
 

 
 

Answers to Selected Exercises in 
Introduction to Stochastic Search and Optimization:  

Estimation, Simulation, and Control  
by J. C. Spall 

 
This section provides answers to selected exercises in the chapters and appendices. An 
asterisk (*) indicates that the solution here is incomplete relative to the information requested 
in the exercise. Unless indicated otherwise, the answers here are identical to those in the text 
on pp. 552−557 (it is possible that future versions of this site may include additional 
information, including solutions to supplementary exercises that are posted on the book’s 
Web site). 
 
 
CHAPTERS 1 − 17 
 
1.2. On the domain [−1, 1], the maximum occurs at θ = 1  and the minimum occurs at θ = −1. 5
 
1.10.* The table below provides the solution for the first two (of six) iterations: 
 

k ˆT
kθ  ˆ( )kL θ  

0 [0, 3.0] 52.0
1 [2.728, 1.512] 0.369 
2 [2.500, 1.228] 0.0643 

 
(Note: This problem corresponds to Example 8.6.2 in Bazaraa et al., 1993. The numbers here 
differ slightly from Bazaraa et al. This is apparently due to the limited accuracy used in Bazaraa et 
al.) 
 
2.3.* A first-order Taylor approximation (Appendix A) yields 
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This implies from (2.4) that the number of loss measurements n satisfies n = 
log log 1 log( )P P∗ ∗ρ − ≈ − ρ  for small P∗ , as was to be shown. 
 
3.4. (b) With a = 0.07, the sample means of the terminal estimates for β and γ are 0.91 and 0.52, 
respectively (versus true values of 0.90 and 0.50).  
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4.3.* The table below shows the sample means of the terminal estimate from 20 replications. 
Under each sample mean is the approximate 95 percent confidence interval using the principles in 
Section B.1 (Appendix B). 
 

 
n = 100 n = 10,000 n = 1,000,000 

Sample mean of 
terminal 

estimate (and 
95% interval) 

0.729 
[0.700, 0.760] 

 

0.920 
[0.906, 0.934] 

 

0.974 
[0.970, 0.977] 

 
 
5.10.* The table below presents the solution for the recursive processing with one pass through 
the data for one value of a. The mean absolute deviation (MAD) is computed with respect to the 
test data in reeddata-test. 
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6.4. For convenience, let Xk = 2/ ˆ( kkβ )∗−θ θ . It is assumed that Xk converges in distribution to 
N(µFD, ΣFD). From Figure C.1 in Appendix C, pr. and a.s. convergence are both stronger than dist. 
convergence. However, even pr. and a.s. convergence, in general, are not strong enough to 
guarantee that the mean of the process converges (see Example C.4). Therefore, E(Xk)  µ→/ FD in 
general. 
 
7.3. With valid (Bernoulli) perturbations, the mean terminal loss value  is approximately 
0.03 over several independent replications. For the (invalid) uniform 

1000
ˆ(L θ )

3, 3−[  and N(0, 1) 
perturbation distributions, the θ estimate quickly diverges. Based on several runs, the terminal 
loss value was typically between 10

]
50 and 10100 for the uniform case and much greater than 10100 

for the normal case. This illustrates the danger of using an invalid perturbation distribution, even 
one that has the same mean and variance as a valid distribution. 
 
8.6. SAN is run with the coefficients of Example 8.2 on the indicated two-dimensional quartic 
loss function. The table below shows the sample-mean terminal loss values for initial 
temperatures of 0.001, 0.10, and 10.0 based on an average over 40 replications. The results for the 
lowest and highest initial temperature are poorer than the results in Table 8.2; the results for the 
intermediate initial temperature (0.10) are pulled directly from Table 8.2.  

 



 

 
 
  

N Tinit = 
0.001 

Tinit = 
0.10 

Tinit= 
10.0 

100 3.71 0.091 8.75 
1000 2.12 0.067 6.11 

10,000 0.429 0.0024 0.141 
 
9.7.* The probability of a given (selected) binary-coded chromosome being changed from one 
generation to the next is bounded above by P(crossover ∪ mutation), where the event “mutation” 
refers to at least one bit being mutated. (The probability is bounded above because crossover does 
not guarantee that the chromosome will be changed. For example, one-point crossover applied as 
indicated to the following two distinct chromosomes does not change either chromosome: 
[0 1 0|1 1 0] and [1 1 0|1 1 0].) Note that  
 
 P(crossover ∪ mutation) 

= (crossover) + (mutation) (crossover  mutation)

= 1 (1 ) 1 (1 )( ) ( ) .B B
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The probability of passing intact is therefore bounded below by 1 − P(crossover ∪ mutation). 
(Note: The solution above represents a clarification of the solution on p. 554 of the first printing 
of the text to reflect that the probability P(crossover ∪ mutation) is an upper bound—versus 
equality—to the probability of change in the chromosome.)    
 
10.8.* Applying Stirling’s approximation for “large” N and B yields 
 

2 1 1/ 21 2 1 1 11 1
2 2 1 2 1

BNB

P B B
NN

N N

− −   ≈ + + +     π  −   −  


 . 

 
11.3. (b) One aspect suggesting that the online form in (11.11) is superior is that it uses the most 
recent parameter estimate for all evaluations on the right-hand side of the parameter update 
recursion. The alternative form of TD in this exercise uses older parameter estimates for some of 
the evaluations on the right-hand side. Another potential shortcoming noted by Sutton (1988) is 
that the differences in the predictions will be due to changes in both θ and the inputs (the xτ), 
making it hard to isolate only the effects of interest. In contrast to the recursion of this exercise, 
the temporal difference in predictions on the right-hand side of the recursion in (11.11) is due 
solely to changes in the input values (since the parameter is the same in all predictions).  
 
12.4. Under the null hypothesis, L(θm) = L(θj) for all j ≠ m. Further, E(δmj) = 0 for all j ≠ m by the 
assumption of a common mean for the noise terms. Then   
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where the last line follows by the mutual uncorrelatedness over all i, j, and m (so, e.g., ( )j mE L L  
= ( ) ( )j mE L E L  = 2)]mE L[ (  for j ≠ m). 
 
13.7. Using MS EXCEL and the data in reeddata-fit, we follow the approach outlined in 
Example 13.5 in terms of splitting the data into four pairs of fitting/testing subsets. The four MSE 
values are 0.092, 0.146, 0.157, and 0.181 and the four MAD values are 0.261, 0.328, 0.323, and 
0.328. The modified Table 13.3 is given below; the values in italics are from Table 13.3 (so only 
the last column is new). The full linear model produces the lowest RMS and MAD values. 
 

 Full linear model 
(13.9) 

Reduced linear 
model (13.10) 

Five-input linear 
model 

RMS 0.327 0.386 0.379 

MAD 0.266 0.306 0.310 
 

14.7. (b) We approximate the CRN-based and non-CRN-based covariance matrices using the 
sample covariance matrix from 2 × 106 gradient approximations generated via Monte Carlo 
simulation (this large number is needed to get a stable estimate of the matrix). The approximate 
covariance matrices are as follows: 
 

CRN: 
445.2 44.5
44.5 465.3

ˆ ˆˆcov ( )[ | ]k k k
 
 
 

≈θ θg , 

 

Non-CRN: 
5936.0 93.5

93.5 5956.4
ˆ ˆˆcov ( )[ | ]k k k

 
 
 

≈θ θg . 

 

The above show that for ck = 0.1, the CRN covariance matrix is much smaller (in the matrix 
sense) than the non-CRN covariance matrix.  
 
15.3. We have log pV (υ | θ) = log pV (υ | λ) = υ logλ + (1 − υ) log(1 − λ). Hence, log ( | )Vp∂ υ λ ∂λ  
= υ λ  − 1 1( − υ) ( − λ) . This simplifies to 1−1λ (λ − υ) (λ − ) , as shown in the first component of 

log ( | )Vp∂ υ θ θ∂  in Example 15.4. The second component in log ( | )Vp∂ υ ∂θ θ
ˆ( )k k

 is zero since 
there is no dependence of pV (υ | θ) on β. The final form for θY  then follows immediately 
using expression (15.12). 
 
16.4.* Let X be the current state value and W be the candidate point. The candidate point W is 
accepted with probability ρ(X, W). This probability is random as it is depends on X and W. For 

 



 

 
 
  
convenience, let ( , ) ( ) ( ) [ ( ) ( )]p q p qπ =x w w x x w  (so ( , ) min ( , ),  1{ }ρ = πx w x w  according to 
(16.3)). The mean acceptance probability is given by  
   

( , ) 1 ( , ) 1
( , )] ( ) ( ) ( , ) ( ) ( )Ε p q d d p q d d

π ≥ π <
[ρ = π∫ ∫x w x w

X W x w x w + x w x w x w . 
 

After several steps involving the re-expression of the integrals above (reader should show these 
steps), it is found that E[ρ(X, W)] = 2 (

( , ) 1
) ( )p q d d

π ≥∫ x w x w x w . The result to be proved then 
follows in several more steps (reader to show) by invoking the given inequality p(x) ≤ Cq(x). 
(Incidentally, the form of M-H where q(w | x) = q(w) is sometimes called the independent M-H 
sampler.) 
 
16.6. For the bivariate setting here, the general expression in (16.9) simplifies considerably. In 
particular, µi = µ\i = 0, Σi,\i = ρ, and Σ\i,\i = 1. Hence, the bivariate sampling for the Gibbs sampling 
procedure is:  
 

Xk+1,1 ∼ N(ρXk2, 1 − ρ2)  and  Xk+1,2 ∼ N(ρXk+1,1, 1 − ρ2). 
 
17.7. This problem is a direct application of the bound in property (iii) as shown in Subsection 
17.2.2. The bound yields 1.098 ≤ det ( n )∗M ξ  ≤ 1.5. 
 
17.17. (a) As in Example 17.12, consider the information number at each measurement (instead of 
Fn). This value is 2 2 xx e− θ . Hence, the modified D-optimal criterion is 
ρx2

 exp(−2θ1x) + (1 − ρ)x2
eexp(−2θ2x). The derivative with respect to x yields 

 

ρ[2 x exp(−2 θ1x) − 2 θ1x
2

 exp(−2 θ1 x)] + (1 − ρ)[2 x exp(−2 θ2 x) − 2 θ2 x2
 exp(−2 θ2 x)]. 

 

Simplifying and setting to zero yields the following transcendental equation for x: 
 

ρ exp(−2 θ1 x)( 1 − θ1 x) + (1 − ρ) exp(−2 θ2 x)(1 − θ2 x) = 0. 
 

This is a starting point for finding the support point for the design; we also need to ensure that the 
solution is a maximum (not a minimum or saddlepoint).  
 
 

APPENDICES A − E 
 

A.3. (b) A plot of f (θ, x) is given below. The plot depicts the continuity of f (θ, x) on Θ × Λ , but 
also illustrates that there are some “sharp edges” where the derivative will not be continuous. 
Hence, not all conditions of Theorem A.3 are satisfied. 



 

 
 
  

 
B.5.* With the exception of the choice of matrix square root, we follow the steps of Exercise B.4. 
Using the chol function in MATLAB, the upper triangular Cholesky factorization of the initial 
covariance matrix is . In transforming the data, note that (Σ1.0 0.8

0 0.6





1/2)TΣ1/2 = Σ (but Σ1/2(Σ1/2)T ≠ 
Σ!). We find that the t-statistics are −0.742 and −0.734 for the matched and unmatched pairs, 
respectively. This leads to corresponding P-values (for a one-sided test) of 0.238 (9 degrees of 
freedom) and 0.236 (18 degrees of freedom), respectively. These values are close to one another. 
Hence, the merit of using the matched-pairs test has been almost totally lost as a result of the 
relatively low correlation here. 
 
C.4. (b) Note that ( )r

kE −X X  = ( )0r
k kE − −X X X X . Because 0 < r < q, the Hölder 

inequality can be applied to the right-hand side of this expression: 
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But ( q

kE −X X )  → 0 as k → ∞ by assumption, implying ( )r
kE −X X  → 0 from the bound 

above. This completes the proof. 
 
D.1. Given J0 = a = c = 3 and modulus = 5, we have J1 = aJ0 + c (mod m) =  = 
2. Continuing the iterative process, it is found that J

(3 3 3) (mod 5)× +
4 = J0. Therefore, this generator has period 4, 

which is smaller than the modulus. 
 
E.1. From the matrix P 

4 in Example E.2, we hypothesize that p  = [0.305, 0.256, 0.439]T. As a 
first check on the validity of this solution, note that the elements sum to unity. Based on the given 

 



 

 
 
  
P, it is then straightforward to check the defining relationship Tp  = Tp P  given in (E.2). This 
indicates that to within three digits, the hypothesized p  is, in fact, the actual p .  
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