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ABSTRACT

The aim of this paper is to suggest a global optimization
method applied to a model predictive control problem. We
are interested in the Van der Vusse reaction found in multiple
chemical processes. The control variables (temperatures and
input flow rates) are real time continuous processes and a tar-
get reference level must be reached within certain operational
constraints. The canonical model discretises time using a
sampling interval, thus translating the control problem into a
non-linear optimization problem under constraints. Because
of the non-linearity of the cost function, common methods
for constrained optimization have been observed to fail in
experiments using ECOSIM to simulate the production pro-
cess. The controllers do not achieve their optimal values and
the numerical optimization based on approximating gradi-
ents and hessians cannot be performed in real time for the op-
eration of the plant to be successful. In this research we im-
plement a methodology for global optimization adding noise
to the observations of the gradients, which will perform much
better than deterministic methods.

INTRODUCTION

Model Predictive Control (MPC) is now recognized in the
industrial world as a proven technology, capable of dealing
with a wide range of multivariable constrained control prob-
lems. Nevertheless, most of the industrial controllers are
based on linear internal models which limits its applicability.
Because of it, non-linear model predictive control (NMPC)
has received a lot of attention in the latest years, both from

the point of view of its properties [2] and implementation.
Referring to this last aspect, the main drawback is the com-
putational burden that NMPC implies. While linear MPC
with constraints can solve the associated optimization prob-
lem each sampling time using QP or LP algorithms for which
very efficient codes are available, NMPC relies on non-linear
programming (NLP) methods such as SQP, that are known
to be far more CPU demanding. Several schemes have been
proposed to deal with this problem, among them the well
known sequential and simultaneous approaches.1

For sequential solutions, the model is solved by integra-
tion at each iteration of the optimization routine. Only the
control parameters remain as degrees of freedom in the NLP.
Simulation and optimization calculations are performed se-
quentially, one after the other. The approach can easily be
coupled with advanced simulation tools. In contrast, simul-
taneous model solution and optimization includes both the
model states and controls as decision variables and the model
equations are appended to the optimization problem as equal-
ity constraints. This can greatly increase the size of the op-
timization problem, leading to a trade-off between the two
approaches. In both cases, computation time remains a diffi-
culty in order to implement NMPC in real processes.

This paper shows a global optimization method oriented
to reduce the difficulties associated with the computation of
the gradients, in order to facilitate the implementation of
NMPC algorithm, using the sequential approach, applied to
a benchmark problem: Van der Vusse reactor.

MODEL DESCRIPTION

The Van der Vusse reaction is described in detail in [4] and
the references therein. To summarize, there is a substanceA
in input, a chemical reaction and a substanceB in output.

We’ll denote by:cB the concentration of productB (controlled)
1Also Principle Investigator, Department of Electrical and Electronic En-

gineering, The University of Melbourne.
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Figure 1: Van der VussecA the concentration of productA (measured)T the temperature in the reactor (measured)TK the temperature in the coolant (measured)F the input flow of productA (manipulated)QK the heat removal (manipulated)cA0; T0; k1; k2; k3; k! ; �; cp; VR;�H1;�H2;�H3;mK
constants.

To the input we associate thecontrol variables F andQK .
The controlled variable cB is associated with the output.
Thereby, we want to control the outputcB by manipulating
the inputF andQK .

To describe the evolution of this dynamical system, we in-
troduce the non-linear differential equations related to mass
and energy conservation:c0A = FVR (cA0 � cA)� k1cA � k3c2Ac0B = � FVR cB + k1cA � k2cBT 0 = FVR (T0 � T )� 1�Cp (k1cA�H1 + k2cB�H2 ++k3c2A�H3) + k!AR�CpVR (TK � T )T 0K = 1mKCpK (QK + k!AR(T � TK))
The concentration of productB must not exceed some upper
and lower limits. This gives the following constraints, which
will be included in the objective function later on:l � cB � L:
MODEL BASED PREDICTIVE CONTROL

Let us denote by:xt = (cA; cB ; T; TK) the state at timetyt = (cB) the controlled variable at timetut = (F;QK) the control at timet (manipulated vari-
able)
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Figure 2: Controlr: reference level.

The objective of the predictive control is to find the future
optimal control sequenceu�t = (u�(i); i = 0; 1; : : : ; N(T ))
over a finite horizon timeT , which minimizes thequadratic
error between the controlled variableyt and its reference
level r. In addition,u�t must assure that the trajectory ofyt
is smooth, i.e. the range of values taken by the manipulated
variablesF andQK varies gradually and does not go from
very high values to very low ones. The objective function is
then:J(xt; yt; ut) = Z T0 kyt � rk2dt+ � Z T0 k _utk2dt;
where _u = dudt , T is the prediction horizon and� � 0 is
constant. The optimization is done over the the set of feasible
controlsU : minu2U J(xt; yt; ut)

The receding horizon mode of operation is used here:
once the optimal control sequenceu�t = (u�(i); i =0; 1; : : : ; N(T )) is found, onlyu�t (0) is applied to the system
at timet. At time t + 1, another optimal sequence is found
and again, only the first component is applied. The controlu t
is kept constant during a so calledsampling time h, when all
the simulation parameters are kept at a fixed value. In the ex-
periments already done, the sampling time was 20 seconds.
At the next sampling timet+h, another optimal sequence is
found and again, only the first componentu�t (0) is applied.
Thus, the control is better adapted to the system’s actual state
and the noise is reduced. Notice that the time horizon is
moved ahead (receding-horizon):T (t+ h) = T + h.

In order to solve the problem it is necessary to parameter-
ize the manipulated variableut, otherwise an infinite num-
ber of decision variables would appear in the problem. An
usual approach is to discretizeu along the control horizonNu when the input remains constant over the sampling pe-
riodh: ut = u(k); kt � t < (k + 1)t;u(k) = u(Nu � 1); 8k > Nu � 1:

Thus, the constrained optimization problem, subject to the
continuous model equations and to the typical restrictions
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Figure 3: Discretized Control

applied to the manipulated and controlled variables, can be
written as:minu( kk );:::;u( k+Nu�1k )J = Z tk+N�tk  [y(t)� r(t)]2 dt++Nu�1Xi=0 � [�u(k + ijt)]2ymin � y(k) � ymaxumin � u(k) � umax�umin � �u(k) � �umax
After penalizing the constraints on the controlled variabley,
the objective function becomes:minu J = Z tk+N�tk  [y(t)� r(t)]2 dt+Nu�1Xi=0 � [�u(k + ijt)]2+Nu�1Xj=0 �1 [ymax � y(k + jjt)]2+Nu�1Xl=0 �2 [ymin � y(k + ljt)]2
where� and are non-negative constants, and�1, �2 repre-
sent a penalty function. Remark that this optimization prob-
lem cannot be solved analytically. In fact, it is hard to calcu-
late the gradientruJ , becausey is non-linear inu. This is
why we need to estimate it.

In order to treat the control constraints, we’ll make a pro-
jection of the Lagrangian functionJ over the set of feasible
controls. We’ll truncate it in the sense that ifu(k) � umax,
we’ll set u(k) = umax, and if u(k) � umin, we’ll setu(k) = umin.

Previous approaches to the optimization problem were
based on the SQP algorithm implemented in the NAG li-
brary, which uses finite differences to estimate the gradientrJ . This approach has the disadvantage of loosing preci-
sion and is quite slow because of the large number of func-

tion evaluations. Also, it may get trapped in local minima.

SYSTEM REQUIREMENTS

To see how fast the optimization must be, let us summa-
rize the simulation by the algorithm below:

WHILE (simulation time) DO

WHEN (sampling) DO

1. Calculate the optimal control (minfu 2U : J(xt; yt; ut)g);
2. Apply the controlu�t ;
3. MeasureCa; T; TK ; xt  (Ca; T; TK);
4. Take new value ofCb; yt+1  Cb;
5. t = t+ h; go to 1.

END WHEN

END WHILE

It is clear that the optimal control must be found in less thanh = 20 seconds (the sampling time) if we want the control to
be done online. The optimization must be fast and precise.

The Van der Vusse model presents important non-
linearities which makes the problem quite difficult. Another
source of problems is the possible existence of local minima.
Among others, this is a reason why we’ll apply a method
of global optimization. In the next section, we present this
method, which is known for its efficiency in high dimen-
sional problems. It could replace successfully the finite dif-
ferences approximations in the Van der Vusse model and will
perform as well in the presence of a larger number of vari-
ables.

SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION (SPSA)

SPSA is a descent method capable of finding global min-
ima. Its main feature is the gradient approximation that re-
quires only two measurements of the objective function, re-
gardless of the dimension of the optimization problem. Re-
call that we want to find the optimal controlu�, with loss
functionJ(u): u� = argminfJ(u) : u 2 Ug
Both Finite Differences Stochastic Approximation (FDSA)
and SPSA use the same iterative process:un+1 = un � anĝn(un);
whereun = ((un)1; (un)2; : : : ; (un)p)T represents thenth
iterate,̂gn(un) is the estimate of the gradient of the objective
functiong(u) = @@uJ(u) evaluated atun, andfang is a posi-
tive number sequence converging to 0. Ifun is ap-dimension



vector, theith component of the symmetric finite difference
gradient estimator is:

FD: (ĝn(un))i = J(un + cnei)� J(un � cnei)2cn ;1 � i � p; whereei is the unit vector with a 1 in theith
place, andcn is a small positive number that decreases withn. With this method,2p evaluations ofJ for eachgn are
needed. Clearly, whenp is large, this estimator looses effi-
ciency.

The simultaneous perturbation estimator uses ap-dimensional random perturbation vector�n =((�n)1; (�n)2; : : : ; (�n)p)T and the ith component of
the gradient estimator is,1 � i � p:

SP: (ĝn(un))i = J(un + cn�n)� J(un � cn�n)2cn(�n)i :
Remark that FD perturbs only one direction at the time, while
the SP estimator disturbs all directions in the same time (the
numerator is identical in allp components). The number of
loss function measurements needed in the SPSA method for
eachgn is always 2, independent of the dimensionp. Thus,
SPSA usesp times fewer function evaluations than FDSA,
which makes it a lot more efficient.
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Figure 4: SPSA vs FDSA

Simple experiments withp = 2 showed that SPSA con-
verges in the same number of iterations as FDSA. The latter
follows approximately the steepest descent direction, behav-
ing like the gradient method (see Figure 4). On the other
hand, SPSA, with the random search direction, does not fol-
low exactly the gradient path. In average though, it tracks it
nearly because the gradient approximation is an almost un-
biased estimator of the gradient, as shown in the following
lemma found in [3].

Lemma 1 Denote bybn = E[ĝnj�n]�rJ(�n)

the bias in the estimator ĝn. Assume that f(�n)ig are
all mutually independent with zero-mean, bounded second
moments, and Ej(�n)�1i j uniformly bounded on U . Thenbn ! 0 w.p. 1.

The detailed proof is in [3]. The main idea is to use condi-
tioning on�n to expressE[(ĝn)i] and then to use a second
order Taylor expansion ofJ(un+cn�n) andJ(un�cn�n).
After algebraic manipulations implying the zero mean and
the independence off(�n)ig, we getE[(ĝn)i] = (gn)i +O(cn)
The result follows from the hypothesis thatcn ! 0.

Next we resume some of the the hypotheses under whichut converges in probability to the set of global minima ofJ(u). For details, see [5], [3] and [6]. The efficiency of
the method depends on the shape ofJ(u), the values of the
parametersak andck and the distribution of the perturbation
terms�ki. First, the algorithm parameters must satisfy the
following conditions:

- at > 0, at ! 0 whent ! 1 and
P1t=1 at = 1; a

good choice would beak = ak ; a > 0;

- ct = c=t , wherec > 0,  2 [ 16 ; 12 );
-
P1t=1 (at=ct)2 <1.

- �ti must be mutually independent zero-mean random
variables, symmetrically distributed about zero, withj�kij � �1 < 1 andEj��2ki j � �2 < 1 a.s.,8i; k.
A good choice for�ki is Bernoulli�1 with probability0:5. The uniform and normal distributions do not satisfy
the finite moment conditions, so can not be used.

The loss functionJ(u) must be thrice continuously differen-
tiable and the individual elements of the third derivative must
be bounded:jJ (3)(u)j � �3 � 1. Also, jJ(u)j ! 1 asu!1.

In addition,rJ must be Lipschitz continuous, bounded
and the ODÊu = g(u) must have a unique solution for each
initial condition.

Under these conditions and a few others (see [5]),uk con-
verges in probability to the set of global minima ofJ(u).
RESULTS

The experiments done with the ECOSIM simulator
showed that effectively, SPSA outperforms the SQP method
using the finite differences gradient approximation. We real-
ized that the quality of the control was very much depending
on SPSA parameters (in particular of the initial values ofa,c and the value of), so we performed a few pilot simula-
tions in order to find the right values. The fastest simulation
did twice better than FDSA, i.e. the same experiment was



Figure 5: Concentration of Product B

two times faster when using SPSA. Like expected, the latter
neededp = 2 times less cost function evaluations (in fact,
the dimension of the problem here is 2:ut = (F;Qk)). The
resulting control can be seen in Figure 5, where are plotted
the reference level changing over time, the upper and lower
bounds of the controlled variablecB and the concentration
of product B (yt) itself. The small perturbation at time 0.7
is due to the change of temperature provoked on purpose.
We see that the control is handling it well. Though, the con-
trolled variable seems having some difficulties when near its
upper and lower bounds, indicating that our way of treating
the limit constraints may be incorrect. We used a dynamic
stopping criteria of the formk�uk � �, where� = 0:1 in
most of the experiments, implying a small number of SPSA
iterations. A higher precision was very costly, indicating that
what we gained in speed was unfortunately lost in precision.
However, we believe that a better choice of parameters can
make the method more robust and this makes part of our on-
going work.

CONCLUSION

In this research we present a methodology for global op-
timization adding noise to the observations of the gradients
in order to achieve better performance of the model. Theory
showed that the addition of random noise can make the con-
trol variables attain near optimality much faster than deter-
ministic methods as confirmed by some of our experiments.
In addition, this method can provably overcome the curse of
dimensionality and thus be used in larger problems. How-
ever, finding the suited parameters proved to be challenging,
showing that a particular attention should be given to this
point.
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