Friction Transmission with Axial Loading and a Radiolucent Surgical Needle Driver

Reference#: P01349

Conventional needle driving techniques are based on holding the needle head and not the barrel of the needle, the motion of the needle being induced by moving the support of the needle head. The above technique does not allow radiolucent constructions. Moreover, supporting the needle from its head tends to disadvantageously maximize the unsupported length of the needle, thus facilitating needle deflection under the insertion force.

An object of the present invention is to provide a simple and effective method and system for radiological image guidance in percutaneous surgery.

The invention is a system comprising: a radiological image generating device for generating an image of a target anatomy of a patient to be operated on for determining a needle trajectory to be followed through the patient, the image generating device being positionable to generate an image of the target anatomy from a plurality of directions; and a needle insertion mechanism disposed adjacent the image generating device and having a needle adapted to be inserted into the patient and to be locked in a direction of the needle trajectory.

According to one aspect of the invention, the needle insertion mechanism comprises both a needle and a needle driver, which includes rotational components as well as motion transmission mechanism comprising both an output shaft and an output shaft driver.

The simplicity of the method and system according to the present invention is achieved by combining the proven radiological image guidance procedures and devices of the prior art with a simple and cost-effective needle injection device which exhibits an extremely low radiological profile. The needle injection device further provides actuated needle motion in conjunction with a mechanical manipulator designed to be used in existing operating rooms without the necessity of additional computers or personnel.

Accordingly, the method and device of the present invention mimic and improve upon the surgeon's standard technique. The key advantages of the present invention are that it involves the use of a proven radiological needle alignment procedure, improves accuracy in comparison with purely manual needle positioning techniques, and enables lateral fluoroscopic monitoring of the needle without necessitating computer-based vision and robotic systems. The present invention results in a shortening of procedure durations, improves upon patient safety, ensures and improves upon equipment sterility, and reduces the radiation exposure of surgeons.

A further advantage of the method according to the invention is that it does not require image correction and calibration. By superimposing the needle, the insertion site and the target, any image distortions are identical, and therefore, cancel each other. Moreover, the method of the present invention requires direct observation by only the surgeon involved, and hence does not necessitate image-processing that is computer based, thereby significantly reducing operative time and expense.

Mr. E. Chalfin
Phone: (443) 778-7473

Additional References:

Patent Drawing