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Abstract— We present a stochastic approximation algorithm
based on penalty function method and a simultaneous per-
turbation gradient estimate for solving stochastic optimization
problems with general inequality constraints. We present a
general convergence result that applies to a class of penalty
functions including the quadratic penalty function, the aug-
mented Lagrangian, and the absolute penalty function. We also
establish an asymptotic normality result for the algorithm with
smooth penalty functions under minor assumptions. Numerical
results are given to compare the performance of the proposed
algorithm with different penalty functions.

I. I NTRODUCTION

In this paper, we consider a constrained stochastic opti-
mization problem for which only noisy measurements of the
cost function are available. More specifically, we are aimed
to solve the following optimization problem:

min
θ∈G

L(θ), (1)

whereL : R
d → R is a real-valued cost function,θ ∈ R

d is
the parameter vector, andG ⊂ R

d is the constraint set. We
also assume that the gradient ofL(·) exists and is denoted
by g(·). We assume that there exists a unique solutionθ ∗ for
the constrained optimization problem defined by (1). We con-
sider the situation where no explicit closed-form expression
of the functionL is available (or is very complicated even if
available), and the only information are noisy measurements
of L at specified values of the parameter vectorθ . This
scenario arises naturally for simulation-based optimization
where the cost functionL is defined as the expected value
of a random cost associated with the stochastic simulation
of a complex system. We also assume that significant costs
(in term of time and/or computational costs) are involved in
obtaining each measurement (or sample) ofL(θ). These con-
straint prevent us from estimating the gradient (or Hessian)
of L(·) accurately, hence prohibit the application of effective
nonlinear programming techniques for inequality constraint,
for example, the sequential quadratic programming methods
(see; for example, section 4.3 of [1]). Throughout the paper
we useθn to denote thenth estimate of the solutionθ ∗.
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Several results have been presented for constrained opti-
mization in the stochastic domain. In the area of stochastic
approximation (SA), most of the available results are based
on the simple idea of projecting the estimateθn back to its
nearest point inG wheneverθn lies outside the constraint set
G. These projection-based SA algorithms are typically of the
following form:

θn+1 = πG[θn −anĝn(θn)], (2)

whereπG : R
d → G is the set projection operator, and ˆgn(θn)

is an estimate of the gradientg(θn); see, for example [2],
[3], [5], [6]. The main difficulty for this projection approach
lies in the implementation (calculation) of the projection
operatorπG. Except for simple constraints like interval or
linear constraints, calculation ofπG(θ) for an arbitrary vector
θ is a formidable task.

Other techniques for dealing with constraints have also
been considered: Hiriart-Urruty [7] and Pflug [8] present and
analyze a SA algorithm based on the penalty function method
for stochastic optimization of a convex function with convex
inequality constraints; Kushner and Clark [3] present several
SA algorithms based on the Lagrange multiplier method,
the penalty function method, and a combination of both.
Most of these techniques rely on the Kiefer-Wofolwitz (KW)
[4] type of gradient estimate when the gradient of the cost
function is not readily available. Furthermore, the conver-
gence of these SA algorithms based on “non-projection”
techniques generally requires complicated assumptions on
the cost functionL and the constraint setG. In this paper, we
present and study the convergence of a class of algorithms
based on the penalty function methods and the simultaneous
perturbation (SP) gradient estimate [9]. The advantage of
the SP gradient estimate over the KW-type estimate for
unconstrained optimization has been demonstrated with the
simultaneous perturbation stochastic approximation (SPSA)
algorithms. And whenever possible, we present sufficient
conditions (as remarks) that can be more easily verified than
the much weaker conditions used in our convergence proofs.

We focus on general explicit inequality constraints where
G is defined by

G , {θ ∈ R
d : q j(θ) ≤ 0, j = 1, . . . ,s}, (3)



where q j : R
d → R are continuously differentiable real-

valued functions. We assume that the analytical expressionof
the functionq j is available. We extend the result presented in
[10] to incorporate a larger classes of penalty functions based
on the augmented Lagragian method. We also establish the
asymptotic normality for the proposed algorithm. Simulation
results are presented to illustrated the performance of the
technique for stochastic optimization.

II. CONSTRAINED SPSA ALGORITHMS

A. Penalty Functions

The basic idea of the penalty-function approach is to
convert the originally constrained optimization problem (1)
into an unconstrained one defined by

min
θ

Lr(θ) , L(θ)+ rP(θ), (4)

whereP : R
d → R is the penalty function andr is a positive

real number normally referred to as thepenalty parameter.
The penalty functions are defined such thatP is an increasing
function of the constraint functionsq j; P > 0 if and only if
q j > 0 for any j; P → ∞ as q j → ∞; and P → −l (l ≥ 0)
as q j → −∞. In this paper, we consider a penalty function
method based on the augmented Lagrangian function defined
by

Lr(θ ,λ ) = L(θ)+
1
2r

s

∑
j=1

{

[max{0,λ j + rq j(θ)}]2−λ 2
j

}

,

(5)
whereλ ∈ R

s can be viewed as an estimate of the Lagrange
multiplier vector. The associated penalty function is

P(θ) =
1

2r2

s

∑
j=1

{

[max{0,λ j + rq j(θ)}]2−λ 2
j

}

. (6)

Let {rn} be a positive and strictly increasing sequence with
rn → ∞ and{λn} be a bounded nonnegative sequence inR

s.
It can be shown (see; for example, section 4.2 of [1]) that
the minimum of the sequence functions{Ln}, defined by

Ln(θ) , Lrn(θ ,λn),

converges to the solution of the original constrained problem
(1). Since the penalized cost function (or the augmented
Lagrangian) (5) is a differentiable function ofθ , we can
apply the standard stochastic approximation technique with
the SP gradient estimate forL to minimize{Ln(·)}. In other
words, the original problem can be solved with an algorithm
of the following form:

θn+1 = θn −an∇̂Ln(θn)

= θn −anĝn −anrn∇P(θn),

where ˆgn is the SP estimate of the gradientg(·) at θn that we
shall specify later. Note that since we assume the constraints
are explicitly given, the gradient of the penalty functionP(·)
is directly used in the algorithm.

Note that whenλn = 0, the penalty function defined by (6)
reduces to the standard quadratic penalty function discussed
in [10]

Lr(θ ,0) = L(θ)+ r
s

∑
j=1

[max{0,q j(θ)}]2 .

Even though the convergence of the proposed algorithm only
requires{λn} be bounded (hence we can setλn = 0), we
can significantly improve the performance of the algorithm
with appropriate choice of the sequence based on concepts
from Lagrange multiplier theory. Moreover, it has been
shown [1] that, with the standard quadratic penalty function,
the penalized cost functionLn = L + rnP can become ill-
conditioned asrn increases (that is, the condition number
of the Hessian matrix ofLn at θ ∗

n diverges to∞ with rn).
The use of the general penalty function defined in (6) can
prevent this difficulty if{λn} is chosen so that it is close to
the true Lagrange multipliers. In Section IV, we will present
an iterative method based on the method of multipliers (see;
for example, [11]) to updateλn and compare its performance
with the standard quadratic penalty function.

B. A SPSA Algorithms for Inequality Constraints

In this section, we present the specific form of the al-
gorithm for solving the constrained stochastic optimization
problem. The algorithm we consider is defined by

θn+1 = θn −anĝn(θn)−anrn∇P(θn), (7)

where ˆgn(θn) is an estimate of the gradient ofL, g(·), at
θn, {rn} is an increasing sequence of positive scalar with
limn→∞ rn = ∞, ∇P(θ) is the gradient ofP(θ) at θ , and
{an} is a positive scalar sequence satisfyingan → 0 and
∑∞

n=1 an = ∞. The gradient estimate ˆgn is obtained from two
noisy measurements of the cost functionL by

(L(θn + cn∆n)+ ε+
n )− (L(θn − cn∆n)+ ε−n )

2cn

1
∆n

, (8)

where∆n ∈ R
d is a random perturbation vector,cn → 0 is a

positive sequence,ε+
n andε−n are noise in the measurements.

and 1
∆n

denotes the vector
[

1
∆1

n
, . . . , 1

∆d
n

]

. For analysis, we
rewrite the algorithm (7) into

θn+1 = θn −ang(θn)−anrn∇P(θn)+andn −an
εn

2cn∆n
, (9)

wheredn andεn are defined by

dn , g(θn)−
L(θn + cn∆n)−L(θn − cn∆n)

2cn∆n
,

εn , ε+
n − ε−n ,

respectively.
We establish the convergence of the algorithm (7) and the

associated asymptotic normality under appropriate assump-
tions in the next section.



III. C ONVERGENCE ANDASYMPTOTIC NORMALITY

A. Convergence Theorem

To establish convergence of the algorithm (7), we need
to study the asymptotic behavior of an SA algorithm with
a “time-varying” regression function. In other words, we
need to consider the convergence of an SA algorithm of the
following form:

θn+1 = θn −an fn(θn)+andn +anen, (10)

where { fn(·)} is a sequence of functions. We state here
without proof a version of the convergence theorem given
by Spall and Cristion in [13] for an algorithm in the generic
form (10).

Theorem 1: Assume the following conditions hold:

(A.1) For eachn large enough (≥ N for someN ∈ N), there
exists a uniqueθ ∗

n such thatfn(θ ∗
n ) = 0. Furthermore,

limn→∞ θ ∗
n = θ ∗.

(A.2) dn → 0, and∑n
k=1 akek converges.

(A.3) For someN < ∞, any ρ > 0 and for eachn ≥ N, if
‖θ −θ ∗‖ ≥ ρ , then there exists aδn(ρ) > 0 such that
(θ −θ ∗)T fn(θ)≥ δn(ρ)‖θ −θ ∗‖ whereδn(ρ) satisfies
∑∞

n=1 anδn(ρ) = ∞ anddnδn(ρ)−1 → 0.
(A.4) For eachi = 1,2, . . . ,d, and anyρ > 0, if |θni−(θ ∗)i|>

ρ eventually, then eitherfni(θn) ≥ 0 eventually or
fni(θn) < 0 eventually.

(A.5) For anyτ > 0 and nonemptyS⊂{1,2, . . . ,d}, there ex-
ists aρ ′(τ,S) > τ such that for allθ ∈ {θ ∈ R

d : |(θ −
θ ∗)i| < τ when i 6∈ S, |(θ − θ ∗)i| ≥ ρ ′(τ,S) when i ∈
S.},

limsup
n→∞

∣

∣

∣

∣

∑i 6∈S(θ −θ ∗)i fni(θ)

∑i∈S(θ −θ ∗)i fni(θ)

∣

∣

∣

∣

< 1.

Then the sequence{θn} defined by the algorithm (10)
converges toθ ∗.

Based on Theorem 1, we give a convergence result for
algorithm (7) by substituting∇Ln(θn) = g(θn) + rn∇P(θn),
dn, and εn

2cn∆n
into fn(θn), dn, and en in (10), respectively.

We need the following assumptions:

(C.1) There existsK1 ∈ N such that for alln ≥ K1, we have
a uniqueθ ∗

n ∈ R
d with ∇Ln(θ ∗

n ) = 0.
(C.2) {∆ni} are i.i.d. and symmetrically distributed about 0,

with |∆ni| ≤ α0 a.s. andE|∆−1
ni | ≤ α1.

(C.3) ∑n
k=1

akεk
2ck∆k

converges almost surely.
(C.4) If ‖θ −θ ∗‖ ≥ ρ , then there exists aδ (ρ) > 0 such that

(i) if θ ∈ G, (θ −θ ∗)T g(θ) ≥ δ (ρ)‖θ −θ ∗‖ > 0.
(ii) if θ 6∈ G, at least one of the following two

conditions hold

• (θ − θ ∗)T g(θ) ≥ δ (ρ)‖θ − θ ∗‖ and (θ −
θ ∗)T ∇P(θ) ≥ 0.

• (θ −θ ∗)T g(θ) ≥ −M and (θ −θ ∗)T ∇P(θ) ≥
δ (ρ)‖θ −θ ∗‖ > 0

(C.5) anrn → 0, g(·) and∇P(·) are Lipschitz. (See comments
below)

(C.6) ∇Ln(·) satisfies condition (A5)

Theorem 2: Suppose that assumptions (C.1–C.6) hold.
Then the sequence{θn} defined by (7) converges toθ ∗

almost surely.
Proof: We only need to verify the conditions (A.1–A.5)

in Theorem 1 to show the desired result:

• Condition (A.1) basically requires the stationary point
of the sequence{∇Ln(·)} converges toθ ∗. Assumption
(C.1) together with existing result on penalty function
methods establishes this desired convergence.

• From the results in [9], [14] and assumptions (C.2–C.3),
we can show that condition (A.2) hold.

• Since rn → ∞, we have condition (A.3) hold from
assumption (C.4).

• From (9), assumption (C.1) and (C.5) , we have

|(θn+1−θn)i| < |(θn −θ ∗)i|

for large n if |θni − (θ ∗)i| > ρ . Hence for largen,
the sequence{θni} does not “jump” over the interval
between(θ ∗)i and θni. Therefore if |θni − (θ ∗)i| > ρ
eventually, then the sequence{ fni(θn)} does not change
sign eventually. That is, condition (A.4) holds.

• Assumption (A.5) holds directly from (C.6).

Theorem 2 given above is general in the sense that it does
not specify the exact type of penalty functionP(·) to adopt.
In particular, assumption (C.4) seems difficult to satisfy.In
fact, assumption (C.4) is fairly weak and does address the
limitation of the penalty function based gradient descent
algorithm. For example, suppose that a constraint function
qk(·) has a local minimum atθ ′ with qk(θ ′) > 0. Then for
everyθ with q j(θ) ≤ 0, j 6= k, we have(θ −θ ′)T ∇P(θ) > 0
wheneverθ is close enough toθ ′. As rn gets larger, the
term ∇P(θ) would dominate the behavior of the algorithm
and result in a possible convergence toθ ′, a wrong solution.
We also like to point out that assumption (C.4) is satisfied
if cost functionL and constraint functionsq j, j = 1, . . . ,s are
convex and satisfy the slater condition, that is, the minimum
cost function valueL(θ ∗) is finite and there exists aθ ∈ R

d

such thatq j(θ) < 0 for all j (this is the case studied in [8]).
Assumption (C.6) ensures that forn sufficiently large each
element ofg(θ) + rn∇P(θ) make a non-negligible contri-
bution to products of the form(θ − θ ∗)T (g(θ)+ rn∇P(θ))
when (θ −θ ∗)i 6= 0. A sufficient condition for (C.6) is that
for eachi, gi(θ)+rn∇iP(θ) be uniformly bounded both away
from 0 and∞ when‖(θ −θ ∗)i‖ ≥ ρ > 0 for all i.

Theorem 2 in the stated form does require that the penalty
functionP be differentiable. However, it is possible to extend
the stated results to the case whereP is Lipschitz but
not differentiable at a set of point with zero measure, for
example, the absolute value penalty function

P(θ) = max
j=1,...,s

{

max
{

0,q j(θ)
}}

.



In the case where the density function of measurement noise
(ε+

n and ε−n in (8)) exists and has infinite support, we can
take advantage of the fact that iterations of the algorithm visit
any zero-measure set with zero probability. Assuming that
the setD , {θ ∈ R

d : ∇P(θ)does not exist} has Lebesgue
measure 0 and the random perturbation∆n follows Bernoulli
distribution (P(∆i

n = 0) = P(∆i
n = 1) = 1

2), we can construct
a simple proof to show that

P{θn ∈ D i.o.} = 0

if P{θ0 ∈ D} = 0. Therefore, the convergence result in The-
orem 2 applies to the penalty functions with non-smoothness
at a set with measure zero. Hence in any practical application,
we can simply ignore this technical difficulty and use

∇P(θ) = max{0,qJ(θ)(θ)}∇qJ(θ)(θ),

whereJ(θ) = argmaxj=1,...,s q j(θ) (note thatJ(θ) is uniquely
defined forθ 6∈ D). An alternative approach to handle this
technical difficulty is to apply the SP gradient estimate
directly to the penalized costL(θ) + rP(θ) and adopt the
convergence analysis presented in [15] for nondifferentiable
optimization with additional convexity assumptions.

Use of non-differentiable penalty functions might allow us
to avoid the difficulty of ill-conditioning asrn → ∞ without
using the more complicated penalty function methods such as
the augmented Lagrangian method used here. The rationale
here is that there exists a constant ¯r = ∑s

j=1 λ ∗
j (λ ∗

j is the
Lagrange multiplier associate with thejth constraint) such
that the minimum ofL + rP is identical to the solution of
the original constrained problem for allr > r̄, based on the
theory of exact penalties (see; for example, section 4.3 of
[1]). This property of the absolute value penalty function
allow us to use a constant penalty parameterr > r̄ (instead
of rn → ∞) to avoid the issue of ill-conditioning. However,
it is difficult to obtain a good estimate for ¯r in our situation
where the analytical expression ofg(·) (the gradient of the
cost functionL(·)) is not available. And it is not clear that
the application of exact penalty functions withrn → ∞ would
lead to better performance than the augmented Lagrangian
based technique. In SectionIV we will also illustrate (via
numerical results) the potential poor performance of the
algorithm with an arbitrarily chosen larger.

B. Asymptotic Normality

When differentiable penalty functions are used, we can es-
tablish the asymptotic normality for the proposed algorithms.
In the case whereq j(θ ∗) < 0 for all j = 1, . . . ,s (that is, there
is no active constraint atθ ∗), the asymptotic behavior of the
algorithm is exactly the same as the unconstrained SPSA
algorithm and has been established in [9]. Here we consider
the case where at least one of constraints is active atθ ∗,
that is, the setA , { j = 1, . . .s : q j(θ ∗) = 0} is not empty.
We establish the asymptotic Normality for the algorithm with

smooth penalty functions of the form

P(θ) =
s

∑
j=1

p j(q j(θ)),

which including both the quadratic penalty and augmented
Lagrangian functions.

Assume further thatE[en|Fn,∆n] = 0 a.s.,E[e2
n|Fn]→ σ2

a.s.,E[(∆i
n)

−2]→ ρ2, andE[(∆i
n)

2]→ ξ 2, whereFn is theσ -
algebra generated byθ1, . . . ,θn. Let H(θ) denote the Hessian
matrix of L(θ) and

Hp(θ) = ∑
j∈A

∇2 (p j(q j(θ))) .

The next proposition establishes the asymptotic normality
for the proposed algorithm with the following choice of
parameters:an = an−α , cn = cn−γ andrn = rnη with a,c,r >
0, β = α −η −2γ > 0, and 3γ − α

2 + 3η
2 ≥ 0.

Proposition 1: Assume that conditions (C.1-6) hold. Let
P be orthogonal withPHp(θ ∗)PT = a−1r−1diag(λ1, . . . ,λd)
Then

nβ/2(θn −θ ∗) dist
−→

N(µ ,PMPT ), n → ∞

where M = 1
4a2r2c−2σ2ρ2diag[(2λ1 − β+)−1, . . . ,(2λd −

β+)−1] with β+ = β < 2mini λi if α = 1 andβ+ = 0 if α < 1,
and

µ =

{

0 if 3γ − α
2 + 3η

2 > 0,

(arHp(θ ∗)− 1
2β+I)−1T if 3γ − α

2 + 3η
2 = 0,

where thelth element ofT is

−
1
6

ac2ξ 2

[

L(3)
lll (θ ∗)+3

p

∑
i=1,i 6=l

L(3)
iii (θ ∗)

]

.

Proof: For large enoughn, we have

E[ĝn(θn)|θn] = H(θ̄n)(θn −θ ∗)+bn(θn),

∇P(θn) = Hp(θ̄ ′
n)(θn −θ ∗),

wherebn(θn) = E[ĝn(θn)−g(θn)|θn]. Rewrite the algorithm
into

θn+1−θ ∗ = (I −n−α+η Γn)(θn −θ ∗)+n−(α−η+β )/2ΦnVn

+n−α+η−β/2Tn,

where

Γn = an−η H(θ̄n)+arHp(θ̄ ′
n),

Vn = n−γ [ĝn(θn)−E(ĝn(θn)|θn)]

Φn = −aI,

Tk = −anβ/2−η bn(θn).

Following the techniques used in [9] and the general Nor-
mality results from [16] we can establish the desired result.

Note that based on the result in Proposition 1, the conver-
gence rate atn

1
3 is achieved withα = 1 andγ = 1

6 −η > 0.



IV. N UMERICAL EXPERIMENTS

We test our algorithm on a constrained optimization prob-
lem described in [17, p.352]:

min
θ

L(θ) = θ 2
1 +θ 2

2 +2θ 2
3 +θ 2

4 −5θ1−5θ2−21θ3 +7θ4

subject to

q1(θ) = 2θ 2
1 +θ 2

2 +θ 2
3 +2θ1−θ2−θ4−5≤ 0

q2(θ) = θ 2
1 +θ 2

2 +θ 2
3 +θ 2

4 +θ1−θ2 +θ3−θ4−8≤ 0

q3(θ) = θ 2
1 +2θ 2

2 +θ 2
3 +2θ 2

4 −θ1−θ4−10≤ 0.

The minimum costL(θ ∗) = −44 under constraints occurs at
θ ∗ = [0,1,2,−1]T where the constraintsq1(·)≤ 0 andq2(·)≤
0 are active. The Lagrange multiplier is[λ ∗

1 ,λ ∗
2 ,λ ∗

3 ]T =
[2,1,0]T . The problem had not been solved to satisfactory
accuracy with deterministic search methods that operate
directly with constraints (claimed by [17]). Further, we
increase the difficulty of the problem by adding i.i.d. zero-
mean Gaussian noise toL(θ) and assume that only noisy
measurements of the cost functionL are available (without
gradient). The initial point is chosen at[0,0,0,0]T ; and
the standard deviation of the added Gaussian noise is 4.0
(roughly equal to the initial error).

We consider three different penalty functions:

• Quadratic penalty function:

P(θ) =
1
2

s

∑
j=1

[max{0,q j(θ)}]2 . (11)

In this case the gradient ofP(·) required in the algorithm
is

∇P(θ) =
s

∑
j=1

max{0,q j(θ)}∇q j(θ). (12)

• Augmented Lagrangian:

P(θ) =
1

2r2

s

∑
j=1

[max{0,λ j + rq j(θ)}]2−λ 2. (13)

In this case, the actual penalty function used will vary
over iteration depending on the specific value selected
for rn and λn. The gradient of the penalty function
required in the algorithm for thenth iteration is

∇P(θ) =
1
rn

s

∑
j=1

max{0,λn j + rnq j(θ)}∇q j(θ). (14)

To properly updateλn, we adopt a variation of the
multiplier method [1]:

λn j = max{0,λn j + rnq j(θn),M}, (15)

whereλn j denotes thejth element of the vectorλn, and
M ∈ R

+ is a large constant scalar. Since (15) ensures
that {λn} is bounded, convergence of the minimum of
{Ln(·)} remains valid. Furthermore,{λn} will be close
to the true Lagrange multiplier asn → ∞.
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Fig. 1. Error to the optimum (‖θn −θ ∗‖) averaged over 100 independent
simulations.

• Absolute value penalty function:

P(θ) = max
j=1,...,s

{

max
{

0,q j(θ)
}}

. (16)

As discussed earlier, we will ignore the technical dif-
ficulty that P(·) is not differentiable everywhere. The
gradient ofP(·) when it exists is

∇P(θ) = max{0,qJ(θ)(θ)}∇qJ(θ)(θ), (17)

whereJ(θ) = argmaxj=1,...,s q j(θ).
For all the simulation we use the following parameter

values: an = 0.1(n + 100)−0.602 and cn = n−0.101. These
parameters foran and cn are chosen following a practical
implementation guideline recommended in [18]. For the
augmented Lagrangian method,λn is initialized as a zero
vector. For the quadratic penalty function and augmented
Lagrangian, we usern = 10n0.1 for the penalty parameter.
For the absolute value penalty function, we consider two
possible values for the constant penalty:rn = r = 3.01 and
rn = r = 10. Note that in our experiment, ¯r = ∑s

j=1 λ ∗
j = 3.

Hence the first choice ofr at 3.01 is theoretically optimal
but not practical since there is no reliable way to estimate
r̄. The second choice ofr represent a more typical scenario
where an upper bound on ¯r is estimated.

Figure 1 plots the averaged errors (over 100 independent
simulations) to the optimum over 4000 iteration of the
algorithms. The simulation result in Figure 1 seems to sug-
gest that the proposed algorithm with the quadratic penalty
function and the augmented Lagrangian led to comparable
performance (the augmented Lagrangian method performed
slightly better than the standard quadratic technique). This
suggests that a more effective update scheme forλn than
(15) is needed for the augmented Lagrangian technique. The
absolute value function withr = 3.01(≈ r̄ = 3) has the best
performance. However, when an arbitrary upper bound on ¯r is



used (r = 10), the performance is much worse than both the
quadratic penalty function and the augmented Lagrangian.
This illustrates a key difficulty in effective application of the
exact penalty theorem with the absolute penalty function.

V. CONCLUSIONS ANDREMARKS

We present a stochastic approximation algorithm based
on penalty function method and a simultaneous perturbation
gradient estimate for solving stochastic optimization prob-
lems with general inequality constraints. We also present
a general convergence result and the associated asymptotic
Normality for the proposed algorithm. Numerical results are
included to demonstrate the performance of the proposed
algorithm with the standard quadratic penalty function anda
more complicated penalty function based on the augmented
Lagrangian method.

In this paper, we consider the explicit constraints where
the analytical expressions of the constraints are available. It is
also possible to apply the same algorithm with appropriate
gradient estimate forP(θ) to problems with implicit con-
straints where constraints can only be measured or estimated
with possible errors. The success of this approach would
depend on efficient techniques to obtain unbiased gradient
estimate of the penalty function. For example, if we can
measure or estimate a value of the penalty functionP(θn)
at arbitrary location with zero-mean error, then the SP
gradient estimate can be applied. Of course, in this situation
further assumptions onrn need to be satisfied (in general,

we would at least need∑∞
n=1

(

anrn
cn

)2
< ∞). However, in a

typical application, we most likely can only measure the
value of constraintq j(θn) with zero-mean error. Additional
bias would be present if the standard finite-difference or the
SP techniques were applied to estimate∇P(θn) directly in
this situation. A novel technique to obtain unbiased estimate
of ∇P(θn) based on a reasonable number of measurements
is required to make the algorithm proposed in this paper
feasible in dealing with implicit constraints.
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