3; see also Spall [1992] and Chen et al.
[1999] for similar conditions. The above algorithms are of the steepest descent
variety.

Among Newton type algorithms, as stated earlier, in Fabian [1971], an adap-
tive algorithm based on estimating both the gradient and Hessian is consid-
ered, wherein the latter is estimated using a set of differences of finite dif-
ference K-W type estimates. This, however, requires O(N 2) samples at each
iteration. In Spall [2000], using the simultaneous perturbation approach, the
number of samples required to estimate both the gradient and Hessian at
each iteration is just four, for any N . Here the estimate of the (k, l )’th com-
ponent of the Hessian has the form (4δ1δ2)−1[(	k(n)	̂l (n))−1 +(	l (n)	̂k(n))−1]
[ J̄ (θ (n) +δ1	(n) +δ2	̂(n), ξ++(n)) − J̄ (θ (n) +δ1	(n), ξ+(n)) − J̄ (θ (n) −δ1	(n)
+δ2	̂(n), ξ−+(n)) + J̄ (θ (n) −δ1	(n), ξ−(n))], where 	k(n), 	̂l (n), k, l = 1, . . . , N ,
are mutually independent random variables as described previously. Further,
	(n) = (	1(n), . . . , 	N (n))T and 	̂(n) = (	̂1(n), . . . , 	̂N (n))T , respectively. Also
{ξ++(n)}, {ξ+(n)}, {ξ−+(n)} and {ξ−(n)} are mutually independent sequences
of independent random variables, and are such that (3) holds (with ξw(n),
w = +, −, −+, ++, in place of ξ i). The estimate of the Hessian is then aver-
aged across samples in the algorithm of Spall [2000] and projected onto the set
of positive definite matrices, the inverse of which is then used in the parameter
update step.

In Bhatnagar and Borkar [1997] and Bhatnagar and Borkar [1998], two-
timescale versions of the K-W algorithm with one-sided differences were de-
veloped as alternatives to PA type schemes. Here the estimates J̄ themselves
correspond to the long-run average cost at given perturbed parameter updates.
The advantage in these schemes is that one updates the parameter vector at
certain deterministic epochs, as opposed to regenerative instants as with many

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 1, January 2005.



80 • S. Bhatnagar

PA type schemes. This is achieved by using two timescales or step-size schedules
in the algorithm. The disadvantage in the schemes of Bhatnagar and Borkar
[1997] and Bhatnagar and Borkar [1998], however, lies in the number of simula-
tions (that increases with the parameter dimension) needed for performing one
parameter update. Thus, these schemes are not efficient in high-dimensional
settings. In Bhatnagar et al. [2001a], the SPSA versions of the algorithms in
Bhatnagar and Borkar [1997] and Bhatnagar and Borkar [1998] were devel-
oped. These resulted in significantly better performance compared to the latter
algorithms. In Bhatnagar et al. [2001b], one of the SPSA variants of Bhatnagar
et al. [2001a] was applied to a problem of finding closed loop feedback opti-
mal policies in available bit rate (ABR) service in asynchronous transfer mode
(ATM) networks. Recently, in Bhatnagar et al. [2003], the use of certain de-
terministic perturbation sequences in place of randomized one, is proposed
for steepest descent two-timescale SPSA. It is observed that if one identifies
an appropriate set of perturbations, and at each instant cyclically moves the
perturbation sequence in a deterministic manner through this set, then this
results in an improvement in performance of SPSA type algorithms. In this
article, we develop adaptive three-timescale simultaneous perturbation based
Newton-type algorithms that use randomized differences and estimate both the
gradient and Hessian at each update step.

2.3 Framework and Problem Formulation

Let {X n, n ≥ 1} be an Rd -valued (for some given d ≥ 1) parameterized
Markov process with a tunable N -dimensional parameter θ that takes val-
ues in a compact set C ⊂ RN . We assume, in particular, C to be of the form
C

	= ∏N
i=1[ai,min, ai,max]. We also assume that for any given θ ∈ C, the process

{X n} is ergodic Markov. We constrain our algorithms to evolve within the set C
by using certain projection operators. Let h : Rd → R+ be a given bounded and
continuous cost function. Our aim is to find a θ that minimizes the long-run
average cost

J (θ ) = lim
l→∞

1
l

l−1∑
j=0

h(X j ). (4)

Let 	i(n), 	̂i(n), n ≥ 0, i = 1, . . . , N , be the perturbation random variables. Also
let {a(n)}, {b(n)}, and {c(n)} be three step-size sequences. We make the following
assumptions.

Assumption (A). J (θ ) is twice continuously differentiable and has bounded
third derivative.

Assumption (B). The random variables 	i(n), 	̂i(n), n ≥ 0, i = 1, . . . , N ,
are mutually independent, mean-zero, have a common distribution and satisfy
E[(	i(n))−2], E[(	̂i(n))−2] ≤ K̄ , for some K̄ < ∞.

Assumption (C). The step-size schedules {a(n)}, {b(n)} and {c(n)} satisfy∑
n

a(n) =
∑

n
b(n) =

∑
n

c(n) = ∞,
∑

n
(a(n)2 + b(n)2 + c(n)2) < ∞, (5)
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a(n) = o(c(n)) and c(n) = o(b(n)), (6)

respectively.
Assumption (A) is mainly a technical condition required for proving conver-

gence using certain Taylor series expansions of average cost and is a standard
requirement. As stated earlier, one requires random perturbations for simulta-
neously updating all parameter components. In most applications (as with our
numerical experiments), one simply takes 	i(n), 	̂i(n), i ∈ {1, . . . , N }, n ≥ 0, to
be independent, mean-zero, ±1-valued, Bernoulli distributed random variables.
Finally, from Assumption (C), note that the slowest timescale corresponds to
{a(n)}, and the fastest to {b(n)}. This is because a(n) goes to zero the fastest and
b(n) the slowest, among the three step-size schedules. This has an impact on
the corresponding sizes of increments in these recursions. In particular, beyond
some finite N0 (i.e., n ≥ N0), the sizes of increments in the recursion corre-
sponding to {a(n)} would uniformly be the smallest, and those corresponding
to {b(n)} would (uniformly) be the largest among the three types of recursions
even though the increments asymptotically diminish to zero in all of these. One
expects, therefore, that the recursions corresponding to {b(n)} would asymptot-
ically track their (corresponding) stable equilibrium points, the fastest albeit
with a possibly higher variance in their trajectories. The timescale correspond-
ing to {c(n)} is faster than the one corresponding to {a(n)}, but slower than that
corresponding to {b(n)}. In the following algorithms, we further average over L
epochs the iterates corresponding to the timescale {b(n)}, in effect leading to an
even faster timescale over which averaging is done. The difference in timescales
of the various recursions helps in obtaining appropriate algorithmic behavior
in the following manner. Note that an update of the value of the decision vari-
able (recursion corresponding to {a(n)}) requires the knowledge or estimate of
both the gradient and the inverse of the projected Hessian of average cost. This
justifies the need for data to be averaged faster than the computation of both
the gradient and the Hessian of J (θ ). Further, the Hessian update correspond-
ing to a given value of the decision variable must itself have converged when
viewed from the timescale on which the latter is updated.

Note that since the parameter takes values within the set C = ∏N
i=1 [ai,min,

ai,max], we project the parameter iterates in our algorithms to the set C after
each update using projection operators defined as follows: for given x ∈ R,
let �i, i = 1, . . . , N , be the maps �i : R → [ai,min, ai,max] defined by �i(x)
= max(min (ai,max, x), ai,min). Then �i projects x to the interval [ai,min, ai,max].
Also for y = ( y1, . . . , yN )T ∈ RN , let �( y) = (�1( y1), . . . , �N ( yN ))T . Then �

projects y ∈ RN to the set C. Let 	(n) = (	1(n), . . . , 	N (n))T and 	̂(n) = (	̂1(n),
. . . , 	̂N (n))T , respectively. We now describe the two timescale steepest descent,
randomized difference SPSA algorithm of Bhatnagar et al. [2001a] (referred to
as SPSA-R here) that uses only two simulations at each instant.

2.4 Two-Timescale Randomized Difference SPSA (SPSA-R)

Let δ > 0 be a given small constant. Suppose 	i(n), i = 1, . . . , N , n ≥ 0 are ran-
dom variables satisfying Assumption (B). Note that the perturbations 	̂(n), n ≥
0 are not required in this algorithm. Consider two parallel simulations {X −(l )}
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and {X +(l )}, governed by parameter sequences {θ (n)−δ	(n)}, and {θ (n) +δ	(n)},
respectively, as follows: let L ≥ 1 be the (integer) observation length over which
θ (n) and 	(n) are held fixed (see the recursions following). Thus, for n ≥ 0 and
m ∈ {0, . . . , L − 1}, X −(nL + m) and X +(nL + m) are governed by θ (n) − δ	(n)
and θ (n) + δ	(n), respectively. We also define sequences {Z −(l )} and {Z +(l )}
for averaging the cost function as follows: Z −(0) = Z +(0) = 0, and for n ≥ 0,
m ∈ {0, . . . , L − 1},

Z −(nL + m + 1) = Z −(nL + m) + b(n)(h(X −(nL + m)) − Z −(nL + m)), (7)

Z +(nL + m + 1) = Z +(nL + m) + b(n)(h(X +(nL + m)) − Z +(nL + m)). (8)

Next for i = 1, . . . , N ,

θi(n + 1) = �i

(
θi(n) + a(n)

[
Z −(nL) − Z +(nL)

2δ	i(n)

])
. (9)

Here {a(n)} and {b(n)} satisfy∑
n

a(n) =
∑

n
b(n) = ∞,

∑
n

(a(n)2 + b(n)2) < ∞, a(n) = o(b(n)).

In the next section, we present our adaptive three-timescale algorithms.

3. ADAPTIVE THREE-TIMESCALE ALGORITHMS

The following algorithms that we present use four, three, two and one sim-
ulation(s), respectively, and estimate both the gradient, and the Hessian of
average cost. To ensure that each update of the Hessian matrix is positive defi-
nite, we project the same, using an appropriate projection operator � : RN×N →
{positive definite matrices}. Note that in a ‘small’ neighborhood of a local min-
imum, the Hessian matrix is expected to be positive definite. However, it need
not be so in other portions of the parameter space. We assume �(A) = A, if
A is positive definite. In general, various operators described for instance via
the modified Choleski factorization procedure, see Bertsekas [1999], or the ones
presented in Spall [2000] and Zhu and Spall [2002], respectively, can be used
for projecting the Hessian updates onto the space of positive definite matrices.
We shall not go into the details of these procedures as they can be found in the
mentioned references. Let {�(A)}−1 denote the inverse of �(A). We assume that
the operator � satisfies the following:

Assumption (D). If {An} and {Bn} are sequences of matrices in RN×N such
that limn→∞ ‖ An − Bn ‖ = 0, then limn→∞ ‖ �(An) − �(Bn) ‖ = 0 as well. Fur-
ther, for any sequence {Cn} of matrices in RN×N , if supn ‖ Cn ‖ < ∞, then
supn ‖ �(Cn) ‖, supn ‖ {�(Cn)}−1 ‖ < ∞ as well.

Here and in the rest of the article, for any vector x ∈ RN , ‖ x ‖ denotes
its Euclidean norm. Further for any matrix A ∈ RN×N , its norm is defined
as the induced matrix norm, also denoted using ‖ · ‖ and defined according
to ‖ A ‖= max{x∈RN | ‖x‖=1} ‖ Ax ‖. Note that the continuity requirement on �

can be easily imposed in the modified Choleski factorization procedure and the
operators in Spall [2000]. Also the procedure in Zhu and Spall [2002] has been

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 1, January 2005.



Adaptive Three-Timescale Stochastic Approximation • 83

shown to satisfy this requirement. In fact, since ‖ An − Bn ‖ → 0 as n →
∞, the eigenvalues of An and Bn asymptotically become equal since they are
themselves uniformly continuous functions of the elements of these matrices.
A sufficient condition (Bertsekas [1999] pp.35) for the other requirements in
Assumption (D) is that the eigenvalues of each projected Hessian update be
bounded above and away from zero. Thus for some scalars c1, c2 > 0, suppose
� is such that

c1 ‖ z ‖2≤ zT �(Cn)z ≤ c2 ‖ z ‖2, ∀z ∈ RN , n ≥ 0. (10)

Then all eigenvalues of �(Cn), ∀n, lie between c1 and c2. The above also ensures
that the procedure does not get stuck at a nonstationary point. Now by Proposi-
tions A.9 and A.15 of Bertsekas [1999], supn ‖ �(Cn) ‖, supn ‖ {�(Cn)}−1 ‖ < ∞.
Most projection operators are seen to satisfy (10) either by explicitly projecting
eigenvalues to the positive half line as with Zhu and Spall [2002], or by (10)
getting automatically enforced as, for instance, in the modified Choleski factor-
ization procedure, see Bertsekas [1999]. Moreover, with suitable modifications
(see for instance of Bertsekas [1999] pp. 729–734), the mappings mentioned
in Spall [2000] can also be seen to satisfy (10). A more general condition than
(10) is, however, given on page 36 of Bertsekas [1999]. We show in Lemma A.6
that supn ‖ H(n) ‖< ∞ w.p. 1, where H(n) is the nth update of the Hessian.
Assumption (D) is a technical requirement and is needed in the convergence
analysis. In Spall [2000] and Zhu and Spall [2002], the corresponding operators
are denoted as fn. We, however, drop the dependence on time index n of these
operators and denote them simply using the symbol � as such dependence is
often not required and may lead to confusion. Note that the matrices fn(Cn) in
Zhu and Spall [2002] depend explicitly only on matrices Cn, and not n. More-
over, with suitable modifications (mentioned previously), the mappings in Spall
[2000] can also be characterized using a unique map. Let δ1, δ2 > 0 be given
constants. Also let L ≥ 1 be a given integer. The convergence analysis of the
algorithms that follow is given in detail in the Appendix. However, we state
here the main convergence results.

3.1 Four-Simulation Algorithm (4SA)

Consider four parallel simulations {X −(l )}, {X +(l )}, {X −+(l )}, and {X ++(l )} that
are governed by the parameter sequences {θ (n)−δ1	(n)}, {θ (n)+δ1	(n)}, {θ (n)−
δ1	(n) + δ2	̂(n)}, and {θ (n) + δ1	(n) + δ2	̂(n)}, respectively, where l and n are
related according to l = nL+m, for some m ∈ {0, 1, . . . , L−1}. Let Z w(nL+m),
w ∈ {−, +, −+, ++} be quantities defined by recursions (11)–(14) that are used
for averaging the cost function in the four simulations. We initialize Z w(0) = 0,
∀w ∈ {−, +, −+, ++}. The algorithm is given as follows:
For n ≥ 0, m = 0, 1, . . . , L − 1,

Z −(nL + m + 1) = Z −(nL + m) + b(n)(h(X −(nL + m)) − Z −(nL + m)), (11)

Z +(nL + m + 1) = Z +(nL + m) + b(n)(h(X +(nL + m)) − Z +(nL + m)), (12)

Z −+(nL + m + 1) = Z −+(nL + m) + b(n)(h(X −+(nL + m)) − Z −+(nL + m)), (13)
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Z ++(nL + m + 1) = Z ++(nL + m) + b(n)(h(X ++(nL + m)) − Z ++(nL + m)). (14)

For j , i = 1, . . . , N ,

Hj ,i(n + 1) = Hj ,i(n) + c(n)




(
Z ++(nL)−Z +(nL)

δ2	̂ j (n)

)
−

(
Z −+(nL)−Z −(nL)

δ2	̂ j (n)

)
2δ1	i(n)

− Hj ,i(n)


 . (15)

Next, form the matrix P (n) = �([[Hk,l (n)]]N
k,l=1), and let M (n) = [[Mk,l (n)]]N

k,l=1 be the
inverse of P (n). Finally, for i = 1, . . . , N ,

θi(n + 1) = �i

(
θi(n) + a(n)

N∑
k=1

Mi,k(n)
(

Z −(nL) − Z +(nL)
2δ1	k(n)

))
. (16)

An ordinary differential equation (ODE)-based approach is used for proving
the convergence of this algorithm (as also the other algorithms that follow). We
state here our main result with the detailed analysis given in the Appendix.
For any bounded and continuous function v(·) : R → R, let

π̃i(v( y)) = lim
0<η→0

(
πi( y + ηv( y)) − πi( y)

η

)
.

Also for x = (x1, . . . , xN )T , let π̃ (x) = (π̃1(x1), . . . , π̃N (xN ))T . Suppose M̄ (θ ) =
{�(∇2 J (θ ))}−1 denotes the inverse of the ‘projected Hessian matrix’ correspond-
ing to parameter θ , and let M̄k,l (θ ) be its (k, l )’th element. The operator π̃ (·)
forces (in some sense) the ODE to evolve within the constraint set C. Consider
the following ODE:

.

θ= π̃ (−M̄ (θ (t))∇ J (θ (t))). (17)

Let

K
	= {θ ∈ C | ∇ J (θ )T π̃ (−M̄ (θ )∇ J (θ )) = 0}.

Further, given η > 0, let K η = {θ ∈ C |‖ θ − θ0 ‖≤ η, θ0 ∈ K }. Then K η denotes
the set of all points that are within a distance η from the set K . Suppose K̂
= {θ ∈ C | π̃ (−M̄ (θ )∇ J (θ )) = −M̄ (θ )∇ J (θ )}. It is easy to see that Co ⊆ K̂ ,
where Co is the interior of C. We have

THEOREM 3.1. Given η > 0, there exists δ̂ > 0, such that for all δ1, δ2 ∈ (0, δ̂],
the algorithm (11)–(16) converges to K η with probability one.

Remark 3.1. Note that for θ ∈ K̂ ∩ K , ∇ J (θ ) = 0 by positive definiteness
of M̄ (θ ). Further, on the set K \K̂ , if ∇ J (θ ) �= 0, one has π̃i(−(M̄ (θ )∇ J (θ ))i) = 0
for all those i (i = 1, . . . , N ) for which ∇i J (θ ) �= 0. (Here −(M̄ (θ )∇ J (θ ))i corre-
sponds to the ith component of the vector (M̄ (θ )∇ J (θ )).) The latter correspond
to spurious fixed points that, however, can Occur only on the projection set
boundaries (since Co ⊆ K̂ ) as with any projection based algorithm (Kushner
and Yin [1997] pp. 79). Now note that K̄ ≡ {θ | ∇ J (θ ) = 0} constitutes the set of
all Kuhn-Tucker points, and not just local minima. However, points in K̄ that
are not local minima shall correspond to unstable equilibria. In principle, the
stochastic approximation scheme may get trapped in an unstable equilibrium.
In Pemantle [1990], with noise assumed to be sufficiently ‘omnidirectional’ in
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addition, it is shown that convergence of stochastic approximation algorithms
to unstable fixed points is not possible (see also Brandiere [1998] for condi-
tions on avoidance of unstable equilibria that lie in certain compact connected
chain recurrent sets). Avoidance of unstable equilibria can be ensured by using
additional independent noise. However, in most practical scenarios, stochastic
approximation algorithms are known to converge to a stable equilibrium even
without additional noise. For our algorithm, by continuity of J (·), one then ob-
tains an ‘ε-local minimum’. This implies that the algorithm converges either to
a local minimum, or to a point that is at a distance ≤ ε from it. Next, note
that Theorem 3.1 merely gives the existence of a δ̂ > 0, for given ε > 0, such
that ∀δ1, δ2 ∈ (0, δ̂], the algorithm converges to an ε-local minimum, but does
not give the precise value of such a δ̂. In Section 4, we discuss the effects of
the choices of different δ1, δ2, L, {a(n)}, {b(n)}, and {c(n)}, respectively, on the
numerical performance of the algorithm on our setting. Finally, for obtaining a
global minimum, one may use in addition, a ‘slowly decreasing Gaussian noise’
in the slow timescale recursion (16), as in simulated annealing algorithms, see,
for instance, Gelfand and Mitter [1991].

Remark 3.2. Remark 3.1 holds for all our algorithms and not just 4SA.

3.2 Three-Simulation Algorithm (3SA)

Consider three parallel simulations {X −(l )}, {X +(l )}, and {X ++(l )} that are
governed by the parameter sequences {θ (n)−δ1	(n)}, {θ (n)+δ1	(n)}, and {θ (n)+
δ1	(n) + δ2	̂(n)}, respectively, where l has the form l = nL + m as before, with
m ∈ {0, 1, . . . , L − 1}. Let Z w(nL + m), w ∈ {−, +, ++} be quantities defined by
recursions (18)–(20) for averaging the cost functions in the three simulations.
Also, we initialize Z w(0) = 0, ∀w ∈ {−, +, ++}. The algorithm is as follows:
For n ≥ 0, m = 0, 1, . . . , L − 1,

Z −(nL + m + 1) = Z −(nL + m) + b(n)(h(X −(nL + m)) − Z −(nL + m)), (18)

Z +(nL + m + 1) = Z +(nL + m) + b(n)(h(X +(nL + m)) − Z +(nL + m)), (19)

Z ++(nL + m + 1) = Z ++(nL + m) + b(n)(h(X ++(nL + m)) − Z ++(nL + m)). (20)

For j , i ∈ {1, . . . , N },

Hj ,i(n + 1) = Hj ,i(n) + c(n)
(

Z ++(nL) − Z +(nL)
δ1δ2	i(n)	̂ j (n)

− Hj ,i(n)
)

. (21)

Next, form the matrix P (n) = �([[Hk,l (n)]]N
k,l=1), and let M (n) = [[Mk,l (n)]]N

k,l=1 be the
inverse of P (n). Finally, for i = 1, . . . , N ,

θi(n + 1) = �i

(
θi(n) + a(n)

N∑
k=1

Mi,k(n)
(

Z −(nL) − Z +(nL)
2δ1	k(n)

))
. (22)

Note the change in expression of the Hessian estimates that require only two
simulations in this case. We have the following analog of Theorem 3.1 for
Algorithm 3SA.
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THEOREM 3.2. Given η > 0, there exists δ̂ > 0 such that for all δ1, δ2 ∈ (0, δ̂],
the algorithm (18)–(22) converges to the set K η with probability one.

3.3 Two-Simulation Algorithm (2SA)

Consider two parallel simulations {X +(l )} and {X ++(l )} that are governed by
the parameter sequences {θ (n) + δ1	(n)}, and {θ (n) + δ1	(n) + δ2	̂(n)}, respec-
tively, where l and n are related according to l = nL + m as before, with
m ∈ {0, 1, . . . , L − 1}. Let Z w(nL + m), w ∈ {+, ++} be quantities defined by
recursions (23)–(24) for averaging the cost functions in the two simulations.
Also, we initialize Z w(0) = 0 ∀w ∈ {+, ++}. The algorithm is as follows:
For n ≥ 0, m = 0, 1, . . . , L − 1,

Z +(nL + m + 1) = Z +(nL + m) + b(n)(h(X +(nL + m)) − Z +(nL + m)), (23)

Z ++(nL + m + 1) = Z ++(nL + m) + b(n)(h(X ++(nL + m)) − Z ++(nL + m)). (24)

For j , i ∈ {1, . . . , N },

Hj ,i(n + 1) = Hj ,i(n) + c(n)
(

Z ++(nL) − Z +(nL)
δ1δ2	i(n)	̂ j (n)

− Hj ,i(n)
)

. (25)

Next, form the matrix P (n) = �([[Hk,l (n)]]N
k,l=1), and let M (n) = [[Mk,l (n)]]N

k,l=1 be the
inverse of P (n). Finally, for i = 1, . . . , N ,

θi(n + 1) = �i

(
θi(n) + a(n)

N∑
k=1

Mi,k(n)
(

Z +(nL) − Z ++(nL)
δ2	̂k(n)

))
. (26)

Note the difference in the gradient estimate from the usual simultaneous per-
turbation gradient estimate that arises since we do not generate the simula-
tion {X −(l )} here. As with SPSA type gradient estimates, we show, however,
in Theorem 3.3 (see Appendix for a proof) that the bias terms asymptotically
vanish and one obtains the desired descent direction using this algorithm as
well. An interesting observation is that the numerator terms in the gradient
and Hessian update components are the same except for a negative sign in the
gradient estimate (that is used for descent direction). We have

THEOREM 3.3. Given η > 0, there exists δ̂ > 0, such that for all δ1, δ2 ∈ (0, δ̂],
the algorithm (23)–(26) converges to the set K η with probability one.

3.4 One-Simulation Algorithm (1SA)

Here we use only one simulation for estimating both gradient and Hessian. Con-
sider the simulation {X ++(l )} that is governed by {θ (n) +δ1	(n) +δ2	̂(n)}, where
l and n are related according to l = nL+m as before, with m ∈ {0, 1, . . . , L−1}.
Let Z ++(nL + m) be defined by recursion (27) for averaging the cost function
corresponding to this simulation. We initialize Z ++(0) = 0. The algorithm is as
follows:
For n ≥ 0, m = 0, 1, . . . , L − 1,

Z ++(nL + m + 1) = Z ++(nL + m) + b(n)(h(X ++(nL + m)) − Z ++(nL + m)). (27)
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For j , i ∈ {1, . . . , N },

Hj ,i(n + 1) = Hj ,i(n) + c(n)
(

Z ++(nL)
δ1δ2	i(n)	̂ j (n)

− Hj ,i(n)
)

. (28)

Next, form the matrix P (n) = �([[Hk,l (n)]]N
k,l=1), and let M (n) = [[Mk,l (n)]]N

k,l=1 be the
inverse of P (n). Finally, for i = 1, . . . , N ,

θi(n + 1) = �i

(
θi(n) − a(n)

N∑
k=1

Mi,k(n)
(

Z ++(nL)
δ2	̂k(n)

))
. (29)

Note the difference in the forms of the gradient and Hessian estimates from the
previous algorithms. In the one-measurement form of SPSA considered in Spall
[1997] and its variants (also considered) in Bhatnagar et al. [2003], the gradi-
ent has the form Z +(nL)

δ1	k (n) as opposed to Z ++(nL)
δ2	̂k (n)

in our algorithm. The difference
arises since we are estimating the Hessian as well using the same simulation
in addition to gradient. As with Algorithm 2SA, note that the numerators of
the gradient and Hessian estimate components are also the same except for a
negative sign in the latter (to indicate descent). We have

THEOREM 3.4. Given η > 0, there exists δ̂ > 0, such that for all δ1, δ2 ∈ (0, δ̂],
the algorithm (27)–(29) converges to the set K η with probability one.

Remark 3.3. We also developed two other variants (that we do not present
here) where we use similar gradient estimates as 3SA and 2SA, but the esti-
mates of the Hessian in these are replaced by the ones in Algorithm 1SA. The
numerical performance in these algorithms was found to be inferior in compar-
ison to Algorithms 3SA and 2SA respectively.

Remark 3.4. In Bhatnagar and Borkar [2003], the use of some chaotic it-
erative sequences for random number generation has recently been proposed
for generating perturbations in SPSA and certain smoothed functional algo-
rithms that use Gaussian noise. The same could also be tried for the case of the
higher-order algorithms proposed here.

4. NUMERICAL EXPERIMENTS

We begin with a brief description of a deterministic perturbation algorithm
from Bhatnagar et al. [2003] (described as SPSA2-2L there) that we refer to as
SPSA-D. This algorithm is similar to SPSA-R, but is based on lexicographically
ordering the space of perturbations and cyclically moving the perturbation se-
quence through this space in a deterministic manner. In Bhatnagar et al. [2003],
another construction based on Hadamard matrices is also proposed. Both SPSA-
D, and its analog, based on Hadamard matrices are found to improve perfor-
mance considerably over SPSA-R. Moreover, SPSA-D is found to perform bet-
ter than the Hadamard matrix-based algorithm for high-dimensional settings
(Bhatnagar et al. [2003]) and the two are almost similar in performance over
lower dimensions. SPSA-D is also found to show better results than the other
algorithms considered in Bhatnagar et al. [2003]. In our experiments, we show
performance comparisons of our algorithms with both SPSA-D and SPSA-R.
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Fig. 1. Queueing network.

4.1 Two-Timescale Deterministic Perturbation Algorithm (SPSA-D)

We consider all perturbations 	i(n), i = 1, . . . , N , n ≥ 0, to be ±1-valued.
Suppose E = {±1}N is the set of all perturbations. Note that the cardinality of
E is 2N . Fix 	1(n) = −1, ∀n ≥ 0 and lexicographically order all vectors in the
resulting set F ⊂ E of cardinality 2N−1. Let F = {e0, . . . , e2N−1−1}. Thus each
ei ∈ F is an N -dimensional vector with its first component set to −1. Now let
	(0) = e0 and move the sequence cyclically through F . Algorithm SPSA-D is
then given by recursions (7)–(9) of Algorithm SPSA-R, but with the sequence
of perturbations as just noted.

4.2 Numerical Results

We consider a two-node network of M/G/1 queues with feedback as in Figure 1.
The basic setting here is similar to that in Bhatnagar et al. [2001a] and
Bhatnagar et al. [2003].

Nodes 1 and 2 are fed with independent Poisson arrival streams with rates
λ1 = 0.2, and λ2 = 0.1, respectively. All customers after service at Node 1 enter
Node 2. Further, after service completion at Node 2, each customer indepen-
dently either leaves the system with probability p = 0.4, or joins Node 1 with
probability q = 0.6. The service time processes {Si

n(θ i)} at the two nodes i =
1, 2 are defined by Si

n(θ i) = Ui
n(1 + ∑M

j=1
∑M

j ′=1(θ i
j (n) − θ̄ i

j )(θ
i
j ′ (n) − θ̄ i

j ′ )Aj , j ′ )/Ri,
i = 1, 2, n ≥ 1, where U 1

n , U 2
n ∼ U (0, 1), R1 = 10, and R2 = 20, respectively.

Further, A = [[Aj , j ′ ]] is a given positive definite and symmetric matrix. Also,
θ i

1(n), . . . , θ i
M (n) represent the nth update of the parameter components of service

time at Node i, and θ̄ i
1, . . . , θ̄ i

M represent the target parameter components. We
assume each θ i

j (n) is constrained according to 0.1 ≤ θ i
j (n) ≤ 0.6, j = 1, . . . , M ,

i = 1, 2, ∀n. We set θ̄ i
j = 0.3, j = 1, . . . , M , i = 1, 2. Also θ1

j (0) = 0.4, and
θ2

j (0) = 0.2, ∀ j = 1, . . . , M . We assume the cost function to be the sum of wait-
ing times of individual customers at the two nodes. Thus for the above cost to
be minimized, the parameter components θ i

k(n), i = 1, 2, k = 1, . . . , M should
converge to θ̄ i

k as n → ∞. We show performance comparisons of the various
algorithms on this setting.

We show our experiments for M = 2 and 25, that is, for parame-
ters of dimension N = 4 and 50, respectively. We consider the Euclidean
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distance of each parameter update from the target parameter value d (θ (n), θ̄ )
	=

(
∑2

i=1
∑M

j=1(θ i
j (n) − θ̄ i

j )
2)1/2 as our performance metric. For M = 25, we consider

A = I (the identity matrix), while for M = 2, we consider A with elements
A1,1 = A1,2 = A2,1 = 1 and A2,2 = 2, respectively. Writing down the traffic
equations for the above system (assuming stability for all θ -values), the net ar-
rival rates at the two nodes (for both values of M ) are γ1 = 0.65 and γ2 = 0.75,
respectively. Further, the average service rate µ̄i at node i is bounded accord-
ing to 1.739Ri ≤ µ̄i ≤ 2Ri, when M = 2 and 0.61Ri ≤ µ̄i ≤ 2Ri when M = 25,
respectively. The system is thus stable for both values of M and all values of θ .
For the cost to be minimized, one expects d (θ (n), θ̄ ) → 0 as n → ∞. For the ran-
domized difference algorithms, we consider 	i(n), 	̂i(n), i = 1, . . . , N , n ≥ 0 to
be i.i.d., Bernoulli distributed taking values ±1 with probability 1/2. In all our
higher order algorithms considered here, we assume (for computational sim-
plicity) the matrices H(n) to have zero cross-diagonal terms, that is, Hk,l (n) = 0,
∀k �= l , n ≥ 0, with elements on the diagonal updated according to the recursions
described in the various algorithms. This is usually recommended (Bertsekas
[1999]; Spall [2000]) for high-dimensional settings. In order to ensure positive
definiteness of the matrices H(n), we simply project all diagonal terms Hk,k(n),
k = 1, . . . , N , after each update to the interval [0.1, ∞). Thus for implementa-
tion purposes, we use the Jacobi variants of the adaptive algorithms.

We now comment briefly on the validity of Assumptions (A)–(D) on this set-
ting. In Bhatnagar [1997], certain sample path arguments using an applica-
tion of dominated convergence theorem have been used to show that J (θ ) is
continuously differentiable with a bounded second derivative for a feedback
controlled queuing system with general service times. The same arguments
may further be extended and applied on the setting in this instance to show
that the requirements in Assumption (A) hold. Assumption (B) holds since we
use i.i.d., ±1-valued Bernoulli random variables for the perturbations. Assump-
tion (C) is clearly satisfied by the step-size sequences that we consider (see the
following). Finally, it is easy to see that Assumption (D) is valid as well since
projection is a continuous operator. Also (10) holds in this setting since all eigen-
values of the projected Hessian matrix take values greater than or equal to 0.1.
Further, by Lemma A.6, the iterates of the Hessian (and hence of the projected
Hessian) are uniformly upper bounded with probability one.

We terminate all simulation runs after 12 × 105 estimates of the cost func-
tion. The parameter is thus updated 3000 times for Algorithm 4SA, 4000 times
for Algorithm 3SA, 6000 times for Algorithms 2SA, SPSA-R and SPSA-D, and
12000 times for Algorithm 1SA, at the end of these simulation runs. On a
Pentium 5 PC with Linux operating system, each algorithm takes less than
30 seconds for one simulation run. We ran all simulations independently with
twenty different initial seeds. In Figure 2, we plot the trajectories of the mean
d (θ (n), θ̄ ) obtained from the twenty independent simulation runs for N = 50
for Algorithms 4SA, 3SA, and SPSA-D with respect to the number of function
evaluations. In Figure 3, we plot the same trajectories for Algorithms 2SA,
1SA, and SPSA-R. The convergence patterns for N = 4 are somewhat simi-
lar and are not shown to save space. The mean and standard error from all
simulations upon termination for all algorithms are presented in Table I. We
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Fig. 2. Convergence behavior of Algorithms 4SA, 3SA and SPSA-D for N = 50.

Fig. 3. Convergence behavior of Algorithms 2SA, 1SA and SPSA-R for N = 50.

select L = 100, δ1 = δ2 = 0.1 in all algorithms. Also {a(n)}, {b(n)}, and {c(n)}
are defined according to a(n) = 1

n , b(n) = 1
n2/3 , and c(n) = 1

n3/4 , respectively, for
n ≥ 1, with a(0) = b(0) = c(0) = 1. For Algorithms SPSA-R and SPSA-D, {a(n)},
{b(n)}, and L are chosen as just shown. Further, δ is set at 0.1. From these ex-
periments, we observe that Algorithms 4SA and 3SA show significantly better
performance than the rest of the algorithms. For N = 4, 4SA performs better
than 3SA, while for N = 50, 3SA is slightly better. Similar behavior is also
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Table I. Performance After 12 × 105 Function
Evaluations

d (θ (n), θ̄ ) d (θ (n), θ̄ )
Algorithm N = 4 N = 50

4SA 0.0026 ± 0.0010 0.0488 ± 0.0182
3SA 0.0034 ± 0.0022 0.0364 ± 0.0149
2SA 0.0230 ± 0.0064 0.2537 ± 0.0330
1SA 0.1072 ± 0.0220 0.3768 ± 0.0228

SPSA-R 0.0343 ± 0.0199 0.2066 ± 0.0254
SPSA-D 0.0096 ± 0.0017 0.1093 ± 0.0134

Table II. Performance Variation
of Algorithm 4SA With L

L d (θ (n), θ̄ )
1 0.4172 ± 0.0412

10 0.2140 ± 0.0214
50 0.1246 ± 0.0215
75 0.0471 ± 0.0138

100 0.0488 ± 0.0182
150 0.0328 ± 0.0099
200 0.0468 ± 0.0213
250 0.0408 ± 0.0247
300 0.0507 ± 0.0124
400 0.0632 ± 0.0322
500 0.0637 ± 0.0225
600 0.0732 ± 0.0381
700 0.0719 ± 0.0123
800 0.0876 ± 0.0463
900 0.1190 ± 0.05390

1000 0.1310 ± 0.0214
1200 0.1556 ± 0.0136

observed with varying δ1 and δ2 (see Table V and the discussion preceding it).
It is likely that this behavior is observed because of the form of the A matrix in
the two cases. Note that A = I for N = 50, while A is a more general positive
definite and symmetric matrix with nonzero cross diagonal terms for N = 4.
Moreover, H(n) is considered to be a diagonal matrix. H(n), or A with nonzero
cross diagonal terms, could result in 4SA showing better performance (over
most cases) than 3SA, for N = 50 as well. SPSA-D shows better performance
than SPSA-R, 2SA, and 1SA. It is interesting to observe that for N = 4, 2SA, is
slightly better than SPSA-R. Algorithm 1SA does not show good performance.
However, as observed in Spall [1997], the one-measurement form may have
advantages in nonstationary settings. The same would also be true for 1SA.

Next, we study the effect of L, δ1, δ2 and the step-size sequences on perfor-
mance. We show experiments where each of the twenty independent simula-
tions are run for 12 × 105 estimates of the cost function value. In Table II, we
study the variation of d (θ (n), θ̄ ) for Algorithm 4SA, for N = 50, for different
values of L, keeping the other parameters fixed as before. We observe that per-
formance degrades for low and high L values. This is expected since for low L
values, sufficient averaging is not achieved between two parameter updates,

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 1, January 2005.



92 • S. Bhatnagar

Table III. Performance
Variation of Algorithm 4SA
With c(n) = 1/nα for Fixed

a(n) = 1/n and b(n) = 1/n0.55

α d (θ (n), θ̄ )
0.55 0.1572 ± 0.0359
0.60 0.1142 ± 0.04124
0.65 0.0572 ± 0.0147
0.70 0.0458 ± 0.0124
0.75 0.0427 ± 0.01564
0.80 0.0362 ± 0.0091
0.85 0.0364 ± 0.0101
0.90 0.0351 ± 0.0182
0.92 0.0331 ± 0.0204
0.96 0.1060 ± 0.0362
1.00 0.1322 ± 0.0298

Table IV. Performance Variation of
Algorithm 4SA With b(n) = 1/nβ for
Fixed a(n) = 1/n and c(n) = 1/n0.75

β d (θ (n), θ̄ )
0.55 0.0417 ± 0.0164
0.58 0.0511 ± 0.0113
0.64 0.0291 ± 0.0193
0.66 0.0488 ± 0.0182
0.70 0.0335 ± 0.0144
0.72 0.0786 ± 0.0235
0.75 0.1126 ± 0.0368

while as L is increased, the number of parameter updates get reduced corre-
spondingly, implying that excessive additional averaging is also not desirable.
It has been observed in Bhatnagar et al. [2001a] that SPSA algorithms do not
show good performance for very low L values (say L ≤ 10) particularly for
high-dimensional parameters. It appears from Table II that it is desirable to
operate the algorithm ideally between L = 75 and L = 300. Similar behavior
as in Table II is expected of the other algorithms as well.

In Table III, we set δ1 = δ2 = 0.1, L = 100, a(n) = 1/n, b(n) = 1/n0.55

and c(n) = 1/nα, and study the effect of different α on the performance of 4SA
for N = 50. We observe that the performance deteriorates when α is close to
0.55 (i.e., when the Hessian is updated on a similar timescale as data) or 1.00
(when the Hessian and the value of the decision variable are updated on a
similar scale), while it is good in the range α ∈ [0.65, 0.92]. This is again along
expected lines. One expects a similar behavior for the other algorithms as well.
Next, in Table IV, we set δ1 = δ2 = 0.1, L = 100, a(n) = 1/n, c(n) = 1/n0.75

and b(n) = 1/nβ , and study the effect of different β on the performance of 4SA
for N = 50. We observe that performance degrades when β is brought close
to 0.75 (same scale on which the Hessian is updated). This also suggests the
need for a clear separation between the three timescales. One expects a similar
performance behavior with the other algorithms for this case as well.
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Table V. Performance Variation of Algorithms 4SA and 3SA With δ1 and δ2

d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for
δ1 δ2 4SA, N = 4 3SA, N = 4 4SA, N = 50 3SA, N = 50

0.01 0.01 0.0166 ± 0.0042 0.0550 ± 0.0098 0.2688 ± 0.0427 0.2972 ± 0.0299
0.05 0.01 0.0102 ± 0.0051 0.0194 ± 0.0059 0.1927 ± 0.0213 0.1655 ± 0.0212
0.10 0.01 0.0062 ± 0.0013 0.0054 ± 0.0022 0.1447 ± 0.0199 0.1293 ± 0.0168
0.15 0.01 0.0060 ± 0.0023 0.0076 ± 0.0032 0.1444 ± 0.0146 0.1380 ± 0.0289
0.01 0.05 0.0028 ± 0.0010 0.0173 ± 0.0061 0.2012 ± 0.0401 0.2334 ± 0.0513
0.01 0.10 0.0112 ± 0.0083 0.0236 ± 0.0108 0.1990 ± 0.0382 0.2129 ± 0.0277
0.01 0.15 0.0369 ± 0.0128 0.0165 ± 0.0087 0.1375 ± 0.0185 0.1687 ± 0.0211
0.05 0.05 0.0055 ± 0.0013 0.0079 ± 0.0092 0.1262 ± 0.0220 0.1410 ± 0.0315
0.05 0.10 0.0030 ± 0.0014 0.0034 ± 0.0017 0.0561 ± 0.0074 0.0368 ± 0.0101
0.05 0.15 0.0032 ± 0.0022 0.0038 ± 0.0028 0.0464 ± 0.0102 0.0442 ± 0.0098
0.10 0.05 0.0045 ± 0.0011 0.0057 ± 0.0028 0.0416 ± 0.0119 0.0177 ± 0.0063
0.15 0.05 0.0047 ± 0.0022 0.0043 ± 0.0022 0.0469 ± 0.0144 0.0380 ± 0.0158
0.10 0.10 0.0026 ± 0.0010 0.0034 ± 0.0022 0.0488 ± 0.0182 0.0364 ± 0.0149
0.10 0.15 0.0040 ± 0.0028 0.0048 ± 0.0011 0.0274 ± 0.0112 0.0353 ± 0.0132
0.15 0.10 0.0040 ± 0.0020 0.0032 ± 0.0011 0.0569 ± 0.0214 0.0273 ± 0.0092

Finally, in Table V, we study the performance of both 4SA and 3SA for both
N = 4 and N = 50, for different values of δ1 and δ2, with L = 100 and the step-
sizes, the same as those used in Table I. We observe that for N = 4 (N = 50),
4SA shows better results than 3SA in eleven (six) out of the fifteen cases shown,
with 3SA showing better results in the rest. Algorithm 4SA shows the best
performance for δ1 = 0.10 and δ2 = 0.10 for N = 4 (δ1 = 0.10 and δ2 = 0.15
for N = 50) while 3SA gives the best results for δ1 = 0.15 and δ2 = 0.10 for
N = 4 (δ1 = 0.10 and δ2 = 0.05 for N = 50). Note that the form of the gradient
estimate is the same in both Algorithms 4SA and 3SA. The difference, however,
lies in the estimates of the Hessian. It can be seen from the analysis in the
Appendix that the bias in Hessian estimates of Algorithm 4SA is contributed
to by the terms

∑
l �=i

	l (n)
	i(n)

∇2
j ,l J (θ (n)),

∑
k �= j

	̂k(n)
	̂ j (n)

∇2
k,i J (θ (n)), (30)

∑
k �= j

∑
l �=i

	̂k(n)
	̂ j (n)

	l (n)
	i(n)

∇2
k,l J (θ (n)), δ2

N∑
k,l ,m=1

	̂k(n)	m(n)∇3
k,l ,m J (θ (n))	̂l (n)

2	̂ j (n)	i(n)
, (31)

while the same in Algorithm 3SA is contributed to by the terms

N∑
l=1

1
δ1

	̂l (n)
	i(n)	̂ j (n)

∇l J (θ (n)),
N∑

l=1,l �= j

N∑
k=1,k �=i

	̂l (n)	k(n)
	̂ j (n)	i(n)

∇2
l ,k J (θ (n)), (32)

δ1

2

N∑
l ,k,m=1

	̂l (n)	k(n)	m(n)
	i(n)	̂ j (n)

∇3
k,m,l J (θ (n)),

δ2

2δ1

N∑
l ,m=1

	̂l (n)	̂m(n)
	i(n)	̂ j (n)

∇2
l ,m J (θ (n)),

(33)
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δ2

2

N∑
l=1

N∑
m=1

N∑
k=1

	̂l (n)	̂m(n)	k(n)
	i(n)	̂ j (n)

∇3
l ,m,k J (θ (n)). (34)

Note that under Assumption (B), the conditional expectation of each of these
terms, given θ (n), equals zero. An algorithm would be computationally superior
if its updates have less contribution from terms of the this type, since the afore-
mentioned terms contribute to the error in the Hessian estimates. Note that
the contribution of the term in (34) is similar (by Assumption (B)) to that of the
second term in (31). Also the contribution of the second term in (32) is similar
to that of the first term in (31). Thus the main difference in bias lies in the two
terms in (30) for the case of Algorithm 4SA, as opposited to the first term in
(32) and the terms in (33) for the case of Algorithm 3SA. The first term in (32),
however, can potentially contribute to a large bias in the Hessian estimates
if δ1 is small. This is also observed from Table I (see entries corresponding to
δ1 = 0.01 for N = 4, and δ1 = 0.01, 0.05 for N = 50, for 3SA). As already stated,
the slight edge in performance of 3SA over 4SA for N = 50 is possibly because
of the form of the matrices H(n) and A considered here. If one were to consider
more general matrices, rather than diagonal ones, 4SA might perform better
than 3SA for N = 50 as well. We also performed experiments with different δ1,
δ2, and δ for the other algorithms and observed that 4SA and 3SA showed bet-
ter results than the rest of the algorithms in most cases. Algorithms 2SA and
1SA exhibit greater bias in their gradient estimates as compared to Algorithms
4SA, 3SA, and SPSA-R. In particular, 2SA has less bias terms than 1SA.

The deterministic algorithms of Bhatnagar et al. [2003] require only one per-
turbation sequence {	(n)}. The bias terms in the gradient estimates in these
algorithms are thus relatively simple and, in particular, for two-simulation al-
gorithms of the type SPSA-D, one requires for convergence that

∑P
n=1

	k (n)
	i (n) = 0,

for all k �= i, where P is the number of elements in the space of perturbations.
However, construction of appropriate deterministic perturbation sequences for
higher-order simultaneous perturbation algorithms is complicated because of
the presence of two perturbation sequences {	(n)} and {	̂(n)}, respectively, and
the need for similar conditions on bias terms in the Hessian estimates as in (30)–
(31) for Algorithm 4SA ((32)–(34) for Algorithm 3SA), in addition to those in
the gradient. The requirement that each of these should vanish asymptotically
makes the task difficult. Algorithms 2SA and 1SA have even more numbers of
terms in their corresponding expressions for bias in both Hessian and gradient.
Clearly as one moves towards algorithms with a lower number of simulations,
the number of terms contributing towards bias increase and more stringent
conditions are needed for deterministic perturbation sequences to work in the
case of higher-order algorithms. Construction of appropriate deterministic per-
turbation sequences for higher-order algorithms is an open problem.

APPENDIX

We present here the detailed convergence analysis of Algorithm 4SA and the
key changes required in the analysis of the other algorithms.
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A.1 Convergence Analysis of 4SA

Let G(l ) = σ (θ̃i(p), 	̃i(p), ˜̂	i(p), Hj ,i(p), X −(p), X +(p), X −+(p), X ++(p), p ≤ l ,
i, j = 1, . . . , N ), l ≥ 1, denote σ -fields generated by the quantities de-
scribed. Here θ̃i(p) = θi(n), 	̃i(p) = 	i(n), and ˜̂	i(p) = 	̂i(n), respectively, for
i = 1, . . . , N , nL ≤ p ≤ (n + 1)L − 1. Define {b̃(n)} as follows: For n ≥ 0,
b̃(n) = b([ n

L ]), where [ n
L ] denotes the integer part of n

L . Note that {b̃(n)} corre-
sponds to the natural timescale over which the data averaging step should be
analyzed. It is easy to see that∑

n
b̃(n) = ∞,

∑
n

b̃(n)2 < ∞, c(n) = o(b̃(n)). (35)

In fact, {b(n)} goes to zero faster than {b̃(n)} does, and thus {b̃(n)} corresponds
to an even faster step-size sequence than {b(n)}. As a result, the additional
averaging (over L epochs) of cost for the different simulations is seen to improve
performance. Note that recursions (11)-(14) can be rewritten as

Z w(p + 1) = Z w(p) + b̃(p)(h(X w(p)) − Z w(p)), (36)

w ∈ {−, +, −+, ++}, with simulations X −(p), X +(p), X −+(p) and X ++(p) gov-
erned by θ̃ (p) −δ1	̃(p), θ̃ (p) +δ1	̃(p), θ̃ (p) −δ1	̃(p) +δ2

˜̂	(p), and θ̃ (p) +δ1	̃(p)
+δ2

˜̂	(p), respectively. Now define sequences {M w(p)}, w ∈ {−, +, −+, ++}, as
follows:

M w(p) =
p∑

m=1

b̃(m)(h(X w(m)) − E[h(X w(m)) | G(m − 1)]).

It is easy to see that {M w(p), G(p)} are martingale sequences. Also using (35),
one can easily check that these individually converge almost surely.

Define {s(n), n ≥ 0} as follows: s(0) = 0, s(n) = ∑n−1
i=0 a(i), n ≥ 1. For i =

1, . . . , N , let 	i(t) = 	i(n) and 	̂i(t) = 	̂i(n) for t ∈ [s(n), s(n+1)], n ≥ 0. Further
let 	(t) = (	1(t), . . . , 	N (t))T and 	̂(t) = (	̂1(t), . . . , 	̂N (t))T , respectively. Now
define {t(n)} as follows: t(0) = 0, t(n) = ∑n−1

i=0 b̃(i), n ≥ 1. Consider the following
system of ordinary differential equations (ODEs): For i, j ∈ {1, . . . , N }, w ∈
{−, +, −+, ++},

.

θ i(t) = 0, (37)

.

H j ,i(t) = 0, (38)

.

Z
w

(t) = J (θw(t)) − Z w(t). (39)

In (39) and the rest of the article, we denote θ−(t) = (θ (t) −δ1	(t)), θ+(t) = (θ (t)
+δ1	(t)), θ−+(t) = (θ (t) −δ1	(t) +δ2	̂(t)) and θ++(t) = (θ (t) +δ1	(t) +δ2	̂(t)),
respectively. Before we proceed further, we recall a key result from Hirsch [1989]
stated as Lemma A.1 as follows. Consider an ODE

.
x (t) = F (x(t)), (40)

which has an asymptotically stable attracting set G. Let Gε denote the ε –
neighborhood of G that is, Gε = {x | ∃x ′ ∈ G s.t. ‖ x − x ′ ‖≤ ε}. For τ > 0,
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µ > 0, we call y(·) a (τ, µ)-perturbation of (40), if there exists an increasing
sequence {τi, i ≥ 0} of real numbers with τ0 = 0 and ∀i, τi+1 − τi ≥ τ , such
that on each interval [τi, τi+1], there exists a solution xi(·) of (40) such that
supt∈[τi ,τi+1] |xi(t) − y(t)| < µ. We have

LEMMA A.1. Given ε > 0, τ > 0, there exists a µ̄ > 0 such that for all
µ ∈ [0, µ̄], any (τ, µ)-perturbation of (40) converges to Gε .

Next, we have:

LEMMA A.2. The iterates Z w(p), ∀w ∈ {−, +, −+, ++}, defined as in (36) are
uniformly bounded with probability one.

PROOF. Observe that Z w(p) are convex combinations from some finite n on-
wards of Z w(p−1) and a bounded quantity (since the cost function is bounded).
The claim follows.

Consider now functions z̄w(t), w ∈ {−, +, −+, ++}, defined according to
z̄w(t(n)) = Z w(nL) with the maps t → z̄w(t) corresponding to continuous linear
interpolations on intervals [t(n), t(n + 1)]. Given T > 0, define {Tn} as follows:
T0 = 0 and for n ≥ 1, Tn = min{t(m) | t(m) ≥ Tn−1 + T }. Let In = [Tn, Tn+1].
Note that there exists some integer mn > 0 such that Tn = t(mn). Define also
functions zw,n(t), w ∈ {−, +, −+, ++}, t ∈ In, n ≥ 0, according to

.
zw,n(t) = J (θw(t)) − zw,n(t), (41)

with zw,n(Tn) = z̄w(t(mn)) = Z w((mn)L). Now a routine argument, based on
Gronwall’s inequality and the fact that {M w(n)} is almost surely convergent,
can be used to show (see Bhatnagar et al. [2001a])

LEMMA A.3. limn→∞ supt∈In
‖ zw,n(t) − z̄w(t) ‖ = 0 ∀w ∈ {−, +, −+, ++},

w.p.1.

Next, we have

LEMMA A.4. Given T, γ > 0, ((θi(t(n) + ·), Hj ,i(t(n) + ·), z̄w(t(n) + ·)), i, j ∈
{1, . . . , N }, w ∈ {−, +, −+, ++}, is a bounded (T, γ )-perturbation of (37)–(39) for
n sufficiently large.

PROOF. Observe that the iterations (15)–(16) of the algorithm can be written
as

Hj ,i(n + 1) = Hj ,i(n) + b̃(n)ξ1(n),

θi(n + 1) = �i(θi(n) + b̃(n)ξ2(n)),

respectively, where ξ1(n) and ξ2(n) are both o(1) since c(n), and a(n) are individ-
ually o(b̃(n)). The rest now follows from Lemma A.3.

COROLLARY A.5. For all w ∈ {−, +, −+, ++},
‖ Z w(nL) − J (θw(n)) ‖→ 0 a.s.,

as n → ∞.
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PROOF. The claim follows by Lemma A.1 applied on (39) for every ε > 0.

We now concentrate on recursion (15) that updates the Hessian matrix com-
ponents. We have the following important result:

LEMMA A.6. The iterates Hj ,i(n), n ≥ 0, j , i ∈ {1, . . . , N }, in (15), are uni-
formly bounded with probability one.

PROOF. Observe as in Lemma A.2 that from some finite n onwards, Hj ,i(n)
is a convex combination of Hj ,i(n − 1) and a uniformly bounded quantity. The
claim follows.

Let F j ,i(θ (n), 	(n), 	̂(n)) denote
( J (θ++ (n))−J (θ+ (n))

δ2	̂ j (n)
)−( J (θ−+ (n))−J (θ− (n))

δ2	̂ j (n)
)

2δ1	i (n) . Also let F(n) =
σ (θi(m), Hj ,i(m), Z −(mL), Z +(mL), Z −+(mL), Z ++(mL), m ≤ n, i, j = 1, . . . , N ;
	(m), 	̂(m), m < n), n ≥ 1. Define sequences {N j ,i(n)}, j , i = 1, . . . , N , according
to

N j ,i(n) =
n−1∑
m=0

c(m)(F j ,i(θ (m), 	(m), 	̂(m)) − E[F j ,i(θ (m), 	(m), 	̂(m)) | F(m)]).

It can be easily verified that {N j ,i(n), F(n)}, j , i = 1, . . . , N form martingale
sequences that are almost surely convergent. We now have

PROPOSITION A.7. With probability one, ∀ j , i ∈ {1, . . . , N },∣∣∣∣∣∣E



(
J (θ++(n))−J (θ+(n))

δ2	̂ j (n)

)
−

(
J (θ−+(n))−J (θ−(n))

δ2	̂ j (n)

)
2δ1	i(n)

| F(n)


 − ∇2

j ,i J (θ (n))

∣∣∣∣∣∣
−→ 0 as δ1, δ2 → 0.

PROOF. We proceed using several Taylor series expansions to evaluate the
conditional expectation above. Note that

J (θ (n) + δ1	(n) + δ2	̂(n)) = J (θ (n) + δ1	(n)) + δ2

N∑
k=1

	̂k(n)∇k J (θ (n) + δ1	(n))

+ 1
2

δ2
2

N∑
k=1

N∑
l=1

	̂k(n)∇2
k,l J (θ (n) + δ1	(n))	̂l (n) + o

(
δ2

2

)
.

Similarly,

J (θ (n) − δ1	(n) + δ2	̂(n)) = J (θ (n) − δ1	(n)) + δ2

N∑
k=1

	̂k(n)∇k J (θ (n) − δ1	(n))

+1
2

δ2
2

N∑
k=1

N∑
l=1

	̂k(n)∇2
k,l J (θ (n) − δ1	(n))	̂l (n) + o

(
δ2

2

)
.
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After some rearrangement of terms, it is easy to see that

E

[((
J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))

δ2	̂ j (n)

)

−
(

J (θ (n) − δ1	(n) + δ2	̂(n)) − J (θ (n) − δ1	(n))
δ2	̂ j (n)

))/
2δ1	i(n) | F(n)

]

= E

[
∇ j J (θ (n) + δ1	(n)) − ∇ j J (θ (n) − δ1	(n))

2δ1	i(n)

+
∑
k �= j

	̂k(n)
	̂ j (n)

∇k J (θ (n) + δ1	(n)) − ∇k J (θ (n) − δ1	(n))
2δ1	i(n)

+ δ2

N∑
k=1

N∑
l=1

	̂k(n)(∇2
k,l J (θ (n) + δ1	(n)) − ∇2

k,l J (θ (n) − δ1	(n)))	̂l (n)

4δ1	i(n)	̂ j (n)

+ o(δ2) | F(n)

]
. (42)

Now using Taylor series expansions of ∇ j J (θ (n) + δ1	(n)) and ∇ j J (θ (n)−δ1	(n))
around ∇ j J (θ (n)) gives

∇ j J (θ (n) + δ1	(n)) − ∇ j J (θ (n) − δ1	(n))
2δ1	i(n)

= ∇2
j ,i J (θ (n))

+
∑
l �=i

	l (n)
	i(n)

∇2
j ,l J (θ (n)) + o(δ2

1).

A similar expansion can be obtained with index k in place of j in the second
term on the RHS of (42). Also note that

∇2
k,l J (θ (n) + δ1	(n)) − ∇2

k,l J (θ (n) − δ1	(n))
4δ1	i(n)

=
N∑

m=1

	m(n)∇3
k,l ,m J (θ (n))

2	i(n)
+ o(δ1)

Thus,

δ2

N∑
k=1

N∑
l=1

	̂k(n)(∇2
k,l J (θ (n) + δ1	(n)) − ∇2

k,l J (θ (n) − δ1	(n)))	̂l (n)

4δ1	i(n)	̂ j (n)

= δ2

N∑
k=1

N∑
l=1

N∑
m=1

	̂k(n)	m(n)∇3
k,l ,m J (θ (n))	̂l (n)

2	̂ j (n)	i(n)
+ o(δ1).

Substituting the above in (42), one obtains

E

[((
J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))

δ2	̂ j (n)

)
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−
(

J (θ (n) − δ1	(n) + δ2	̂(n)) − J (θ (n) − δ1	(n))
δ2	̂ j (n)

))/
2δ1	i(n) | F(n)

]

= E

[
∇2

j ,i J (θ (n)) +
∑
l �=i

	l (n)
	i(n)

∇2
j ,l J (θ (n)) +

∑
k �= j

	̂k(n)
	̂ j (n)

∇2
k,i J (θ (n))

+
∑
k �= j

∑
l �=i

	̂k(n)
	̂ j (n)

	l (n)
	i(n)

∇2
k,l J (θ (n)) + δ2

N∑
k,l ,m=1

	̂k(n)	m(n)∇3
k,l ,m J (θ (n))	̂l (n)

2	̂ j (n)	i(n)

+ o(δ1) + o(δ2) | F(n)

]

= ∇2
j ,i J (θ (n)) +

∑
l �=i

E
[	l (n)

	i(n)
| F(n)

]
∇2

j ,l J (θ (n))

+
∑
k �= j

E

[
	̂k(n)
	̂ j (n)

| F(n)

]
∇2

k,i J (θ (n))

+
∑
k �= j

∑
l �=i

E

[
	̂k(n)
	̂ j (n)

	l (n)
	i(n)

| F(n)

]
∇2

k,l J (θ (n))

+ δ2

N∑
k=1

N∑
l=1

N∑
m=1

E

[
	̂k(n)	̂l (n)	m(n)

2	̂ j (n)	i(n)
| F(n)

]
∇3

k,l ,m J (θ (n)) + o(δ1) + o(δ2).

Now by conditions on 	i(n), 	̂i(n), n ≥ 1, i = 1, . . . , N (Assumption (B)), it is
easy to see that all conditional expectations in the last equality above equal
zero. Thus

E

[((
J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))

δ2	̂ j (n)

)

−
(

J (θ (n) − δ1	(n) + δ2	̂(n)) − J (θ (n) − δ1	(n))
δ2	̂ j (n)

))/
2δ1	i(n) | F(n)

]

= ∇2
j ,i J (θ (n)) + o(δ1) + o(δ2).

The claim follows.

Consider now the following ODEs: For j , i = 1, . . . , N ,
.

H j ,i(t) = ∇2
j ,i J (θ (t)) − Hj ,i(t),

.

θ i(t) = 0. (43)
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Next, define {r(n)} as follows: r(0) = 0 and for n > 0, r(n) = ∑n−1
m=0 c(m).

Define H̄(t) = [[H̄j ,i(t)]]N
j ,i=1 and x̄w(t), w ∈ {−, +, −+, ++} as follows: for

j , i = 1, . . . , N , H̄j ,i(r(n)) = Hj ,i(n), and x̄w(r(n)) = Z w(nL) with linear in-
terpolations on [r(n), r(n + 1)]. We now have

LEMMA A.8. Given T, γ > 0, (θ (r(n) + ·), H̄(r(n) + ·)) is a bounded (T, γ )-
perturbation of (43) for sufficiently large n.

PROOF. Note that recursion (15) in the algorithm can be rewritten as: for
j , i = 1, . . . , N ,

Hj ,i(n + 1) = Hj ,i(n) + c(n)
(∇2

j ,i J (θ (n)
) + ζ̂ (n) + ζ (n) − Hj ,i(n))

+ (N j ,i(n + 1) − N j ,i(n)),

with appropriately defined ζ̂ (n) and ζ (n) that are, however, both o(1) by Propo-
sition A.7 and Corollary A.5. Also by the foregoing, (N j ,i(n+1)− N j ,i(n)) is o(1).
Next, rewrite (16) as follows: for i = 1, . . . , N ,

θi(n + 1) = �i(θi(n) + c(n)β(n)),

where β(n) = o(1) since a(n) = o(c(n)). The claim follows.

Suppose H(n) = [[Hj ,i(n)]]N
j ,i=1. It is now easy to see as in Corollary A.5 that:

LEMMA A.9. ‖ H(n) − ∇2 J (θ (n)) ‖ → 0 a.s. as δ1, δ2 → 0 and n → ∞.

Next, we have

COROLLARY A.10. With probability one, ‖ {�(H(n))}−1 − {�(∇2 J (θ (n)))}−1 ‖
→ 0 as δ1, δ2 → 0 and n → ∞.

PROOF. Note that

‖ {�(H(n))}−1 − {�(∇2 J (θ (n)))}−1 ‖

= ‖ {�(∇2 J (θ (n)))}−1(�(∇2 J (θ (n))){�(H(n))}−1 − I ) ‖

= ‖ {�(∇2 J (θ (n)))}−1(�(∇2 J (θ (n))){�(H(n))}−1 − �(H(n)){�(H(n))}−1) ‖

= ‖ {�(∇2 J (θ (n)))}−1(�(∇2 J (θ (n))) − �(H(n))){�(H(n))}−1 ‖

≤ ‖ {�(∇2 J (θ (n)))}−1 ‖ · ‖ �(∇2 J (θ (n))) − �(H(n)) ‖ · ‖ {�(H(n))}−1 ‖

≤ sup
n

‖ {�(∇2 J (θ (n)))}−1 ‖ sup
n

‖ {�(H(n))}−1 ‖ · ‖ �(∇2 J (θ (n))) − �(H(n)) ‖

→ 0 as n → ∞,

by Assumption (D). I denotes the N × N -identity matrix. The first inequality
follows from the property on induced matrix norms (see Proposition A.12 of
Bertsekas and Tsitsiklis [1989]). The claim follows.
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PROOF OF THEOREM 3.1. For i = 1, . . . , N , let {Ri(n), n ≥ 1} be defined ac-
cording to

Ri(n) =
n−1∑
m=0

a(m)
N∑

k=1

M̄i,k(θ (m))
(

J (θ (m) − δ1	(m)) − J (θ (m) + δ1	(m))
2δ1	k(m)

− E
[

J (θ (m) − δ1	(m)) − J (θ (m) + δ1	(m))
2δ1	k(m)

| F(m)
])

,

n ≥ 1. Then it is easy to check that {Ri(n), F(n)}, i = 1, . . . , N , form martin-
gale sequences that are almost surely convergent. Now recursion (16) of the
algorithm can be rewritten as

θi(n + 1) = �i

(
θi(n) + a(n)

N∑
k=1

M̄i,k(θ (n)) E[(J (θ (n) − δ1	(n))

− J (θ (n) + δ1	(n)))/2δ1	k(n) | F(n)] + (Ri(n + 1) − Ri(n)) + a(n)α(n)

)
,

(44)

where (Ri(n + 1) − Ri(n)) is o(1) and α(n) vanishes as n → ∞ and δ1, δ2 → 0
by Corollaries A.5 and A.10. Further, using Taylor series expansions of J (θ (n)
−δ1	(n)) and J (θ (n) +δ1	(n)), respectively, around θ (n) and taking the condi-
tional expectation, it is easy to see that recursion (16) can now be rewritten as

θi(n + 1) = �i

(
θi(n) − a(n)

N∑
k=1

M̄i,k(θ (n))∇k J (θ (n)) + a(n)ξδ1 (n)

+ (Ri(n + 1) − Ri(n)) + a(n)α(n)

)
, (45)

where ξδ1 (n) vanishes as n → ∞ and δ1 → 0. Note that (45) can be viewed,
using a standard approximation argument as on pages 191–194 of Kushner
and Clark [1978] and Proposition A.7, as a discretization of the ODE (17) with
certain error terms that, however, vanish asymptotically (as n → ∞) and in the
limit as δ1, δ2 → 0. Now (17) can be written as (see Eq. (3.1) of Kushner and
Yin [1997])

.

θ = −M̄ (θ )∇ J (θ ) + z, z(t) ∈ −C̄(θ (t)), (46)

where z(·) is the projection term. For θ ∈ Co, C̄(θ ) contains only the zero element,
and for θ ∈ ∂C (boundary of C), C̄(θ ) is the infinite convex cone generated by the
outer normals at θ of the faces on which θ lies. Note that J (θ ) itself serves as
an associated Liapunov function for (46) since (Kushner and Yin [1997] pp. 75)

dJ(θ )
dt

= ∇ J (θ )T .

θ = ∇ J (θ )T (−M̄ (θ )∇ J (θ ) + z) ≤ 0.

In particular, for θ ∈ K̂ (i.e., z = 0), dJ(θ )
dt < 0 if ∇ J (θ ) �= 0. Now J (θ ) is uniformly

bounded since the cost function h(·) is bounded. Let λ = supθ J (θ ) < ∞. Then
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{θ | J (θ ) ≤ λ} = C. It follows from Lasalle’s invariance theorem [Lasalle and
Lefschetz 1961] stated also as Theorem 2.3, on page 76 of Kushner and Yin
[1997] that θ (t) → {θ ∈ C | ∇ J (θ )T π̃ (−M̄ (θ )∇ J (θ )) = 0} as t → ∞. The claim
follows.

A.2 Algorithm 3SA

It can be shown as in Corollary A.5 that almost surely,

‖ Z w(nL) − J (θw(n)) ‖→ 0 ∀w ∈ {−, +, ++}.
Now define F1(n), n ≥ 1 by F1(n) = σ (θi(m), Hj ,i(m), Z −(mL), Z +(mL),
Z ++(mL), m ≤ n, i, j = 1, . . . , N ; 	(m), 	̂(m), m < n).

PROPOSITION A.11. With probability one, ∀ j , i ∈ {1, . . . , N }∣∣∣∣∣E
[

J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))
δ1δ2	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]
− ∇2

j ,i J (θ (n))

∣∣∣∣∣
−→ 0 as δ1, δ2 → 0.

PROOF. Note as before that

J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))
δ1δ2	i(n)	̂ j (n)

=
N∑

l=1

	̂l (n)∇l J (θ (n) + δ1	(n))
δ1	i(n)	̂ j (n)

+δ2

2

N∑
l=1

N∑
m=1

	̂l (n)	̂m(n)∇2
l ,m J (θ (n) + δ1	(n))

δ1	i(n)	̂ j (n)
+ o(δ2) (47)

Taking again appropriate Taylor series expansions of ∇l J (θ (n) + δ1	(n)) and
∇2

l ,m J (θ (n) + δ1	(n)) around θ (n), substituting in (47), and taking conditional
expectation with respect to F1(n), one obtains

E

[
J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))

δ1δ2	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]

=
N∑

l=1

1
δ1

E

[
	̂l (n)

	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]
∇l J (θ (n)) + ∇2

j ,i J (θ (n))

+
N∑

l=1,l �= j

N∑
k=1,k �=i

E

[
	̂l (n)	k(n)
	̂ j (n)	i(n)

∣∣∣∣∣ F1(n)

]
∇2

l ,k J (θ (n))

+δ1

2

N∑
l=1

N∑
k=1

N∑
m=1

E

[
	̂l (n)	k(n)	m(n)

	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]
∇3

k,m,l J (θ (n))
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+ δ2

2δ1

N∑
l=1

N∑
m=1

E

[
	̂l (n)	̂m(n)
	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]
∇2

l ,m J (θ (n))

+δ2

2

N∑
l=1

N∑
m=1

N∑
k=1

E

[
	̂l (n)	̂m(n)	k(n)

	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]
∇3

l ,m,k J (θ (n)) + o(δ1) + o(δ2).

It is easy to see from Assumption (B) as before that all the conditional expec-
tation terms on the RHS above equal zero. Thus

E

[
J (θ (n) + δ1	(n) + δ2	̂(n)) − J (θ (n) + δ1	(n))

δ1δ2	i(n)	̂ j (n)

∣∣∣∣∣ F1(n)

]

= ∇2
j ,i J (θ (n)) + o(δ1) + o(δ2).

The claim follows.

The proof of Theorem 3.2 now proceeds along exactly similar lines as that of
Theorem 3.1.

A.3 Algorithm 2SA

One can show as in Corollary A.5 that with probability one,

‖ Z w(nL) − J (θw(n)) ‖→ 0 ∀w ∈ {+, ++}.
Now define σ -fields F2(n), n ≥ 1 by F2(n) = σ (θi(m), Hj ,i(m), Z +(mL), Z ++(mL),
m ≤ n, i, j = 1, . . . , N ; 	(m), 	̂(m), m < n). Since the form of Hessian esti-
mate here is exactly the same as in Algorithm 3SA, the conclusions of Proposi-
tion A.11 continue to hold with F2(n) in place of F1(n). We have

PROOF OF THEOREM 3.3. Using an appropriate martingale construction as
before, it is easy to see that recursion (26) of Algorithm 2SA can be rewritten
as in (44) as

θi(n + 1) = �i

(
θi(n) + a(n)

N∑
k=1

M̄i,k(θ (n))(E[(J (θ (n) + δ1	(n))

− J (θ (n) + δ1	(n) + δ2	̂(n)))/δ2	̂k(n) | F2(n)]) + α1(n) + a(n)α2(n)

)
, (48)

where α1(n) is o(1) and α2(n) becomes asymptotically negligible as δ1, δ2 → 0.
We now use appropriate Taylor series expansions in the second term on the
RHS of (48). Note that

J (θ (n) + δ1	(n)) − J (θ (n) + δ1	(n) + δ2	̂(n))
δ2	̂k(n)

= −
N∑

l=1

	̂l (n)
	̂k(n)

∇l J (θ (n) + δ1	(n))

−δ2

2

N∑
l=1

N∑
j=1

	̂l (n)
	̂k(n)

	̂ j (n)∇2
l , j J (θ (n) + δ1	(n)) + o(δ2). (49)
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Again,

∇l J (θ (n) + δ1	(n)) = ∇l J (θ (n)) + δ1

N∑
j=1

	 j (n)∇2
l , j J (θ (n)) + o(δ1),

∇2
l , j J (θ (n) + δ1	(n)) = ∇2

l , j J (θ (n)) + δ1

N∑
m=1

	m(n)∇3
l , j ,m J (θ (n)) + o(δ1).

Substituting the above in (49) and taking conditional expectations, we have

E

[
J (θ (n) + δ1	(n)) − J (θ (n) + δ1	(n) + δ2	̂(n))

δ2	̂k(n)

∣∣∣∣∣ F2(n)

]

= −∇k J (θ (n)) −
N∑

l=1,l �=k

E

[
	̂l (n)
	̂k(n)

∣∣∣∣∣ F2(n)

]
∇l J (θ (n))

−δ1

N∑
l=1

N∑
j=1

E

[
	̂l (n)	 j (n)

	̂k(n)

∣∣∣∣∣ F2(n)

]
∇2

l , j J (θ (n))

−δ2

2

N∑
l=1

N∑
j=1

E

[
	̂l (n)	̂ j (n)

	̂k(n)

∣∣∣∣∣ F2(n)

]
∇2

l , j J (θ (n))

−δ1δ2

2

N∑
l=1

N∑
j=1

N∑
m=1

E

[
	̂l (n)	̂ j (n)	m(n)

	̂k(n)

∣∣∣∣∣ F2(n)

]
∇3

l , j ,m J (θ (n)) + o(δ1) + o(δ2).

Now it is easy to see using Assumption (B) that all conditional expectation
terms on the RHS above equal zero. Thus,

E
[

J (θ (n) + δ1	(n)) − J (θ (n) + δ1	(n) + δ2	(n))
δ2	̂k(n)

∣∣∣∣ F2(n)
]

= −∇k J (θ (n)) + o(δ1) + o(δ2).

The rest now follows in exactly the same manner as in Theorem 3.1.

A.4 Algorithm (1SA)

We show in the following that the bias terms in both the gradient and Hessian
vanish asymptotically in the mean. One can show as in Corollary A.5 that
almost surely,

‖ Z ++(nL) − J (θ (n) + δ1	(n) + δ2	̂(n)) ‖→ 0,

as n → ∞. Define F3(n), n ≥ 1 by F3(n) = σ (θi(m), Hj ,i(m), Z ++(mL), m ≤ n,
i, j = 1, . . . , N ; 	(m), 	̂(m), m < n). We then have
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PROPOSITION A.12. With probability one, ∀ j , i ∈ {1, . . . , N },

lim
δ1,δ2→0

∣∣∣∣∣E
[

J (θ (n) + δ1	(n) + δ2	̂(n))
δ1δ2	i(n)	̂ j (n)

∣∣∣∣∣ F3(n)

]
− ∇2

j ,i J (θ (n))

∣∣∣∣∣ = 0. (50)

PROOF. Note that the proof here is similar to that of Proposition A.11, the
only difference being the presence of additional bias terms that arise from the
Taylor series expansion of the ‘extra’ term E[ J (θ (n)+δ1	(n))

δ1δ2	i (n)	̂ j (n)
| F3(n)] that, in turn,

results from the Taylor’s expansion of the first term in (50). The above extra
term does not contribute to the bias in Algorithm 2SA because it is contained
there in the conditional average of the Hessian estimate itself. Now note that

E

[
J (θ (n) + δ1	(n))
δ1δ2	i(n)	̂ j (n)

∣∣∣∣∣ F3(n)

]
= E

[
1

	i(n)	̂ j (n)

∣∣∣∣∣ F3(n)

]
J (θ (n))

δ1δ2

+
N∑

k=1

E

[
	k(n)

	i(n)	̂ j (n)

∣∣∣∣∣ F3(n)

]
∇k J (θ (n))

δ2

+ δ1

2δ2

N∑
k=1

N∑
m=1

E

[
	k(n)	m(n)
	i(n)	̂ j (n)

∣∣∣∣∣ F3(n)

]
∇2

k,m J (θ (n)) + o(δ1).

It is easy to see from Assumption (B) that all conditional expectation terms on
the RHS above equal zero. The rest follows as in Proposition A.11.

PROOF OF THEOREM 3.4. Note that as earlier, (29) can be rewritten using a
martingale argument as

θi(n + 1) = �i(θi(n) − a(n)
N∑

k=1

M̄i,k(θ (n))E

[
J (θ (n) + δ1	(n) + δ2	̂(n))

δ2	̂k(n)

∣∣∣∣∣ F3(n)

]

+α3(n) + a(n)α4(n)),

where α3(n) is o(1) and α4(n) vanishes asymptotically as δ1, δ2 → 0. Now observe
that

J (θ (n) + δ1	(n) + δ2	̂(n))
δ2	̂k(n)

= J (θ (n) + δ1	(n))
δ2	̂k(n)

+
N∑

l=1

	̂l (n)
	̂k(n)

∇l J (θ (n) + δ1	(n))

+δ2

2

N∑
l=1

N∑
j=1

	̂l (n)
	̂k(n)

	̂ j (n)∇2
l , j J (θ (n) + δ1	(n)) + o(δ2). (51)

Upon comparison with (49), it is clear that there is an extra term J (θ (n)+δ1	(n))
δ2	̂(n)

on the RHS of (51) that is not present in the corresponding expression in (49).
Again note that

E
[

J (θ (n) + δ1	(n))
δ2	̂k(n)

∣∣∣∣ F3(n)
]

= E
[

1
	̂k(n)

∣∣∣∣ F3(n)
]

J (θ (n))
δ2
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+ δ1

N∑
l=1

E
[ 	l (n)
	̂k(n)

∣∣∣∣ F3(n)
] ∇l J (θ (n))

δ2

+ δ2
1

2

N∑
l=1

N∑
m=1

E
[	l (n)	m(n)

	̂k(n)

∣∣∣∣ F3(n)
] ∇2

l ,m J (θ (n))
δ2

+ o(δ1).

It is easy to see from Assumption (B) that all conditional expectation terms on
the RHS above equal zero. The rest now follows as in Theorem 3.3.
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