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A modified second-order SPSA optimization algorithm
for finite samples
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SUMMARY

We propose a modification to the simultaneous perturbation stochastic approximation (SPSA) methods
based on the comparisons made between the first- and second-order SPSA (1SPSA and 2SPSA) algorithms
from the perspective of loss function Hessian. At finite iterations, the accuracy of the algorithm depends on
the matrix conditioning of the loss function Hessian. The error of 2SPSA algorithm for a loss function with
an ill-conditioned Hessian is greater than the one with a well-conditioned Hessian. On the other hand, the
1SPSA algorithm is less sensitive to the matrix conditioning of loss function Hessians. The modified 2SPSA
(M2SPSA) eliminates the error amplification caused by the inversion of an ill-conditioned Hessian. This
leads to significant improvements in its algorithm efficiency in problems with an ill-conditioned Hessian
matrix. Asymptotically, the efficiency analysis shows that M2SPSA is also superior to 2SPSA in a large
parameter domain. It is shown that the ratio of the mean square errors for M2SPSA to 2SPSA is always
less than one except for a perfectly conditioned Hessian or for an asymptotically optimal setting of the gain
sequence. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

The recently developed simultaneous perturbation stochastic approximation (SPSA) method
has found many applications in areas such as physical parameter estimation and simulation-
based optimization. The novelty of the SPSA is the underlying derivative approximation that
requires only two (for the gradient) or four (for the Hessian matrix) evaluations of the loss
function regardless of the dimension of the optimization problem. There exist two basic
SPSA algorithms that are based on the ‘simultaneous perturbation’ (SP) concept and that
use only (noisy) loss function measurements. The first-order SPSA (1SPSA) is related to the
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Kiefer–Wolfowitz (K–W) stochastic approximation (SA) method [1] whereas the second-order
SPSA (2SPSA) is a stochastic analogue of the deterministic Newton–Raphson algorithm [2].
There have been several studies that compare the efficiency of 1SPSA with other stochastic
approximation (SA) methods (e.g. References [1, 3, 4]). It is generally accepted that 1SPSA is
superior to other first-order SA methods (such as the standard K–W method) due to its efficient
estimator for the loss function gradient.

Spall [2] shows that a ‘standard’ implementation of 2SPSA achieves a nearly optimal
asymptotic error, with the asymptotic root-mean-square error being no more than twice the
optimal (but unachievable) error from an infeasible gain sequence depending on the third
derivatives of the loss function. This appealing result for 2SPSA is achieved with a trivial gain
sequence ( %aak ¼ 1=ðk þ 1Þ in the notation below), which effectively eliminates the nettlesome
issue of selecting a ‘good’ gain sequence. Because this result is asymptotic, however,
performance in finite samples may sometimes be improved using other considerations.

Part of the purpose of this paper is to provide a comparison between 1SPSA and 2SPSA from
the perspective of the conditioning of the loss function Hessian matrix. To achieve the
objectivity of the comparison we also suggest a new mapping for implementing 2SPSA that
eliminates the non-positive definiteness while preserving key spectral properties of the estimated
Hessian. While the focus of this paper is finite-sample analysis, we are necessarily limited by the
theory available for SA algorithms, almost all of which is asymptotic. For that reason, the
discussion and rationale here will be a blend of static (finite-sample) results from matrix theory,
asymptotic theory, and numerical analysis. The numerical examples illustrating the empirical
results at finite iterations will be carefully chosen to represent a wide range of matrix
conditioning for the loss function Hessians.

2. MATRIX CONDITIONING AND ITS RELATION TO 2SPSA

The SA algorithms are the general recursions for the estimate (#yyk) of a solution (y�) having
dimension p: The core recursions for the SPSA algorithms are

1SPSA [1]:

#yykþ1 ¼ #yyk � ak #ggkð#yykÞ; k ¼ 0; 1; 2; . . . ð1Þ

2SPSA [2]:

#yykþ1 ¼ #yyk � %aak
%%HH%HH�1
k #ggkð#yykÞ;

%%HH%HHk ¼ fkð %HHkÞ ð2aÞ

%HHk ¼
k

k þ 1
%HHk�1 þ

1

k þ 1
#HHk ; k ¼ 0; 1; 2; . . . ð2bÞ

where ak and %aak are the scalar gain series that satisfy certain SA conditions, #ggk is the SP estimate
of the loss function gradient that depends on the gain sequence ck (representing a difference
interval of the perturbations), #HHk is the SP estimate of the Hessian matrix, and fk maps the usual
non-positive-definite %HHk to a positive-definite p � p matrix. Let Dk be a user-generated mean-
zero random vector of dimension p with its components being independent random variables.
The ith element of the loss function gradient is given by [1]

ð #ggkÞi ¼ ð2ckDkiÞ
�1½yð#yyk þ ckDkÞ � yð#yyk � ckDkÞ�; i ¼ 1; 2; . . . ;p ð3Þ
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where Dki is the ith component of the Dk ; vector and yðyÞ is the measurements of the loss
function: yðyÞ ¼ LðyÞ þ noise; where y is the parameter that has the true value of y�: It is noted
that the 2SPSA form is a special case of the general adaptive SP method of Spall [2]. The general
method can also be used in root-finding problems where %HHk represents an estimate of the
associated Jacobian matrix.

The true Hessian matrix of the loss function H ðyÞ has its ijth element defined as Hij ¼
@2L=@yi@yj and its value at the solution H ðy�Þ denoted by H�. The ijth element of the per-
iteration estimate of H is given by [2]

ð #HHkÞij ¼ ð4ck *cckÞ
�1½ðDki

*DDkjÞ
�1 þ ðDkj

*DDkiÞ
�1� ½yð#yyk þ ckDk þ *cck *DDkÞ

� yð#yyk þ ckDkÞ � yð#yyk � ckDk þ *cck *DDkÞ þ yð#yyk � ckDkÞ�; i; j ¼ 1; 2; . . . ;p ð4Þ

with the gain sequence *cck satisfying conditions similar to ck and with *DDk ¼ ð *DDk1; *DDk2; . . . ; *DDkpÞ
T

generated in the same statistical manner as Dk : It is noted that #HHk defined by (4) is a symmetric
Hessian estimate that is convenient in an optimization application and is a crucial requirement
for the new mapping fk proposed in the following section. Readers are referred to Spall [2] for
more detailed definitions and discussions on implementation aspects, including some possible
forms for the mapping fk :

2.1. A new form of mapping fk for 2SPSA

One crucial aspect of implementing 2SPSA is to define the mapping fk ; from %HHk to
%%HH%HHk since the

former is often non-positive definite in practice. It is noted that there are no simple and universal
conditions that guarantee a matrix to be positively definite. The existence of a minimum(s) for a
loss function based on the problem’s physical nature guarantees that its Hessian should be
positively definite. We suggest the following approach that eliminates the non-positive
definiteness while preserving key spectral properties of %HHk : This approach is motivated by
finite-sample concerns, as we discuss below. First, we compute the eigenvalues of %HHk and sort
them into descending order:

Lk � diag½l1; l2; . . . ; lq�1; lq; lqþ1; . . . ; lp� ð5Þ

where lq > 0 and lqþ140: For the sake of simplicity, we have omitted the index k for the
individual eigenvalue li that is a function of k: Next, we assume that the negative eigenvalues
will not lead to a physically meaningful solution. They are either caused by errors in %HHk or are
due to the fact that the iteration has not reached the neighborhood of y� where the loss function
is locally quadratic. Therefore, we replace them together with the smallest positive eigenvalue
with a descending series of positive eigenvalues:

#llq ¼ elq�1; #llqþ1 ¼ e#llq; . . . ; #llp ¼ e#llp�1 ð6Þ

where the adjustable parameter 05e51 can be specified based on the existing positive
eigenvalues

e ¼ ðlq�1=l1Þ
q�2 ð7Þ

The purpose of having the smallest positive eigenvalue (lq) redefined is to avoid its possible
near-zero value that would make the mapped matrix near singular. We let #LLk be the diagonal
matrix Lk ; with eigenvalues lq; . . . ; lp replaced by #llq; . . . ; #llp defined according to (6).
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Equations (6) and (7) indicate that the spectral character of the existing positive eigenvalues as
measured by the ratio of its maximum-to-minimum eigenvalues, whether it is wide or narrowly
spread, is extrapolated to the rest of the matrix spectrum. The specification of (7) bears an ad
hoc feature that is common in all extrapolation techniques (e.g. Reference [5, p. 99]). Other
forms of specifications such as e ¼ ðlq�1=l1Þ

ðq�2Þ=2 or e ¼ 1 would also effectively eliminate the
non-positive definiteness. Because the separating point between the positive and negative
eigenvalues q slowly increases from 1 to p; we find numerically that the specification based on
(7) yields relatively a faster convergence in most castes. Since %HHk is symmetric, it is orthogonally
similar to the real diagonal matrix of its real eigenvalues (e.g. References [6, p. 171])

%HHk ¼ PkLkPT
k ð8Þ

where the orthogonal matrix Pk consists of all the eigenvectors of %HHk ; which are usually derived
together with the eigenvalues (e.g. Reference [5, p. 460]). Now, the mapping fk can be expressed
as

fkð %HHkÞ ¼ Pk #LLkPT
k ð9Þ

Since it is %%HH%HH�1
k that is used in the 2SPSA recursion (2a) mapping (9) with the available

eigenvectors of %HHk also leads to an easy inversion of the estimated Hessian:

%%HH%HH�1
k ¼ Pk #LL�1

k PT
k ð10Þ

The 2SPSA based on mapping (9) makes the procedure of eliminating the non-positive
definiteness of %HHk a precise one. It is noted that the key parameters needed for the mapping
(e and lq�1) are internally determined by %HHk at each iteration. This is different from some other
forms of fk where a user-specified coefficient is needed.

According to the perturbation theorem for the eigenvalues of a symmetric matrix the
differences in eigenvalues are bounded by eigenvalues of the perturbation matrix [6, p. 367]

lpðD %HHkÞ4li � l�i4l1ðD %HHkÞ for all i ¼ 1; 2; . . . ;p ð11Þ

where l�i denotes the eigenvalues of H �: Furthermore, lpðD %HHkÞ and l1ðD %HHkÞ are the minimum
and maximum eigenvalues of the kth perturbation matrix D %HHk ¼ %HHk � H �; respectively.
Equation (11) suggests that the perturbation matrix will have greater impact on the smaller
eigenvalues in terms of their fractional changes as %HHk converges (almost surely) to H � (see
conditions in Reference [2]). The numerical experiments confirm that large eigenvalues (e.g. l1;
l2) quickly approach near-steady values in iterations whereas small eigenvalues (e.g. lq; lqþ1)
vary noticeably per iteration. Hence, the smallest positive eigenvalue (lq) has also been redefined
at each iteration to avoid its possible near-zero value. When all the eigenvalues in (5) are positive
and the smallest lp becomes stabilized, say empirically lp > 0:1ðelp�1Þ with e ¼ ðlp�1=l1Þ

p�2 or
lp > 0 in 10 consecutive iterations, we set #LLk ¼ Lk :

Specifically, %HHk asymptotically converges (almost surely) to a positively definite H � so that
lp > 0 as k ! 1 (as shown in Reference [2]). Hence, we have #LLk � Lk ! 0 since,
asymptotically, elements of #LLk are continuous functions of %HHk : We first note that Lk is a
continuous function of %HHk : Therefore, Lk ! L� almost surely when %HHk ! H�; where L� denotes
all the eigenvalues of H �: This follows from the basic property of continuous function for
deterministic sequence (e.g. Reference [7, p. 70]). Both Lk and %HHk converge for almost all points
in their underlying sample spaces. We further note that our mapping from Lk ; to #LLk defined by
(6) and (7) is also a continuous function asymptotically. Here, we like to point out that the
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mapping fk defined by (9) preserves the key spectral characters such as the spread of those
known positive eigenvalues l1=lq�1: Furthermore, as k ! 1; any mapping for 2SPSA should
preserve the complete spectral property of %HHk : Therefore, the proposed mapping to a matrix in
2SPSA is different from the matrix regularization in an ill-posed inversion problem where the
spectral property of an ill-conditioned matrix is changed to make the problem well posed (e.g.
Reference [5, Chapter 18]).

2.2. Effect of matrix conditioning on 2SPSA

It is noted that the 2SPSA recursion (2a) effectively involves computing the inverse matrix %%HH%HH�1
k

(although, in implementation, the explicit inversion should be avoided using standard methods
of linear algebra). The mapping fk defined by (9) guarantees that %%HH%HHk is a non-singular matrix.
Our mapping procedure of replacing a possible near-zero lq with a better behaved #llq also
eliminates the possibility of a near-singular matrix. However, the elements of %HHk resulted from
the SP approximation and imperfect measurements of the loss function are subject to errors.
These errors will directly affect the computed matrix inverse. An underlying rationale for 2SPSA
is the strong convergence of both #yyk and its Hessian [2]

#yyk ! y�; %HHkð#yykÞ ! H� ðalmost surelyÞ as k ! 1 ð12Þ

Thus, the accuracy of #yyk at finite k should be related to that of %HHk : Recursion (2a) indicates a
direct relation: the errors of #yyk are proportional to those of %%HH%HH�1

k : Therefore, the performance of
2SPSA will be sensitive to how the errors are affected through the matrix inversion.

The magnitude of errors in a matrix inversion can be quantitatively described by the matrix
condition number k with respect to a matrix norm (e.g. [6, p. 336])

kðH Þ ¼ H�1
�� ���� �� jjH jj ð13Þ

where jj�jj denotes arbitrary matrix norm. For a symmetric Hessian matrix H with all positive
eigenvalues, its condition number with respect to the spectral norm (kl) provides a
straightforward illustration of the ill-conditioning for the computation of matrix inversion.
The spectral condition number kl is defined as the ratio of the maximum eigenvalue to the
minimum one [6, p. 340]

klðH Þ ¼ lmax=lmin ð14Þ

We use kl in the numerical studies of Section 4. It can be shown that when %%HH%HHk only slightly
deviates from the exact H�; the fractional error in an inverse matrix is approximately
proportional to the matrix condition number [6, p. 336]

jj %%HH%HH�1
k � H ��1jj
jjH ��1jj

4
kðH�Þ

1� kðH�ÞðjjD %%HH%HHk jj= jjH �jjÞ
�
jjD %%HH%HHk jj
jjH �jj

if jjD %%HH%HHk jj jjH ��1jj51 ð15Þ

where D %%HH%HHk ¼
%%HH%HHk � H� is the perturbation from the exact Hessian. It is noted that depending on

how %%HH%HHk is derived, the perturbation matrix D %%HH%HHk may also change with k: Based on our analyses
of (2a) and (15) we can conclude that the errors of 2SPSA for an ill-conditioned Hessian of a
greater kðH�Þ will be greater than a well-conditioned Hessian of a smaller kðH �Þ: Since 1SPSA
(1) does not work with matrix inversion, the additional error sensitivity introduced by matrix
inversion that are directly related to kðH �Þ will not exist in 1SPSA.
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3. MODIFIED 2SPSA

3.1. Description of a modified 2SPSA (M2SPSA)

Several numerical studies have suggested that 2SPSA may outperform 1SPSA in practice
(e.g. References [2, 8]). The underlying reason can be understood as follows: 1SPSA
predetermines the gain series (ak) for the whole iteration process whereas 2SPSA derives a
generalized gain series ( %aak

%%HH%HH�1
k ) that is adapted to near optimality at each iteration. However,

based on our analyses in the last section, the inverse of the estimated Hessian generally
introduces additional error sensitivity inherited in %HHk for a non-perfectly conditioned matrix
(k > 1). To avoid computing the inverse of an ill-conditioned matrix while still approximately
optimizing the gain series at each iteration we can modify the first recursion for 2SPSA (2a) by
replacing #LLk in the mapping fk of (9) with %LLk that contains constant diagonal elements

#yykþ1 ¼ #yyk � %aak %ll�1
k #ggkð#yykÞ ð16Þ

where %llk is the geometric mean of all the eigenvalues of %%HH%HHk

%llk ¼ ðl1l2 � � � lq�1
#llq #llqþ1 � � � #llpÞ

1=p ð17Þ

Recursions (16) and (2b) together with (5)–(7) and (17) form a modified 2SPSA (M2SPSA) that
takes advantage of both the well-conditioned 1SPSA and the internally determined gain
sequence of 2SPSA. The proportionality coefficient a of ak ð¼ a=ðk þ 1þ AÞa; A50) in 1SPSA
depends on the individual loss function and is generally selected by a trial-and-error approach in
practice (e.g. Reference [9]). On the other hand, 2SPSA removes such an uncertainty in selecting
its proportionality coefficient %aa of %aak ð¼ %aa=ðk þ 1þ AÞa; A50Þ since the asymptotically near-
optimal selection of %aa is 1 [2]. The crucial property that a in 1SPSA is dependent on the
individual loss function has been built into 2SPSA by its generalized gain series
(ðk þ 1þ AÞ�a %%HH%HH�1

k ; A50Þ: From this perspective, our M2SPSA (16) can be considered as an
extension of 1SPSA in which a is replaced by a scalar series %ll�1

k that depends on the individual
loss function and varies with iteration.

3.2. Asymptotic efficiency analysis

The strong convergence of #yyk generally implies an asymptotic normal distribution. Spall [1, 2]
established the asymptotic normal distributions for both 1SPSA and 2SPSA. Although our
interests are mainly in finite samples, let us present the following asymptotic arguments as a way
of relating to previous known results. Since the M2SPSA can also be considered as an extension
of 1SPSA with a special gain series %ll�1

k the analysis of the asymptotic normality for 1SPSA can
also be extended to M2SPSA. In this section, we first review the asymptotic normal distributions
for 1SPSA and 2SPSA. Then, the asymptotic efficiency is compared for three different
algorithms of lSPSA, 2SPSA, and M2SPSA.

3.2.1. Asymptotic normality of #yyk in 1SPSA

Using Fabian’s [10] result, Spall [1] established the following asymptotic normality of #yyk in 1SPSA:

kb=2ð#yyk � y�Þ !
dist

N ðx; SÞ as k ! 1 ð18Þ
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where x and S are the mean vector and covariance matrix and b=2 characterizes the rate of
convergence and is related to the parameters of gain sequences ak and ck : The mean x in (18)
depends on the third derivatives of the loss function at y� and generally vanishes except for a
special set of gain sequences.

The covariance matrix S for a51 is orthogonally similar to the diagonal matrix that is
proportional to the inverse eigenvalues of the Hessian

S ¼ caPTL��1P ð19Þ

where P is orthogonal with H � ¼ PL�PT; L� ¼ diag½l�1; l
�
2; . . . ; l

�
p�; and the coefficient of

proportionality c depends on the statistical parameters in the algorithm [1]. Again, according to
the eigenvalue perturbation theorem [6, p. 365] the difference between li ði ¼ 1; 2; . . . ;pÞ at the
kth iteration and l�i in (19) is bounded by the difference in its Hessian

jli � l�i j4klðP Þ %HHkð#yykÞ � H�
���

���
���

���
2
; i ¼ 1; 2; . . . ;p ð20Þ

where jj�jj2 denotes the spectral norm of a matrix [6, p. 295] that leads to the definition of spectral
condition number (14). It is noted that %HHkð#yykÞ converges almost surely to H � and the mapping
from %HHk to

%%HH%HHk defined by (9) preserves the matrix spectra. Furthermore, #LLk � Lk ! 0 as k ! 1
and the calculation from %HHk to Lk is a continuous function, we also have the following strong
convergence for the eigenvalues of Hessian:

Lk ! L� ¼ diag½l�1; l
�
2; . . . ; l

�
p�; %llk ! %ll� ðalmost surelyÞ as k ! 1 ð21Þ

where %ll� is the geometric mean of all the eigenvalues of H �: Based on (18), (19) and (21) we
conclude that the choice of %aak %ll�1

k in M2SPSA can also be considered as a natural extension of
1SPSA with a sensible selection of a based on its asymptotic normality.

3.2.2. Asymptotic normality of #yyk in 2SPSA and M2SPSA

To further illustrate the above point and compare M2SPSA with 2SPSA asymptotically, we
consider the asymptotic normality of #yyk for 2SPSA for the gain sequence of the form %aak � k�a

and ck � k�g: The asymptotic distribution is given by [2]

kb=2ð#yyk � y�Þ !
dist

N ðm; OÞ as k ! 1 ð22Þ

where b ¼ a� 2g: The covariance matrix O is proportional to H��2 ¼ PL��2 PT with the same
coefficient of proportionality c as in (19), and the mean m depends on both the gain sequence
parameters and the third derivatives of the loss function at y�. The asymptotic mean square
error (MSE) of kb=2ð#yyk � y�Þ in (22) is [2]

MSE2SPSAða; gÞ ¼ mTmþ traceðOÞ ð23Þ

We first consider a special case of a diagonal Hessian with constant eigenvalues (l�i ¼ l ¼ %ll�).
It can be shown that the asymptotic normality of #yyk ; in 2SPSA [2] is identical to that in 1SPSA
[1] when the following gain sequences are picked:

N ðm; OÞ ¼ N ðx; SÞ when %aak ¼ f=ðk þ 1Þ and ak ¼ f=½ðk þ 1Þl� ð24Þ

where the constant f represents a common scale factor for the two gain sequences. The near-
optimal selection of f for 2SPSA is f ¼ 1: Note that the true optimal selection of the gain is
essentially infeasible as it depends on the third derivatives of the loss [2]. Equation (24) suggests
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that the near-optimal MSE in 2SPSA can be achieved in 1SPSA by picking its proportionality
coefficient a in such a way that a ¼ 1=l: Since a in 1SPSA is externally prescribed, such an
optimal picking of a is only theoretically possible. On the other hand, the internally determined
gain sequence of %aak %ll�1

k ð¼ k�1l�1
k Þ in M2SPSA with (21) makes the near-optimal picking for the

special case of constant eigenvalues practically possible.
Next, we consider the specification of the gain sequence a51 and 3g� a=2 > 0 from which we

have m ¼ x ¼ 0 [1, 2]. The asymptotic distribution-based MSE for 2SPSA under this condition is
inversely proportional to the sum of all the eigenvalues squared

MSE2SPSAða; gÞ ¼ traceO / traceðL��2Þ ¼
Xp

i¼1

l��2
i ð25Þ

On the other hand, the MSE for M2SPSA can be derived by setting a ¼ 1=�ll
�
in 1SPSA

MSEM2SPSAða; gÞ ¼ trace Sja¼1=%ll� /
%ll��1 trace ðL��1Þ ¼ %ll��1

Xp

i¼1

l��1
i ð26Þ

The constants of proportionality are related to c and to the variances of Dk and measurement
noise [1,2]. They are identical in the present settings of (25) and (26). Therefore, the ratio of
MSEs for M2SPSA to 2SPSA is given by

MSEM2SPSAða; gÞ
MSE2SPSAða; gÞ

¼
½
Qp

i¼1 l
��1
i �1=pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=pÞ
Pp

i¼1 l
��2
i

q �
ð1=pÞ

Pp
i¼1 l

��1
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=pÞ
Pp

i¼1 l
��2
i

q � R041 ð27Þ

where we have used a well-known relation in the last inequality of (27):

ðgeometric meanÞ4ðarithmetic meanÞ4ðroot-mean-squareÞ ð28Þ

Equality in (28) holds only when all the eigenvalues are equal which corresponds to a perfectly
conditioned Hessian of kðH�Þ ¼ 1: Since the ratio R0 has been derived from the asymptotic
MSEs the comparison between M2SPSA and 2SPSA has been made under the same rate of
convergence.

Our third case in the asymptotic efficiency analysis is to consider a ¼ 1 when 3g� a=2 > 0 (i.e.
g > 1=6) in 2SPSA. This setting again corresponds to m ¼ x ¼ 0 in 2SPSA and M2SPSA. It is
possible for both 1SPSA and 2SPSA to set a ¼ 1 for their gain sequence selection. The near-
optimal rate of convergence in 2SPSA by setting %aa ¼ 1 can be accomplished in 1SPSA by
adjusting its a to yield the same rate of convergence as 2SPSA [2]. By setting a ¼ 1=%ll in 1SPSA
for the implementation of M2SPSA we can again derive (27) that shows the superiority of
M2SPSA to 2SPSA under the same rate of convergence. However, the above setting of a ¼ 1=%ll
in 1SPSA is allowed only if the resulting condition in 1SPSA of miniðli=%llÞ > b=2 still holds [1].
When the above condition is violated while implementing M2SPSA for relatively large klðH Þ;
the setting of a ¼ 1 in M2SPSA is excluded and we can no longer make a straight comparison of
the asymptotic MSEs between 2SPSA and M2SPSA under the same rate of convergence. Under
this circumstance, there is no superiority of either one of M2SPSA and 2SPSA to the other in
terms of the efficiency or the rate of convergence. The superiority of M2SPSA to 2SPSA
indicated by (27) only shows an improvement in the multiplier for the convergence rate (R0)
when the common convergence rate is sub-optimal.

Spall [2] showed that by setting a ¼ 1 and g ¼ 1=6 an asymptotically optimal MSE can be
achieved with a maximum rate of convergence for the MSE of #yyk of k�b ¼ k�2=3 in both 1SPSA
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and 2SPSA. We have already shown that in order to avoid the violation of the condition
miniðli=%llÞ > b=2 the setting of a ¼ 1 (with b 	 2=3) is often not allowed in M2SPSA. Neither is
it possible to choose a different set of am and gm to yield bm ¼ 2=3 when g ¼ 1=6: Under this
circumstance, the maximum rate of convergence of k�2=3 for MSE cannot be achieved by
M2SPSA. It is noted that the mapping fk such as the one proposed in section II.A will leave the
asymptotic %HHk unchanged (when we set #LLk ¼ Lk) as k !/ : On the other hand, M2SPSA
changes %HHk when its Lk is replaced by %LLk : The asymptotically unachievable optimal MSE is the
price M2SPSA pays when it forces %HHk in 2SPSA to a different form of %LLk :

3.2.3. Efficiency of 1SPSA, 2SPSA, and M2SPSA

The relationships among 1SPSA, 2SPSA and M2SPSA can also be understood from a different
perspective: 1SPSA (1) and M2SPSA (16) weight the different components of the estimated
gradient #ggkð#yykÞ equally whereas 2SPSA (2a) weights them differently to account for different
sensitivities of y: A steeper eigendirection (greater li) requires a smaller step (� 1=li) to
effectively reach the exact solution (e.g. Reference [11, p. 273]). Both 2SPSA and M2SPSA have
captured the dependence of the step size on the overall sensitivities of y at each iteration. From
this perspective, 2SPSA and M2SPSA are superior to 1SPSA. However, M2SPSA (16) weights
the different components of #ggkð#yykÞ equally with an averaged step (� 1=%llk), it has given up the
further advantage of higher-order sensitivity of y: Therefore, whether M2SPSA is better than
2SPSA or not at finite iterations is determined by the relative importance of two competing
factors that influence the efficiency of the algorithm. The elimination of the matrix inverse
reduces the magnitude of errors whereas the lack of gradient sensitivity may deteriorate the
accuracy. It is noted that the asymptotic relation (27) only shows an improvement of M2SPSA
over 2SPSA in terms of its rate coefficient. Both M2SPSA and 2SPSA have the same rate of
convergence characterized by k�b=2 as shown by (22).

The asymptotic relation (27) provides a theoretical rationale of considering M2SPSA over
2SPSA in practice although the maximum rate of convergence of k�2=3 for MSE cannot be
achieved for M2SPSA. Another rationale of proposing M2SPSA is that the amplification of errors
in an ill-conditioned H� through the matrix inversion is a well-established result whereas the
efficiency of the gradient sensitivity through Newton–Raphson search only shows near the
extreme point (y�) with a near-exact Hessian (e.g. Reference [11, p. 308]). Further support for
M2SPSA over 2SPSA is given in the numerical experiments at finite iterations in the next section.
Recall, however, that such justification for M2SPSA is restricted to the case where the gains are
not asymptotically optimal in order to achieve fast convergence with finite iterations. For the
asymptotic optimal gains ( %aak � 1=k; ck � 1=k1=6), 2SPSA is superior to M2SPSA except in the
case where all eigenvalues of H� are identical (where 2SPSA and M2SPSA are identical).

We have shown that the magnitude of errors in 2SPSA is dependent on the matrix
conditioning of H � due to two competing factors. Since both factors are strongly related to the
same quantity of the matrix conditioning, the relative efficiency between M2SPSA and 2SPSA
might be less dependent on specific loss functions. It is noted that replacement of the recursion
(2a) by (16) eliminates the part of errors amplified by matrix inverse computation. It also
removes the higher-order sensitivity of y that too depends on the matrix conditioning. However,
such a replacement does not necessarily suggest that the magnitude of errors in M2SPSA be
independent on the matrix conditioning of H � since the computation of %llk is dependent on the
matrix properties of H �:
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4. NUMERICAL COMPARISONS

To study the efficiencies of three SPSA algorithms (1SPSA, 2SPSA and M2SPSA) to the matrix
conditioning of the loss function Hessian we consider here the simple quadratic loss function
built on the prescribed Hessian with p ¼ 10

LðyÞ ¼ 1
2
yTHy ð29Þ

The minimum occurs at y� ¼ 0 with Lðy�Þ ¼ 0: A Gaussian noise is added to the loss function to
represent the measurement errors: yðyÞ ¼ LðyÞ þ N ð0; s2Þ; where N ð0; s2Þ represents a random
variable having a normal distribution with zero mean and s2 variance. The matrix elements of
the Hessian are specified according to

ðH Þij ¼ b exp½�ði� jÞ2=a2� ð30Þ

The following four cases are considered for numerical studies.

CaseA : b ¼ 0:1291; a ¼ 1:1311; kl ¼ 10 ð31aÞ

Case B : b ¼ 0:2144; a ¼ 1:5416; kl ¼ 100 ð31bÞ

CaseC : b ¼ 0:3941; a ¼ 1:9047; kl ¼ 1000 ð31cÞ

CaseD : b ¼ 0:7763; a ¼ 2:2597; kl ¼ 10 000 ð31dÞ

All four cases have the same geometric mean of eigenvalues of %ll ¼ 0:1: In the above, we have
also listed the matrix condition number with respect to the spectral norm as defined in (14) for
different cases. Case D (with kl ¼ 10 000) is worse ill-conditioned than Case C, which in turn is
worse ill-conditioned than Cases B and A. Following the general guidance on picking gain series
for 1SPSA and 2SPSA [1, 2] the gain sequences ak ; %aak ; ck and *cck ; are picked to satisfy standard
SA conditions. We set the gain sequences ak ¼ %aak ¼ a=ðk þ 1þ AÞa; ck ¼ c=ðk þ 1Þg and *cck ¼
*cc=ðk þ 1Þg with a ¼ 0:602 and g ¼ 0:101 near their theoretically allowed low values that are
intended to achieve fast convergence with finite iterations. The other constants are set to the
following values: a ¼ 0:5; A ¼ 1; c ¼ 0:1; and *cc ¼ 0:15: We use (9) for the mapping for
implementing 2SPSA.

Figure 1 shows the plots of averaged loss function versus the number of loss function
evaluations (IV) for two cases (A and C) with a noise level of s ¼ 0:001 after 50 independent
experiments. All the loss functions are normalized by the initial Lð#yy0Þ with each component of #yy0
being a uniformly distributed random variable over (�1, 1). The figure shows that in the very
early stage of iterations (say N4400) 1SPSA is better than both 2SPSA and M2SPSA since the
estimated Hessian ( %HHk) carries significant errors. As %HHk becomes a better approximation of the
real Hessian, 2SPSA based on (2a) and (11) outperforms 1SPSA in the chosen parameter setting
when the matrix condition number is not extremely large. The results of Figure 1 support our
conjecture that larger matrix condition number yields a slower convergence rate for y: On the
other hand, 1SPSA is less sensitive to the condition number. Figure 1 also shows that M2SPSA
based on (16) and (17) is consistently better than 2SPSA in all cases before the iterations reach
the noise level, indicating a sound improvement of M2SPSA over 2SPSA based on the
elimination of the matrix inversion errors. It is noted from Figure 1 that the convergence rate of
M2SPSA also depends on the matrix condition number, which suggests a possible relation
between errors in eigenvalue computation and matrix property such as its condition number.
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Similar results are obtained for the numerical experiments with a greater noise level of s ¼ 0:01
or a noise-free (s ¼ 0) setting.

In Figure 2, we show the comparison between 2SPSA and M2SPSA for all four cases of
numerical experiments for the noise-free (s ¼ 0) setting for the loss function. Again, M2SPSA
consistently outperforms 2SPSA in all the cases and the improvements become even more
significant at large N : These results point to the strengths of M2SPSA in finite sample problems
with gains decaying more slowly than the asymptotic optimal gains.

5. CONCLUSIONS

We have made both empirical and theoretical comparisons between 1SPSA based on (1) and
2SPSA based on (2a) and (10) in the perspective of the loss function Hessian matrix. It is found
that the magnitude of errors introduced by matrix inversion in 2SPSA is greater for an ill-
conditioned Hessian than a well-conditioned Hessian. On the other hand, the errors in 1SPSA
are less sensitive to the matrix conditioning of loss function Hessians. To eliminate the errors
introduced by the inversion of estimated Hessian ( %%HH%HH�1

k ) we suggest a modification (16) to 2SPSA

Figure 1. Normalized loss functions versus the number of loss function evaluations for 1SPSA (dash-dot
lines), 2SPSA (dashed lines), and M2SPSA (solid lines). The matrix condition numbers for Cases A and C

are 10 and 1000, respectively. The noise level s ¼ 0:001:
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that replaces %%HH%HH�1
k with a scalar inverse of the geometric mean of all the eigenvalues of %%HH%HHk : At

finite iterations, it is found that the newly introduced M2SPSA based on (16) and (17)
consistently outperforms 2SPSA in the numerical experiments that represent a wide range of
matrix conditioning. The asymptotic efficiency analysis shows that the ratio of the mean square
errors for M2SPSA to 2SPSA is always less than unity except for a perfectly conditioned
Hessian or for an asymptotically optimal setting of the gain sequence.
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