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Abstract—We present a stochastic approximation algorithm Several results have been presented for constrained opti-
based on penalty function method and a simultaneous per- mijzation in the stochastic domain. In the area of stochastic
turbation gradient estimate for solving stochastic optimization 5 3roximation (SA), most of the available results are based
problems with general inequality constraints. We present a . . L . .
general convergence result that applies to a class of penalty " the Slm.ple. idea of prOJectl_ng the ?Stlmiﬁeback tg its
functions inc|uding the quadratic pena|ty function’ the aug- nearest pOInt irG Wheneveren lies outside the constraint set

mented Lagrangian, and the absolute penalty function. We also G. These projection-based SA algorithms are typically of the
establish an asymptotic normality result for the algorithm with  following form:

smooth penalty functions under minor assumptions. Numerical

results are given to compare the performance of the proposed Onhi1 = T6[6h — anGn(6n)], )
algorithm with different penalty functions.

wherers: RY — G is the set projection operator, agg|(6)

) ) ) ) is an estimate of the gradieg(6,); see, for example [2],
In this paper, we consider a constrained stochastic OpYS], [5], [6]. The main difficulty for this projection approé

mization problem for which only noisy measurements of thges i the implementation (calculation) of the projection
cost function are available. More specifically, we are aimegeratorrg;. Except for simple constraints like interval or
to solve the following optimization problem: linear constraints, calculation af;(8) for an arbitrary vector

minL (), (1) 0 is aformidable task.

6<G Other techniques for dealing with constraints have also
whereL: RY — R is a real-valued cost functiorf € RY is  been considered: Hiriart-Urruty [7] and Pflug [8] presend an
the parameter vector, ar@ c RY is the constraint set. We analyze a SA algorithm based on the penalty function method
also assume that the gradientlof-) exists and is denoted for stochastic optimization of a convex function with coxve
by g(-). We assume that there exists a unique solufidfior  inequality constraints; Kushner and Clark [3] present ssve
the constrained optimization problem defined by (1). We corSA algorithms based on the Lagrange multiplier method,
sider the situation where no explicit closed-form expm@ssi the penalty function method, and a combination of both.
of the functionL is available (or is very complicated even if Most of these techniques rely on the Kiefer-Wofolwitz (KW)
available), and the only information are noisy measuremenf4] type of gradient estimate when the gradient of the cost
of L at specified values of the parameter vecéor This function is not readily available. Furthermore, the conver
scenario arises naturally for simulation-based optindrat gence of these SA algorithms based on “non-projection”
where the cost functioh is defined as the expected valuetechniques generally requires complicated assumptions on
of a random cost associated with the stochastic simulatighe cost functiorl. and the constraint s&. In this paper, we
of a complex system. We also assume that significant cogigsesent and study the convergence of a class of algorithms
(in term of time and/or computational costs) are involved itbased on the penalty function methods and the simultaneous
obtaining each measurement (or samplel) ). These con- perturbation (SP) gradient estimate [9]. The advantage of
straint prevent us from estimating the gradient (or Hegsiathe SP gradient estimate over the KW-type estimate for
of L(-) accurately, hence prohibit the application of effectivaunconstrained optimization has been demonstrated with the
nonlinear programming techniques for inequality constrai simultaneous perturbation stochastic approximation PS
for example, the sequential quadratic programming methoddgorithms. And whenever possible, we present sufficient
(see; for example, section 4.3 of [1]). Throughout the papeonditions (as remarks) that can be more easily verified than
we useb, to denote thenth estimate of the solutio8*. the much weaker conditions used in our convergence proofs.
We focus on general explicit inequality constraints where
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where q;: RY — R are continuously differentiable real- Note that when\, =0, the penalty function defined by (6)
valued functions. We assume that the analytical expresdionreduces to the standard quadratic penalty function discuss
the functiong; is available. We extend the result presented im [10]

[10] to incorporate a larger classes of penalty functiorseda s

on the augmented Lagragian method. We also establish the L/ (6,0) =L(8)+r Z [max{07qj(9)}]2.

asymptotic normality for the proposed algorithm. Simuwlati =1

result_s are presented.to illgst_ratgd the performance of thgqn though the convergence of the proposed algorithm only
technique for stochastic optimization. requires{A,} be bounded (hence we can sgf=0), we
Il. CONSTRAINED SPSA ALGORITHMS can significantly improve the performance of the algorithm
A. Penalty Functions with appropriate ch0|_cg of the sequence base_d on concepts
o ] ~ from Lagrange multiplier theory. Moreover, it has been
The basic idea of the penalty-function approach is tQnhown [1] that, with the standard quadratic penalty fumgtio
convert the origin_ally constrair_1ed optimization probled) (' the penalized cost functioh, = L + r,P can become ill-
into an unconstrained one defined by conditioned as, increases (that is, the condition number
minL, (8) 2 L(68) +rP(8), (4) of the Hessian matrix ot at 63 diverges t0<_>o wit_h rn).

6 The use of the general penalty function defined in (6) can
whereP: RY — R is the penalty function andis a positive prevent this difficulty if«_{)\,)} is chosen_ so that it is_ close to
real number normally referred to as thenalty parameter. the_true _Lagrange multipliers. In Section IV, we vv_HI_preSen
The penalty functions are defined such tRas an increasing 2" iterative method based on the method qf multipliers (see;
function of the constraint functiongj; P > 0 if and only if for example, [11]) to updata, and compare its performance
g; > 0 for any j; P — « asgj — oo; andP — —I (I > 0) with the standard quadratic penalty function.
asgj; — —o. In this paper, we consider a penalty functiong A gpsa Algorithms for Inequality Constraints

method based on the augmented Lagrangian function defined . ) .
by In this section, we present the specific form of the al-

. gorithm for solving the constrained stochastic optimizati
L (8,) = L(6)+2_1r Z{[max{o,)\j +rqj(9)}]27)\j2}, problem. The algorithm we consider is defined by
= (5) Bhi1 = 61— anGn(6h) — anrnIP(6h), )
Where{\ € RS can be viewed' as an estimate of'the'Lagrang@,here Gh(6y) is an estimate of the gradient &f g(-), at
multiplier vector. The associated penalty function is 6, {ra} is an increasing sequence of positive scalar with
1 3 2 1o limp_orn = o, OP(6) is the gradient ofP(6) at 6, and
P(8)=52 > {[max{OJ\j +19i(6)}]° = A; } (6) {a,} is a positive scalar sequence satisfyiag— 0 and
= Y m_18n = . The gradient estimatgy, is obtained from two
Let {rn} be a positive and strictly increasing sequence withoisy measurements of the cost functioy
rn — o and{Ap} be a bounded nonnegative sequenc®&in _
It can be sﬁovgn (see; for example, section 4.2 of [1]) that (L(6h+Coftn) + &) — (L(En — Crn) + &1 ) i7 (8)
the minimum of the sequence functiofis,}, defined by 2Cn An
2 whereA, € RY is a random perturbation vectar, — 0 is a
Ln(8) =Ly, (6,An), ” . - L
positive sequence, andeg, are noise in the measurements.
converges to the solution of the original constrained mobl gnd A_ln denotes the vecto A_ll,mjA_ld}. For analysis, we
(1). Since the penalized cost function (or the augmentegyrite the algorithm (7) into " "
Lagrangian) (5) is a differentiable function &), we can e
apply the standard stochastic approximation techniqul wit 6,1 = 6, —ang(6h) — anrnOP(6h) + anth — an=——,
the SP gradient estimate forto minimize {L,(-)}. In other 2CnfAn
words, the original problem can be solved with an algorithmvhered, and g, are defined by

of the following form:
g ) ~ L(6n+ Cndn) — L(6n— Cnldn)
Bhir = 6n—an0Ln(6h) 2¢nfn ’
Bh — anGn — anrn0P(6y), &n
whereg, is the SP estimate of the gradiagit) at 6, that we respectively.
shall specify later. Note that since we assume the condrain We establish the convergence of the algorithm (7) and the

are explicitly given, the gradient of the penalty functiBf) associated asymptotic normality under appropriate assump
is directly used in the algorithm. tions in the next section.

©)

dv £ g(6h)

A + —
= & &,
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I1l. CONVERGENCE ANDASYMPTOTIC NORMALITY (C.6) OLn() satisfies condition (A5)

A. Convergence Theorem Theorem 2: Suppose that assumptions (C.1-C.6) hold.

To establish convergence of the algorithm (7), we neeg€" the sequenc¢6,} defined by (7) converges t6*

to study the asymptotic behavior of an SA algorithm witrglmost su.rely. ) .
a “time-varying” regression function. In other words, we Proof: We only need to verify the conditions (A.1-A.5)

need to consider the convergence of an SA algorithm of tH8 Theorem 1 to show the desired result:

following form: « Condition (A.1) basically requires the stationary point
of the sequencé¢lLy(-)} converges td*. Assumption
6h+1= 6h —anfn(6n) +ann + anén, (10) (C.1) together with existing result on penalty function

where {f,(-)} is a sequence of functions. We state here methods establis_hes this desired convergence.
without proof a version of the convergence theorem given ¢ From the results in [9], [14] and assumptions (C.2-C.3),
by Spall and Cristion in [13] for an algorithm in the generic W& ¢an show that condition (A.2) hold.

form (10). « Since fn — o, we have condition (A.3) hold from
Theorem 1. Assume the following conditions hold: assumption (C.4). _
(A.1) For eachn large enoughX N for someN € N), there » From (9), assumption (C.1) and (C.5) , we have
I(?xists aeuniqeueer’; such thatfn(6;) = 0. Furthermore, |(Bns1 — 6h)i] < |(6h— 6%)i]
iMn_e 6y = 6%,
(A.2) dy— 0, andyp_, aex converges. for large n if |6, — (6*%)i| > p. Hence for largen,
(A.3) For someN < «, any p > 0 and for eactn > N, if the sequencg 6y} does not “jump” over the interval
|@ — 6% > p, then there exists &,(p) > 0 such that between(6*); and 6. Therefore if |6y — (6%)i| > p
(8—6")T1(0) > &n(p)||6 — 6*|| whered,(p) satisfies eventually, then the sequen¢é,(6,)} does not change
3 180n(p) = anddndn(p)~t — 0. sign eventually. That is, condition (A.4) holds.
(A.4) Foreach=1,2 ...,d,and anyp >0, if |6y — (6*)i| > « Assumption (A.5) holds directly from (C.6).
p eventually, then eitherfyi(6,) > O eventually or ]
fri(6r) < O eventually. Theorem 2 given above is general in the sense that it does
(A.5) Foranyr >0 and nonemptcC {1,2,...,d}, there ex- not specify the exact type of penalty functi®-) to adopt.
ists ap’(1,S) > 1 such that for alld € {6 e RY: [(6— In particular, assumption (C.4) seems difficult to satisfy.
0%)i| < T wheni & S[(6—6%)i| > p'(1,S) wheni e fact, assumption (C.4) is fairly weak and does address the
S} limitation of the penalty function based gradient descent
limsup Yigs(6 —60)ifni(6) 1 algorithm. For example, suppose that a constraint function
noo | Yies(0—6%)ifni(0) ok(+) has a local minimum aé” with g¢(6’) > 0. Then for

. ; T

Then the sequencd6h} defined by the algorithm (10) €Very® with (6) <0,j #k, we have(6 —6')'P(6) >0

converges t(ﬂ?. 46h) y g (10) whenever6 is close enough t®’. As r, gets larger, the
Based on Theorem 1, we give a convergence result fbgrm OP(6) would dominate the behavior of the algorithm

; L _ and result in a possible convergencedtfpa wrong solution.
3:?0;222}_,5) i?])tlos;:] ?Zzl;u%:@;;éi? in %g’;) Jrre@pmezgﬁgl’y_ We also like to point out that assumption (C.4) is satisfied
We need the following assumptions: if cost functlonlT and constraint fqut|onqj,1 = 1,... ,sare

. convex and satisfy the slater condition, that is, the mimmu
(C.1) There exist&, €N such that for aln > Ky, we have . ¢ nction valud.(6*) is finite and there exists & € R

a uniqued; € RY with OLn(6;) = 0. such that, e > 7
. n. ! - (@) <0 for all j (this is the case studied in [8]).
(€2) {At’;']} Aar.eil.d. and syonémAe:[Tcilly distributed about o’Assumption (C.6) ensures that farsufficiently large each
C.3) W'n |ak”gJ _(:gr?vilrs.eznam']ogit |sarglll element ofg(0) + r,OP(8) make a non-negligible contri-

8) 2t 20 9 SUTETy. bution to products of the forni6 — 8*)7(g(8) +r,OP(6))
(C.4) If _”9__ 0%l > p, then tr;ere exists &(p) > 0 such that when (6 — 6*); # 0. A sufficient condition for (C.6) is that
() if 6€G, (6-67)"9(6)>3(p)||6— 6" >0. for eachi, gi(8) +r,0;P(6) be uniformly bounded both away
(i) if 6 ¢ G, at least one of the following two from 0 andeo when ||(6 — 6*);|| > p > 0 for all i.

conditions hold Theorem 2 in the stated form does require that the penalty
« (6-6%)Tg(8) > 6(p)||6 — 6*|| and (6 — functionP be differentiable. However, it is possible to extend
6*)TOP(6) > 0. the stated results to the case whdveis Lipschitz but
« (6-6%)Tg(6) > —M and (6 —6*)TOP(6) > not differentiable at a set of point with zero measure, for
o(p)||6—6*| >0 example, the absolute value penalty function
(C.5) anrn — 0, 9(-) andOP(-) are Lipschitz. (See comments

below) P(6) = jinlaxs{maX{O,qj (0)}}-
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In the case where the density function of measurement noismooth penalty functions of the form

(&7 and gy in (8)) exists and has infinite support, we can s

take advantage of the fact that iterations of the algoritfsit v P(0) = Z P (a;j(0)),

any zero-measure set with zero probability. Assuming that =1

the setD = {6 € R: P(6)does not exigt has Lebesgue which including both the quadratic penalty and augmented

measure 0 and the random perturbatigrfollows Bernoulli | agrangian functions.

distribution @(A}, = 0) = P(A}, = 1) = 1), we can construct Assume further tha [ey| 7y, An] = 0 a.s.E[€2]Fn] — 02

a simple proof to show that a.s.E[(A) 2] — p?, andE[(AL)?] — &2, where.Z,, is theo-

. algebra generated 8}, ..., 6,. LetH(8) denote the Hessian

P{6heD i0}=0 matrix of L(8) and

if P{6p € D}.: 0. Therefore, the convergence result in The- Hp(8) = S 02 (p;(q;(0))).
orem 2 applies to the penalty functions with non-smoothness IS
at a set with measure zero. Hence in any practical applitati

o) " . . .
we can simply ignore this technical difficulty and use The next proposition establishes the asymptotic normality

for the proposed algorithm with the following choice of

OP(6) = max{0,d;g)(6) }dye)(6), parametersa, =an 9, c,=cn Y andsfn =rnT with a,c,r >
0,B=a-n-2y>0,and ¥4+ >0.

whereJ(8) =argmax—1...s0;(8) (note that)(6) is uniquely Proposition 1. Assume that conditions (C.1-6) hold. Let

defined for@ ¢ D). An alternative approach to handle thisP be orthogonal withPH(6*)PT = a~lr—diag(Ay,...,Aq)

technical difficulty is to apply the SP gradient estimaterhen

directly to the penalized codt(0) +rP(0) and adopt the . ,

convergence analysis presentéd)in [155] f)or nondifferbidia nﬁ/z(en —67) dig N(H, PMPT% n— o

optimization wit.h addi'FionaI convexity as.sumpti.ons. where M = 1a?r’c202p2diag[(2\; — B:)L,...,(2Aq —

Use of non—@fferenuaple pengllty functions m|ght_ allow USg )= with B, = B < 2min A if a =1 andB, =0if a < 1,

to avoid the difficulty of ill-conditioning asn — o without

using the more complicated penalty function methods such as

the augmented Lagrangian method used here. The rationale ,,_ )0 if 3y—9+% >0,

here is that there exists a constant 35_;A; (A} is the ~ | (arHp(8%) = 3BT if3y—-2+ 3 =0,

Lagrange multiplier associate with thi¢h constraint) such .

that the minimum ofL +rP is identical to the solution of where thelth element ofT is

the original constrained problem for all> r, based on the

theory of exact penalties (see; for example, section 4.3 of _ i

[1]). This property of the absolute value penglty function Proof: For large enoughn, V{Z ’#allve

allow us to use a constant penalty parameterr (instead _

of r, — ) to avoid the issue of ill-conditioning. However, E[Gn(6h)|6n] = H(6n)(6h—06")+bn(6n),

it is difficult to obtain a good estimate farin our situation OP(6,) = Hp(9_r/1)(9n— 6*),

where the analytical expression of-) (the gradient of the R ] )

cost functionL(-)) is not available. And it is not clear that Wherebn(6h) = E[Gn(6h) —9(6h)|6h]. Rewrite the algorithm

the application of exact penalty functions with— e would N0

lead to better performance than the augmented Lagrangigpﬂ_e* _— —n—““’rn)(en—9*)+n—<“-”+3)/2¢nvn

based technique. In SectionlV we will also illustrate (via

numerical results) the potential poor performance of the

—éaczfz LY (6)+3 ; L(3)(9*)].

+n—a+n—[3/2-|—n’

algorithm with an arbitrarily chosen large where

B. Asymptotic Normality Fn = an TH(6h) +arHp(6)),
When differentiable penalty functions are used, we can es- Vo = n7Y[Gn(6n) —E(Gn(6n)]6n)]

tablish the asymptotic normality for the proposed algonish o, = -—al,

In the case wherg;(6*) <Oforall j=1,...,s(thatis, there T = —anf/2" bn(6n).

is no active constraint &*), the asymptotic behavior of the

algorithm is exactly the same as the unconstrained SPSllowing the techniques used in [9] and the general Nor-
algorithm and has been established in [9]. Here we consideality results from [16] we can establish the desired result
the case where at least one of constraints is active*at u
that is, the seA £ {j = 1,...s: gj(6") = 0} is not empty. Note that based on the result in Proposition 1, the conver-
We establish the asymptotic Normality for the algorithmhwit gence rate abs is achieved witha =1 andy = % —n>0.
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0.7

IV. NUMERICAL EXPERIMENTS

We test our algorithm on a constrained optimization prob-
lem described in [17, p.352]:

minL(6) = 07 + 62 + 262 + 67 — 56, — 56, — 2163+ 76,

o
3
T

Absolute value penalty r = 10

subject to gos il
ql(e) = 26]? + 922 + 9?? + 291 - 62 - 94 - 5 S O 20.3 Quadratic penalty )
@(0) = 62+65+65+67+6,—6,+63—6,—8<0 5
03(0) = 67+263+65+267—6,—6,—10<0. £

The minimum cost.(6*) = —44 under constraints occurs at 01
6*=[0,1,2, 71]1— where the constraints (1) <0 andap(:) < Absolute value penalty 1 = 3.01
0 are active. The Lagrange multiplier {gfa)‘z*v/\ék]-r = % 500 1000 1500 2000 2500 3000 3500 4000
[2,1,0]T. The problem had not been solved to satisfactory umberoferatons
accuracy with deterministic search methods that operate
directly with constraints (claimed by [17]). Further, weFig. 1. Error to the optimum||@, — 6*||) averaged over 100 independent
. . . .. simulations.
increase the difficulty of the problem by adding i.i.d. zero-
mean Gaussian noise td6) and assume that only noisy
measurements of the cost functibnare available (without  « Absolute value penalty function:
gradient). The initial point is chosen 46,0,0,0]"; and
the standard deviation of the added Gaussian noiseQis 4 P(6) = jLnlé?(-s{maX{07Qj(9)}}. (16)
(roughly equal to the initial error). o

We consider three different penalty functions:

« Quadratic penalty function:

Augmented Lagrangian

As discussed earlier, we will ignore the technical dif-
ficulty that P(-) is not differentiable everywhere. The

gradient ofP(-) when it exists is
S

P(6) = % S [max{0,;(6)}2. (12) OP(6) = max{0, dy()(6)} Jdlye)(6),  (17)

= whereJ(8) = argmax—1__sq;j(8).

In this case the gradient &-) required in the algorithm o g the simulation we use the following parameter

IS s values: a, = 0.1(n + 1007%6%2 and ¢, = n"%19% These
OP(8) = Z max{0,q;(6)}0q;(0). (12) parameters fola, and c, are chosen following a practical
=1 implementation guideline recommended in [18]. For the
« Augmented Lagrangian: augmented Lagrangian method, is initialized as a zero

s vector. For the quadratic penalty function and augmented
P(6) = iz z [max{0, A +rqj(6)}}2—/\2. (13) Lagrangian, we usen = 10n%1 for the penalty parameter.
2r = For the absolute value penalty function, we consider two

In this case, the actual penalty function used will var;POSSible values for the constant penalty—r =301 and
’ =r = 10. Note that in our experiment,= 35 ;A = 3.

) . ) . I =
over fteration dependmg_on the specific value Se'.eCtegence the first choice of at 301 is theoretically optimal
for rp and An. The gradient of the penalty function ; . . . .
. . . . L but not practical since there is no reliable way to estimate
required in the algorithm for thath iteration is — . . .
r. The second choice of represent a more typical scenario
where an upper bound anis estimated.

Figure 1 plots the averaged errors (over 100 independent
o simulations) to the optimum over 4000 iteration of the
To properly updateA,, we adopt a variation of the algorithms. The simulation result in Figure 1 seems to sug-
multiplier method [1]: gest that the proposed algorithm with the quadratic penalty

function and the augmented Lagrangian led to comparable
Anj = max{0, Anj +rngi(6h),M}, 15 .

" {0, Anj +1n0; (6n), M1} (15) performance (the augmented Lagrangian method performed
whereA,; denotes thgth element of the vectok,, and  slightly better than the standard quadratic technique)s Th
M € R* is a large constant scalar. Since (15) ensuresuggests that a more effective update schemeAfothan
that {A,} is bounded, convergence of the minimum of(15) is needed for the augmented Lagrangian technique. The
{Ln(-)} remains valid. FurthermorgA,} will be close absolute value function with=3.01(~ r = 3) has the best
to the true Lagrange multiplier as— co. performance. However, when an arbitrary upper boundien

OP(B) = ri Zlmax{Q/\nj +rn0j(0)}0q;(6). (14)
n=
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used ( = 10), the performance is much worse than both the[5] H. Kushner and G. YinSochastic Approximation Al-
guadratic penalty function and the augmented Lagrangian.

This illustrates a key difficulty in effective applicatior the

[6]

exact penalty theorem with the absolute penalty function.

V. CONCLUSIONS ANDREMARKS

gorithms and Applications. Springer-Verlag, 1997.

P. Sadegh, “Constrained optimization via stochastic ap
proximation with a simultaneous perturbation gradient
approximation,” Automatica, vol. 33, no. 5, pp. 889—
892, 1997.

We present a stochastic approximation algorithm baseqz] 3. Hiriart-Urruty, “Algorithms of penalization type @n
on penalty function method and a simultaneous perturbation

gradient estimate for solving stochastic optimizationbpro
lems with general inequality constraints. We also present
a general convergence result and the associated asymptotic

Normality for the proposed algorithm. Numerical results ar g

included to demonstrate the performance of the proposed
algorithm with the standard quadratic penalty function and
more complicated penalty function based on the augmented

Lagrangian method. [9

In this paper, we consider the explicit constraints where
the analytical expressions of the constraints are availdtis
also possible to apply the same algorithm with appropriate

gradient estimate foP(0) to problems with implicit con-
straints where constraints can only be measured or estima

o

with possible errors. The success of this approach would
depend on efficient techniques to obtain unbiased gradient
estimate of the penalty function. For example, if we can
measure or estimate a value of the penalty functgf,) 11]
at arbitrary location with zero-mean error, then the SIL

gradient estimate can be applied. Of course, in this sdnati 1o

further assumptions on, need to be satisfied (in general,

we would at least nee§_; ag—;")z < ). However, in a
typical application, we most likely can only measure thdl13]
value of constraintj(6,) with zero-mean error. Additional

bias would be present if the standard finite-difference er th
SP techniques were applied to estimaie(6,) directly in

this situation. A novel technique to obtain unbiased edtmal[14]
of OP(6,) based on a reasonable number of measurements
is required to make the algorithm proposed in this paper
feasible in dealing with implicit constraints.
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