
  

  
Abstract—An on-off iterative adaptive controller has been 

developed that is applicable to servo systems performing 

repeated motions under extremely strict power constraints.  The 

motivation for this approach is the control of piezoelectric 

actuators in autonomous micro-robots, where power 

consumption in analog circuitry and/or for position sensing may 

be much larger than that of the actuators themselves.  The 

control algorithm optimizes the switching instances between ‘on’ 

and ‘off’ inputs to the actuator using a stochastic approximation 

of the gradient of an objective function, namely that the system 

reach a specified output value at a specified time.  This allows 

rapid convergence of system output to the desired value using 

just a single sensor measurement per iteration and discrete 

voltage inputs. 

I. INTRODUCTION 

INIATURIZATION of sensors and actuators through 

developments in Microelectromechanical Systems 

(MEMS) technology can enable very low-power,  small 

footprint implementation of a variety of engineered systems. 

Piezoelectric and electrostatic actuators are two of the most 

common mechanisms for generating motion in MEMS 

devices and act as capacitive loads with very small intrinsic 

power consumption.  For instance, a 1 nF piezoelectric 

actuator operating at 20 V and 20 Hz requires only about 18 

µW of power.  However, in many cases actuators may face a 

changing environment or feature nonlinear behavior requiring 

a servo control system, in which actuator power can be easily 

exceeded by the power consumption of drive and sensing 

circuitry. 

 To minimize power consumption of a complete servo 

control system for micro-scale piezoelectric or capacitive 

actuators, it is desirable to utilize switching (‘on-off’) control 

to avoid inefficiencies in driving circuits [1], and to minimize 

the number of times that the circuit switches during a given 

controlled motion.  Minimizing the number of sensor 

measurements taken also limits system power consumption 

because sensing circuit power, particularly for capacitive 

sensors commonly used in MEMS, rises dramatically with 

sampling rate [2].  When the dynamics of the system to be 

controlled are well known sensor measurements may be 

                                                           
  Manuscript received October 6, 2009. This work was supported in part 

by the U.S. Department of Defense under Grants W911QX-07-C-0072 and 

HR0011-08-1-0040 .  

 B. Hahn is with the Department of Mechanical Engineering, 

University of Michigan, Ann Arbor, MI 48109 USA (e-mail: 

suhahn@umich.edu).  

 K. Oldham is an Assistant Professor in the Department of Mechanical 

Engineering, University of Michigan, Ann Arbor, MI 48109 USA (phone: 

734-615-6327; fax: 734-647-3170; e-mail: oldham@umich.edu).  

 

omitted and open-loop input sequences used, for which 

optimization methods with and without capacitive charging 

costs are available [3], [4], [7].  On the other hand, when 

dynamics are unknown, difficult to model, or varying it is 

necessary to implement a feedback control system that is 

robust or can adapt the switching sequence applied to the 

system using feedback. 

 This paper examines the feedback control case for an 

‘on-off’ switching control system in which a desired motion is 

to be completed many times with the ability to adjust the input 

sequence between movements.  The motivation for this 

problem is the walking gait of a piezoelectrically-driven 

micro-robot, whose legs may need to complete the same 

stepping motion a large number of times, but for which power 

consumption is extremely constrained.  A concept drawing of 

a bio-inspired terrestrial micro-robot design and image of a 

prototype piezoelectric leg joint are shown in Figure 1.   The 

weight bearing capacity of such a robot is anticipated to be in 

the range of 5 to 50 milligrams [5], corresponding to an 

available power consumption per leg of approximately 100 to 

700 microwatts based on state-of-the- art thin-film batteries or 

solar cells [6].  Under these conditions, it is very important to 

identify control strategies that could provide effective servo 

control with an extremely constrained power budget. 

 To perform low-power servo control the problem of 

selecting transition times of an on-off input sequence is 

converted to a model-free adaptive control problem with the 

adaptive controller based on the simultaneous perturbation 

stochastic approximation (SPSA) developed by Spall et al. 

[10], [11], [12], [13].  For power minimization in 

micro-robotics this controller has several benefits which 

include:  a need for only one sensor measurement per motion, 

the ability to perform computation between steps to reduce 

processor requirements, and effectiveness in the presence of 

noisy sensors.  A model-free approach was selected because 

the piezoelectric actuators targeted are highly nonlinear [19]  

 

(a)

 
Figure 1:  (a) Concept drawing of an autonomous 

micro-robot driven by (b) multi-degree-of-freedom 

piezoelectric leg joints 
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and highly varying loads over time are anticipated due to the 

varying terrain that a micro-robot might encounter. The 

proposed algorithm differs from previous adaptive controllers 

specifically oriented towards on-off control, and most 

adaptive switching controllers, which have relied on 

model-based adaptation [20], [21].  Other, model-free, 

adaptive controllers have typically been organized around 

neural nets, which have not yet been applied to on-off control 

problems; these approaches could potentially perform 

function estimation in this context, though the assumption of 

an affine dependence on input in most cases prevents existing 

algorithms from being directly applicable [22], [23], [24]. 

 Following this Introduction, a formal Problem Statement 

for the model-free, adaptive on-off controller is presented in 

Section II, followed by a description of the resulting control 

algorithm in Section III.  Section IV discusses sample 

simulation results using the adaptive control algorithm, while 

Section V gives experimental results for a macro-scale 

piezoelectric testbed.  Section VI concludes the paper. 

II. PROBLEM STATEMENT 

Consider a general iterative discrete-time dynamic system 

governed by a corresponding sequence of input vector, u
k
, and 

a measurement output vector, y
k
, with a random noise 

component: 
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where, k is the iterative index and i is the time index. 

It is assumed that ( ) and ( )fψ ⋅ ⋅ are nonlinear but unknown 

functions for the system (1). Also it is assumed that u
k
 is a 

function of a parameter vector, 
k pRθ ∈ , such that, 

 1 2

T
k k k k

pθ θ θ θ =
 

⋯⋯⋯⋯                                             (2)                             

 

Now, the output measurement vector 
k My R∈  may be 

considered to be a function of 
kθ . Then the system (1) can be 

re-written as follows: 
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where, ( ) and ( )hϕ ⋅ ⋅ are unknown nonlinear functions. 

Two ultimate goals for the control of system (3) are targeted 

in this paper.  The first is to find the optimized parameter 

vector set, 
kθ ,  of the input, u

k
, to minimize the error between 

the final output measurement value,
k
fy , at the final time, tf, 

and a desired target, r.  And the second is to minimize the 

number of measurement outputs required per step to achieve 

the first goal.  

The minimization problem with respect to 
kθ  and output 

error can be stated as follows:  
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Define a cost function with quadratic form for the 

minimization problem (4) such that 

 

( ) ( ( ) ) ( ( ) )
k k k T k k

f fJ y r Q y rθ θ θ= − −                             (5) 

 

where, Q is a weighting matrix. 

 

To solve the problem (4) and (5), generally, a gradient 

based optimization method is used, using the equation  
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where, 
kα is the step size of the algorithm and ( )kg θ is the 

gradient vector for the cost function ( )J ⋅ with respect to 
kθ .  

This approach is used by several model based controllers [3], 

[7], [8], [9].  In this case the system dynamics functions, h(
.
) 

and J(
.
), are completely known and there is no consideration 

of minimal use of measurement outputs. 

However, the gradient in equation (6) for the cost function 

cannot be determined in this paper because it is assumed that 

equations (4) and (6) are based on an unknown function, h(
.
). 

Hence, any standard gradient based optimization algorithm or 

a direct measurement of gradient is not feasible to solve 

problem (4). Additionally, any consideration for the minimal 

use of measurement outputs cannot be stated by the standard 

gradient because the standard gradient is based on derivation 

of a complete function. 

To solve this problem, the simultaneous perturbation 

stochastic approximation (SPSA) algorithm is used for 

gradient approximation in this paper. This approximation 

method was developed by previous researchers as a 

model-free approach for finding optimal control parameters 

[15], [16], [17], [18]. These papers have considered a fixed 

functional structure for a controller, such as a Neural Network 

or a polynomial ([15], [16], [17], [18]) and have generated 

analog inputs to these controllers. In contrast, an on-off 

controller permits only two possible input states, and this 

behavior must be defined in a way that is compatible with the 

SPSA algorithm.  

SPSA is based on relating random perturbations of 

1666



  

controller parameters with their influence on a cost function, 

which is in turn a function of output measurements from an 

unknown system with random noise.  Thus, SPSA doesn’t 

require full knowledge of the form of the system dynamics. 

Most importantly, since SPSA requires only one or two 

measurements to compute gradient approximations regardless 

of the dimension, such as the problem (6), it is very useful and 

effective for minimizing the number of measurement outputs, 

especially in problems with a large number of variables to be 

determined. The SPSA algorithms used in this paper are based 

on results by Spall et al. as discussed in detail in reference 

works [10], [11], [12], [13], [14]. 

III. MODEL-FREE ON-OFF CONTROL ALGORITHM 

In this paper, an on-off controller is developed that can be 

represented using the description in Section II, such that 

performance is improved over repeated iterations of system 

movements.  The final goal of this paper is to find the 

optimized parameter vector set, 
kθ , of this iterative adaptive 

on-off controller that minimizes the cost function, and to 

reduce the number of measurement outputs as much as 

possible.   

In order to perform these tasks, the iterative adaptive on-off 

controller will be applied to unmodeled nonlinear systems and 

the one-measurement form of SPSA will be used to estimate 

the gradient approximation of a cost function. The 

one-measurement form of SPSA can reduce the number of 

iterations required to reach a desired final output of the system 

and therefore be more efficient in terms of sensor power 

consumption in feedback control applications than other 

adaptation algorithms [12]. 

On-off 

controller
System

SPSA
Delay

k+1 � k

r uk+1 yk+1

yk

1kξ +

 
 

Figure 2. The block diagram of the controller 

 

In this section we define all of the controller’s parameters, a 

cost function, and a parameter updating rule . Additionally, a 

short overview and convergence conditions of the 

one-measurement form of the SPSA (as provided in [10] and 

[12]) will be presented.  

Figure 2 shows the block diagram of the iterative adaptive 

on-off controller using the SPSA algorithm. 

A. Adaptive On-off Controller 

The control task is to steer the system (3) to a desired target, 

r, by finite-time on-off control using N switching instances 

and a single measurement output. Under finite-time on-off 

control, the input, u
k
, applied to the system (3) alternates 

between zero and a constant maximum value, umax. 

Switching times are defined by the final time, tf, and time 

vectors,
2 ,  and k N k NR Rτ ξ+∈ ∈ such that  
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⋯⋯⋯⋯

                                      (7)               

                  

Here, 
kξ is defined by  

 

1  and 0,    1, 2,...,
k k k k
j j j j j Nξ τ τ ξ+= − ≥ =                        (8) 

 

which is the finite on-off time duration. The system (3) can be 

re-written as a function of 
kξ : 
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The zero initial condition is based on the assumption of a 

system with stable dynamics and sufficient time between 

motions to return to its equilibrium point. 

Since only one measurement output will be required, the 

cost function (5) and the minimization problem (4) may be 

re-defined as 

 

21
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By the SPSA algorithm, the problem (11) may be solved 

and input parameter vector 
kξ determined and updated until 

the cost function ( )J ⋅  goes to zero as iterative index k goes to 

infinity. 

Once the input parameter vector is determined, the input u
k
 

may be characterized by 
kξ  such that, for 1, 2,..., ( / 2)r N= , 
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where, r is time index at the iteration k. 
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B. Iterative Update of 
kξ using SPSA Algorithm 

Let us now briefly review the one-measurement form of the 

SPSA algorithm [12] for the control problem (11). Let ɵɵɵɵ
k

ξ be 

the estimate of 
k NRξ ∈ at the iteration k.  SPSA has the 

standard iterative form 

 

ɵɵɵɵ ɵɵɵɵ ɵɵɵɵ ɵɵɵɵ
1

( )
k k k kk gξ ξ α ξ

+
= −                                                  (13) 

 

where, 
kα is a sequential gain coefficient and ɵɵɵɵ ɵɵɵɵ( )

k k
g ξ  is a 

simultaneous perturbation (SP) approximation to the 

unknown gradient vector, ( )g ⋅ , for the cost function ( )J ⋅ with 

respect to 
kξ at the k

th
 iteration. 

The one-measurement SPSA form of the ( )g ⋅ estimation at 

iteration k is 

 

ɵɵɵɵ ɵɵɵɵ
( )

1 2( ) 1/ 1/ 1/
k Tk k k k k

Nk

Y
g

c
ξ

+
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⋯⋯⋯⋯               (14) 

 

where { }1 2|
T

k N k k k k
NR  ∆ ∈ ∆ = ∆ ∆ ∆ ⋯⋯⋯⋯ is a vector 

of N independent zero-mean random variables, c
k
 is a 

sequential gain, and Y
(+)k

 is the cost function value with the 

control parameter’s random perturbation vector ,
k∆ , and the 

noise measurement, 
kε ,  i.e.  

 

ɵɵɵɵ( ) ( )
kk k k kY J cξ ε+ = + ∆ +                                                (15) 

 

Note that only one measurement is required to form the    

gradient estimation at the each iteration. 

C. Convergence conditions of SPSA Algorithm 

The specific conditions are necessary for the convergence 

of the system (9). These conditions have been stated and 

proven in [10] and [12]. 

 For an on-off controller driving a system with continuous, 

differentiable dynamics, the finite duration, tf, and finite input 

magnitude, umax, of the on-off controller ensure that the system 

output measurement, yf, and control parameters in ξ will be 

bounded.  The source of noise in the system is taken to be 

white, Gaussian noise in sensor measurements independent of 

noise during prior steps and internal computations. Thus our 

system may ensure all convergence conditions stated in [10] 

and [12].  While this appears to be a realistic assumption for 

common microactuators when discontinuous forces 

encountered by the controlled system, such as impact forces, 

are not present, rigorous examination of microactuator 

characteristics meeting these conditions remains to be done.  

Simulation and experimental results to follow have shown 

good convergence.  For the motivating problem of a 

piezoelectric micro-robotic leg joint, it can currently be said 

that at the least, the algorithm should only be implemented if 

the leg is either in contact or out of contact with ground for the 

entire controlled motion.  In addition, for it to be possible to 

reach a minimum value of the objective function that 

approaches zero, the target reference displacement, r, should 

be within the range of feasible motions of the actuator, which 

does require some knowledge of system capabilities, even if a 

full model of dynamics is not used. 

D.  Implementation of an Adaptive On-off Controller with 

SPSA Algorithm 

Iterative on-off time-optimized control for the system (9) 

can be determined by using the method described in section A, 

B, and C of II with the following implementation procedure. 

 

(Step 1) Initialize max(k),
1

, , , , , , ,  and fN t a c Aξ α γ  

    (Step 2) Generate the SP vector 
k∆  

 (Step 3) Generate u
k
 by ɵɵɵɵ

k k kcξ + ∆ and the equation (12) 

(Step 4) Measure system output at final time tf  

(Step 5) Evaluate the cost function, equation (15)  

(Step 6) Approximate the gradient by the equation (14) 

(Step 7) Update ξ estimate and check constraint 

              Constraint: 

ɵɵɵɵ

ɵɵɵɵ

1 1

1

[0 ],  for 

0,         for 

k

f

k

f

x r

x r

ξ ξ

ξ

∈ >

≥ ≤

                (16) 

(Step 8) go to (Step 2) or terminate algorithm if either ξ  is 

smaller than a prespecified bound or if a maximum 

allowable number of iterations has been reached, subject to 

available memory.   

 

IV. SIMULATION EXAMPLES 

In this section, the performance of the proposed on-off 

controller is illustrated by considering sample nonlinear 

systems with some noise input. However, within the controller 

itself, a representative model should not be used in generation 

of a control input or controller and system identification. 

Since the proposed controller is a model-free controller, a 

representative model will be used only as a simulated plant to 

generate the output signal used in on-off decisions and 

parameter updating as shown in Figure 2.  

 

A. 2nd
 Order Nonlinear System. 

Now, consider the performance of the controller operating 

on a sample nonlinear system. The system (17) was randomly 

selected to test controller performance.  

The same simulation objectives are applied to the system 

(17).  That is, the desired target, r, is 0.5; the dimensions used 

for vector ξ  are 4 and 8; the number of iterations is 20; and 

the update termination index is 15; but the selected final time 

to simulate is 0.2 sec, due to a slower response time of the 

nonlinear system. Selected gain coefficient values of a, c, A, α, 
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and γ are 2.95e
-4

, 5e
-5

, 2000, 0.602, and 0.101, respectively. 
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where ε
k
 is normally distributed random noise with N(0, 

0.01
2
), i is time index at the k

th
 iteration, and the simulation 

sample time is 0.0001 sec. 

The result of system response and values of the cost 

function J(·) related to iteration index are shown in Figure 3 

and 4, respectively.  

Obtained 
*ξ is [0.0275 0.0497 0.0301 0.0497]

T
 for N = 4 

and [0.0134 0.0107 0.0106 0.0107 0.0205 0.0236 0.0106 

0.0106]
T
 for N = 8. 

The proposed controller provides the same solution quality 

to determine the minimization problem (11) as the linear 

system case, even if the tested system is a randomly selected 

nonlinear system. This performance is also independent of 

parameter dimension and uses only one measurement. 

V. EXPERIMENTAL EXAMPLES 

The performance of the proposed controller was verified in 

an experimental test actuator.  

A. Experimental Setup 

A macro-scale piezoelectric actuator is used to verify 

behavior under the proposed controller. A strain gage was 

attached to the actuator to measure deflection, with the output 

of the system being output voltage of the strain gage sensing 

circuit. Mass was added to the tip of the actuator to reduce the 

natural frequency of the experimental apparatus to 31.97 Hz.  

The damping ratio of the experimental system was 0.0348, 

which is similar to a projected micro-robotic leg application. 

Also, system gain G = 0.106 is used since the input range is 

not 0 to 1, but rather 0 to 15 V. The full open-loop transfer 

function of the experimental system, modeled as a 2
nd

-order 

linear system with unmodeled nonlinear term ( )φ ⋅ and the 

approximated noise distribution, ɶɶɶɶε , has an approximate 

discrete-time state model of: 
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It is assumed that the noise of the experimental environment is 

approximated by the ideal noise distribution of the simulated 

case; that is, ɶɶɶɶε has N(0, 0.01
2
).  This noise assumption is 

based on experimental measurements from the 
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Figure 3. Output response of the system (17):  

(a) when N = 4, (b) when N = 8 
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Figure 4. Cost function values for the system (17) vs. 

iteration index: (a) when N = 4, (b) when N = 8 

 

strain gage sensing circuit and was used to determine the gain 

coefficients of the controller. 

The control signal is generated on a TMS320F28335 digital 

signal processor, with an H-bridge circuit acting as the on-off 

interface between the low-voltage DSP and a 15 V supply for 

the actuator. 

B. Experimental Results 

The desired target, r, is 0.5 where a value of 1 corresponds 

to the maximum static displacement of the actuator.  In the 

experiment, dimension settings of 4 and 8 for vector ξ  were 

used; the final time, tf, was 0.01 sec; and the CPU operation 

time was 0.0001 sec. The experimental controller uses only 

one measured value at the final time, tf. However, the 

maximum number of iterations and the update termination 

index were 35 and 30, which are larger than the simulation 

conditions because the noise and dynamic response conditions 

of the real system (18) may be slightly different from the 

sampled nonlinear system (17).  

Selected gain coefficients values of a, c, A, α, and γ are 

9.36e
-5

, 5e
-5

, 2000, 0.602, and 0.101, respectively.  

Sample responses using only one measurement at the final 

time for two scenarios, N = 4 and N = 8, are shown in Figure 7 

(a) and (b). The obtained 
*ξ is [0.0023 0.0025 0 0.0025]

T
 for 

N = 4 and [0.0013 0 0.0004 0.0006 0.0002 0.0013 0 0.0013]
T
 

for N = 8. 

The experimental result shows a successful convergence to 

1669



  

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
K = 1

time(t)

o
u

tp
u

t 
y
(V

)

 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
K = 1+n

time(t)

o
u

tp
u

t 
y
(V

)

 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
K = Final

time(t)

o
u

tp
u
t 

y
(V

)

 

 

r

y(scaled)

u

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
K = 1

time(t)

o
u

tp
u
t 

y
(V

)
 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
K = 1+n

time(t)

o
u

tp
u

t 
y
(V

)

 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
K = Final

time(t)

o
u

tp
u

t 
y
(V

)

 

 

r

y

u

(a) (b)

(scaled)

 
Figure 7. Experimental results for the system (20):  

(a) when N = 4, (b) N = 8 

 

the target reference level.  

In this results, there exist higher order mode oscillations 

encompassed in the unmodeled nonlinear term ( )φ ⋅ , possibly 

due to weakness in the connection between the piezoelectric 

actuator and the added load mass. However, since the 

controller doesn’t evaluate the entire time trajectory of the 

system response but responds to the final value, this 

phenomenon of controller behavior is both acceptable, and  

such unmodeled dynamics are expected to be accommodated. 

 

VI. CONCLUSION 

In this paper, we have described a method for implementing 

model-free adaptive on-off control through the application of 

simultaneous perturbation stochastic approximation to an 

on-off controller structure.  This control technique can be very 

useful in control of repeated motions by systems with 

extremely limited power budgets, where power consumption 

at sensor measurements and in analog drive circuitry is to be 

avoided.  The controller presented can be implemented with 

just a single sensor measurement per actuator motion and 

results in rapid convergence to a desired final output in both 

simulated and experimental tests.  Such a controller may 

ultimately be used to help regulate leg motions in the walking 

gait of a piezoelectrically-actuated terrestrial micro-robot. 
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