Gun Shot Digital Imaging System (GSDIS)

Reference#: P01896

Violence and criminal activity involving firearms is a significant problem for most metropolitan areas in the United States, and numerous suburban areas as well. Two of the problems facing law enforcement authorities when handling these types of crimes are (1) the speed at which the violence begins and ends and (2) the relative ease and speed at which the perpetrators can disappear into the urban landscape.

Using acoustic triangulation technology, the present invention spatially localizes a gunshot. Such localization yields direction and range from the sensors of the source to be observed, subsequently triggering a digital imaging system to acquire the location of the gunshot in the field of view and begin recording. Zooming parameters and subsequent resolution of the imaging system is automatically set by the detected range. The most likely moving candidates or initiators of the gunshot origin will be identified, and multiple cameras of the inventive system located in the vicinity of the gunshot will be triggered to begin recording also.

Digital motion imagery, either multiple digital still images or digital video stream, will be recorded in the computing device embedded in the inventive system and locally stored. Total duration of digital motion imagery and image resolution will be determined according to system resources. Although one image may suffice in apprehending the perpetrator, a minimum duration of no less than about 30 seconds is preferred.

Units of the system of the present invention are positioned around a region. These units are able to communicate with each other to alert each to an event detected by one of the units. Subsequently, the units within a predefined distance of the initial event will respond to the alert by orienting itself in accordance with received information by using it onboard Global Positioning System (GPS), and will begin recording digital imagery. Additionally, the system of the present invention will communicate pertinent imagery data to those in control of the installation, e.g., a local law enforcement agency, a private security organization, an authorized concerned citizen's organization, etc. The system of the present invention can also be remotely accessible via secure wired or wireless network technology for imagery downloads on command.

The present invention advantageously integrates acoustic detection and digital imaging technologies yielding rapid detection, imaging, and tracking of gunshot origins. The acoustic sensing creates an omni-present detection system, triangulating the location of the gunshot without any limitations except range due to sensor sensitivity. The digital imaging system is mounted on a high-slew rate gimballed (ball jointed) system that reacts immediately and slews the imager to point in the direction of the detected acoustic input, hence the field of view of the cameras of the invention is not static but dynamic. The system of the present invention uses an acoustic triangulation algorithm for gunshot localization, and a tracking algorithm for imager field of view management.

Another feature of the present invention is a method for recording one or more images, or video, of a source area where an impulse sound has initiated. The recording is performed by at least one of a plurality of units that include a camera, a computing device, and a connection to a network. The method comprises the steps of (a) detecting and calculating a range and direction of the impulse sound source; (b) stewing the camera to align its optical axis with a direction of the impulse sound; (c) determining whether the impulse sound was a gunshot; recording images of the source area; and (d) alerting a plurality of neighboring units to perform the recording step.

Patent Status: U.S. patent(s) 6965541 issued.

Mr. E. Chalfin
Phone: (443) 778-7473

Additional References:

Link to U.S. Patent and Trademark Office