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The Use of the SPSA Method in ECG Analysis
László Gerencsér*, György Kozmann, Zsuzsanna Vágó, and Kristóf Haraszti

Abstract—The classification, monitoring, and compression of
electrocardiogram (ECG) signals recorded of a single patient over
a relatively long period of time is considered. The particular ap-
plication we have in mind is high-resolution ECG analysis, such
as late potential analysis, morphology changes in QRS during ar-
rythmias, -wave alternants, or the study of drug effects on ven-
tricular activation. We propose to apply a modification of a clas-
sical method of cluster analysis or vector quantization. The nov-
elty of our approach is that we use a new distortion measure to
quantify the distance of two ECG cycles, and the class-distortion
measure is defined using a min-max criterion. The new class-dis-
tortion-measure is much more sensitive to outliers than the usual
distortion measures using average-distance. The price of this prac-
tical advantage is that computational complexity is significantly in-
creased. The resulting nonsmooth optimization problem is solved
by an adapted version of the simultaneous perturbation stochastic
approximation (SPSA) method of [1]. The main idea is to generate
a smooth approximation by a randomization procedure. The via-
bility of the method is demonstrated on both simulated and real
data. An experimental comparison with the widely used correla-
tion method is given on real data.

Index Terms—Classification, ECG, data-compression, min-max
problems, monitoring, nonsmooth optimization, randomization,
stochastic approximation, vector quantization.

I. INTRODUCTION

T HE long-term measurement and real-time evaluation of
biophysical signals is an essential task in several areas of

medicine. In some applications, the characterization and classi-
fication of the signals is the basic goal, while in other cases the
early detection of the significant changes is required. Further-
more, the need for compressing and archiving of data is an in-
creasing demand both in the domain of health care and research.

Without confining the general applicability of our mathemat-
ical approach discussed in this paper, we consider primarily
the problem of monitoring, compressing and archiving charac-
teristic electrocardiogram (ECG) wave patterns obtained for a
single patient over a relatively long period of time. Monitoring
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the condition of a patient and keeping record of the patient’s his-
tory in a compressed form is required in a number of situations,
such as ambulatory ECG acquiring and processing heart-sig-
nals 24 hours a day (cf. [2]), exercise ECG, ECG taken during
surgery or intensive care, or catheterization. ECG signals vary
over time (beat-to-beat, day-to-day) even if the condition of the
patient is stable, due to biological effects (positional changes
due to breathing, variation in pulse rate etc.) and also due to tech-
nical reasons (e.g., noise of the measuring equipment). In most
applications, we are interested in changes beyond the normal
physiological variability. In this paper, we develop a method
using a refined classification procedure that takes into account
physiological variability. This work has been motivated by our
interest in elaborating improved signal processing procedures
to enhance the resolution of sophisticated ECG measurements,
such as surface His-bundle ECG or late potential measurements.
There are evidences that the tiny details hardly recognizable in
surface ECG signals (or the temporal variation of such signal
components) carry clinically meaningful indicators of elevated
risk for malignant arrhytmias [3], [2], [4]. Furthermore, theo-
retical studies has proved, that based on an accurate detection
of ventricular breakthrough points, the ill-posed problem of the
inverse problem of electrocardiology can be transformed into a
well-posed problem [5].

The main step in solving these problems is to generate a
set of prototyped signals that represent a large set of real sig-
nals measured during the monitoring period. The generation of
prototyped signals is a key mathematical challenge. Classical
methods of cluster-analysis or vector quantization (cf. [6]–[8])
are not applicable for two main reasons. First, the right metric
in the signal space is not Euclidean, in fact we are working in a
constrained signal space. Second, averaging would mask valu-
able information contained in a relatively small percent of data.

In our procedure, the number of classes is not givena priori,
instead, we define classes by setting an upper bound for the class
distortion measure. We propose that prototypes or centers are
defined so that the maximum of an appropriate distance func-
tion is minimized. This is a nonsmooth optimization problem
the solution of which is not trivial for large data sets (cf. [9]). We
propose a solution of this problem by using an adapted version
of the so-called simultaneous perturbation stochastic approxi-
mation (SPSA) method, given in [1]. The convergence proper-
ties of this randomization method are well-understood and em-
pirical evidence suggest that SPSA is applicable to solve dif-
ficult optimization problems. A main technical advance is the
extension of the SPSA method to nonsmooth problems to get
a suboptimal solution, which is certainly satisfactory for the
present application. The viability of the proposed procedure will
be demonstrated by numerical experiments for the solution of
the min-max problem on both simulated and real data.

0018-9294/02$17.00 © 2002 IEEE
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The integration of medical expertise into mathematical
models can be done right at the start: by choosing an appro-
priate signal representation and by defining an appropriate
metric between ECG signals. A variety of options will be ex-
plained in details in Section II. The approximate reconstruction
of the full data is described in [10].

The ECG signal is an analog signal the value of which esti-
mates the potential of the cardiac sources on the body surface.
Several branches of experimental technologies have been elabo-
rated during the long history of the electrocardiology, including
body surface potential mapping as the most complete assess-
ment of the heart-generated potential fields, as well as simplified
methods, like the most popular standardized 12-lead ECG, the
vector cardiography, VCG, high-resolution ECG, exercise ECG,
etc. The most comprehensive review of all these techniques can
be found in [11]. See, also, [12].

The usual duration of computer evaluated ECG records is 10
s. A digital ECG signal is obtained by sampling the analog signal
at a rate of min. 500 Hz, with a usual resolution of 5 mV. Thus,
the digital signal can be represented as a vector in a vector space
of dimension min. 10 500 5000/lead. With 12 leads the dig-
itized ECG signal would be represented as a vector of dimen-
sion min. 12 500 60.000. Computerized analysis of data
of this dimension can not be performed without exploiting the
structure in data and reducing dimensionality. Several data com-
pression methodologies has been reported. The current clinical
routine approaches keep one lead for arrhythmia information,
such as RR distances, while the waveform information is de-
rived only from one representative (or averaged) cycle of the
majority cluster. For clinical classification purposes, parameter
tables are filled out with approximately 1215 180 morpho-
logical parameters. Note the dramatic reduction of complexity
60.000 to 180 by moving from full digital to morphological rep-
resentation.

In ambulatory ECG measurements, the QRS complex clus-
ters are extracted and visualized, furthermore, the trend of the
heart rate (HR), the frequency of the different ectopic beats, and
the trend of ST segment depressions are plotted. Similar fea-
tures are represented in intensive care unit reports as well as
during surgery. The recurrent problem in ECG interpretation is
the qualitative analysis of the QRS complex. The analysis might
be very simple, such as the recording of the onset of the QRS
complex, or the detection if the support of the QRS complex
has widened. A deeper study may reveal phenomena such as
the morphological variation of the QRS complexes during arry-
thmias.

Our particular interest is in high-resolution ECG, e.g., late
potentials or notches and slurs of QRS characterizing fine de-
tails of intraventricular depolarization. In high-resolution ECG,
the data that we use are the values of the ECG samples. How-
ever, in our applications, the meaningful diagnostic information
is hidden in the low amplitude, subnoise level, high-frequency
details of the ECG signal. In these applications, data should be
sampled at no less than 1000 Hz and they are converted to digital
signals with at least 12-bit precision. In late potential measure-
ments, most frequently the bipolar, , leads are used. To
characterize the bioelectrical tissue properties in a more exten-
sive way, the above philosophy has to be extended to the field

of body surface potential mapping as well. In all of these appli-
cations, adequate noise reduction is crucial for analysis.

In these applications, data should be sampled at no less than
1000 Hz and they are converted to digital signals with at least
12-bit precision. Most frequently, the bipolar, , leads are
used in the studies. Adequate noise reduction is crucial for anal-
ysis. In practice, mainly the synchronized signal averaging tech-
nique is used. According to this approach a new beat should be
first aligned to previous beats (template). The program should
exclude ectopic or grossly noisy beats. If cross-correlation is
used for alignment, the correlation should be performed on the
fastest changing part of the QRS at least on a segment of 40
ms. In this paper, illustrative realistic computations are based
on Simpson-type , , and records.

II. DISTORTION MEASURES

A key problem in generating a set of characteristic ECG-sig-
nals, taken of a single patient over a longer period of time, is
to define an appropriate metrics in the signal-space and trans-
late this into a definition of metrics in the data-space. Letbe
a digital signal obtained by sampling the analog ECG signal of
a single heart-cycle. In what follows, an ECG signal is always
identified by unless otherwise stated. The simplest definition
of the distance or themeasure of distortionbetween and one
of its possible representativesis

Here, the diagonal matrix , with ,
takes into account the variability of the ECG

signal at different phases of the heart cycle. Thus, in defining
similarity of ECG signals, we would, e.g., require higher preci-
sion for the -waves and the -waves than for theQRSsegment.
Accordingly, we would use larger weights for samples taken of
the -waves and the -waves than for theQRSsegment. The
weighting matrix could also be used to isolate some special fea-
tures of interest. Initially, we suggest to choose the weights
according to the advice of practitioners. For , the identity
matrix we get the standard Euclidean distance. Assuming that
the Euclidean length of the signals do not differ too much from
each other, the aboveindividual distortion-measure is approxi-
mately equivalent to

where denote sample means over the cycle and
denote the Euclidean length.

Assume now that ECG signals are represented by morpho-
logical parameters, rather than digital signals obtained by sam-
pling. Let these morphological parameters be denoted by. Let
the signal defined above be obtained by the reconstruction
procedure . Then, the representative signals will also
be determined by similar morphological parameters, say. The
distortion-measure, sayin the space of morphological param-
eters is given by
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III. V ECTORQUANTIZATION

The problem of generating typical signals has been exten-
sively considered in communication theory, and in speech-pro-
cessing in particular. A basic method for this is a procedure
called vector quantization. In vector quantization, we represent
vector-valued random variables with a continuous distribution
by a small number of prototypes so that an overall distortion
measure is minimized. Analogous procedures are also used in
cluster analysis (cf. [6]). In speech-processing, the number of
classes, which is equal to the number of phonemes, is fixed in
advance. For a recent survey of VQ and related procedures see
[13].

Vector quantization in its classical form is defined in terms of
an Euclidean-metric as follows (cf. [7] and [8]). We are given
a data-set in say that has to be classified
into classes. For this purpose, we chooserepresentatives

, which are also called centers or prototypes. Note that
the representatives are not necessarily members
of the data set. Vector quantization is a mappingfrom the data
set into the set of representatives. Thus, a data-pointwill be
mapped to , where for some .
In classical vector quantization, we use the distortion measure

. Then, the overall measure of
goodness of the quantization procedure is given by

(1)
The problem is then to minimize with respect to the centers
and the mapping.

It is easy to see that for a fixed set of representatives
the cost function is minimized if each data-pointis mapped to
one of itsnearest neighbor , defined by the relation

for all . The application of this rule then
defines a partition of the data space intoclasses. Using the
nearest neighbor rule, the overall distortion will depend only on
the vector , and we write . On the other hand,
take any fixed partition of the data-space into classes,

. Let the signals belonging to class be represented
by a yet unspecified . Then, the class-distortion measure for
class is defined by

(2)

where denotes the cardinality of the set . For fixed ,
minimizing with respect to , we get the optimizing values

(3)

These simple observations justify a common iterative procedure
called the -means algorithm or Lloyd’s method (cf. [6] and
[7]). In its off-line version, the data-set or is fixed. In each step
of the iteration, we define a classification of the data-set using
the nearest neighbor rule based on the latest set of centers, which
is then updated using (3). The on-line version of this procedure
is obtained if we allow the data set to be extended in each step
of the iteration.

Vector quantization in its classical form is not directly ap-
plicable to ECG-analysis, in fact, there is a need to redefine the

class-distortion measure. The definition of class-distortion mea-
sure given in (2) is motivated by a probabilistic model. For mon-
itoring purposes, this is not suitable since it is not sensitive to
infrequent untypical values which may contain vital medical in-
formation. Therefore, we choose to use anew class-distortion
measurefor a given class as follows:

(4)

The center of a given finite data set in will be defined as the
solution of the problem

(5)

and will be called themin-max center. An additional complica-
tion arises if we use morphological parameters to define a dis-
tortion measure.

Furthermore, in contrast to vector quantization, the number
of classes is not fixed in advance in our application. Rather, we
fix a tolerance or accuracy, say, by which the center must
represent the signals in class. If the class-distortion measure
exceeds the prescribed threshold value for some, then we in-
crease the number of classes. The tolerance is chosen basically
by medical experience.

It follows, that in any iterative method the exact determination
of the minimum of is not necessary, it is sufficient to
find just one for which . The modification of
Lloyd’s method is now straightforward. At any time, we define a
classification using the nearest neighbor rule based on the latest
set of centers . If for some we have ,
then we solve the minimization problem (5) to find a solution
of the feasibility problem . If this problem has no
solution then we increase the number of classes: all the outliers,
i.e., all the signals that are represented by an accuracy worse
than , are collected to form one a more new classes.

When , we have

The distance-function is convex in, hence, its maximum over
, for is also convex in . However, we face a new

problem: the function is not differentiable. Although
min-max problems are standard problems fornonsmooth
optimization (cf. [9, Problem (2.2)]), it is known that when the
cardinality of is large , nonsmooth techniques may break
down. On the other hand, as pointed out above, optimality
can be relaxed to feasibility. In either way, the bottleneck of
the proposed algorithm is the computation of class centers.
This problem will be considered in more generality in Sec-
tions IV–VI.

IV. SMOOTHING BY RANDOMIZATION

We consider the problem of computing the min-max class
centers. We propose to solve this in a suboptimal sense by using
a smooth approximation. Let be a general, nondif-
ferentiable, but Lipschitz-continuous cost function, with a Lip-
schitz-constant . Assume that has a local,strictly non-
smooth minimumat in the sense that for some ,

implies

(6)
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For the minimization of , a number of methods are avail-
able in the theory of nonsmooth optimization (cf. [9]). How-
ever, their efficiency depends considerably on the complexity of
the function itself. Here, we develop a new method which
seems to be applicable for problems of high complexity.

We generate a sufficiently smooth approximation
to by locally averaging it, which is implemented by a
suitable randomization technique. Let be a sufficiently
smooth density function with bounded support, say
for for all , with some . Then, the
approximation of will be defined as

(7)

The value of the approximating function can be estimated for
each as follows: let be a random vector having density
function . Then, we can write

If is small then the probability distribution defined by
is concentrated around zero and, hence, will be a good
approximation of . Indeed, it is easy to see that

. On the other hand, since has a strictly non-
smooth minimum at , it can be shown that for any fixed small

the approximating function has a local minimum
inside the sphere of radius around , if with some
fixed . Note that if is convex, then , as a mixture
of convex functions is also convex.

The function is not computable explicitly, however, we
can easily generate a Monte Carlo estimate of for
any fixed at any time . For this purpose, take a random per-
turbation with density function and set

(8)

The difficulty in minimizing is that there is no direct
way to estimate the gradient of . Thus, we have to resort
to numerical differentiation using the noise-corrupted function
values . This can be done in a very effective manner, using
a simultaneous random perturbation of the parameters (cf. [1]),
which will be described in Section V.

V. THE SPSA METHOD

Let denote the iteration time. Then, at timewe take a
random perturbation vector

where is a double sequence of independent identically dis-
tributed , symmetrically distributed, bounded random variables
satisfying certain technical conditions (cf. [1, Section III]). A
standard perturbation that will be used is the double sequence

with , where
denotes the probability-measure.
Now let be a fixed sequence of positive numbers.

Let be a compact, convex domain, the technical
conditions for which are specified in [14]. At timeand at po-
sition , we take two measurements

and

Then, the th component of the gradient estimator at timeand
can be written as

(9)

We define . In choosing , there is a
tradeoff between bias and variance. Large values ofinduce
significant numerical errors in approximating the directional
derivatives by finite-difference quotients. On the other hand,
small values of would magnify the effect of the noise that
is present in and . A careful analyis shows that
the best choice for is (see, e.g., [14]). Then,
the truncatedSPSA methodis defined as a stochastic gradient
method using the gradient estimates above and the resetting
mechanism given below.

Let be a fixed sequence of positive numbers withde-
noting the stepsize at time. A standard choice for is
with . This choice is justified by the theory of stochastic
approximation: the simplest stochastic approximation scheme is
the recursive computation of the mean of a sample, in which the
step-size shows up in a trivial manner. Let an initial estimate

be given. We generate a sequence of estimated parameters,
denoted by , . At time we first define a ten-
tative value

If , then we set . Otherwise, we
perform aresetting: we define .

The advantage of the SPSA method over other stochastic min-
imization procedures, such as Kiefer–Wolfowitz’s method, is
that only two measurements/iteration will be required. Compu-
tational evidence shows that the method yields a good subop-
timal solution fast up to dimensions in the range of several hun-
dreds variable. Various aspects of convergence have been es-
tablished in [1], [14], and [15]. In addition, higher order SPSA
methods with improved rate of convergence have been devel-
oped in [14].

The performance of the SPSA method as applied to non-
smooth problems is also influenced by the choice of the
smoothing parameter . The asymptotic results of [1] are
applicable for fixed smoothing parameter, but for decreasing

we have a transient behavior that has not yet been analyzed.

VI. COMPUTATIONAL EXPERIMENTS

Two ECG records, taken from a healthy subjects and a patient
with frequent ectopic beats were analyzed. These two persons
are referred to as Patient 1 and Patient 2. In the measurements,
the orthogonal , , leads suggested by Simpson in [2] for
ventricular late potential studies were used. The length of the
records were 2.5 min, and from all the technical aspects the mea-
surements were conform with the recommendations formulated
in [16].

In the signal preprocessing, at first all the QRS complexes
were identified, with the method of Pan and Tompkins [17].
Subsequently, in each QRS complex the time instant of the
steepest negative slope in one of the filtered Simpson channel
was assigned as temporal fiducial point of the QRS complex.
Because the quality of the averaged heart cycle is heavily
influenced by any jitter in the fiducial point localization, a fine
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Fig. 1. The ECG signals of Patient 1. Most of the complexes have a similar
shape.

Fig. 2. Projected data points and centers of the two covering spheres for
Patient 1. Data points corresponding to the two spheres are indicated by
different symbols.

adjustment of the fiducial point position is usually required.
The routine procedures use correlation coefficients to this
purpose.

In Experiment 1, the three leads for the same heart cycle were
represented by 33 numbers/lead, the middle point representing
the fiducial point of the cycle. Thus, our data sets consisted
of points in 99 dimension. We can reduce the dimension by
choosing the signal-values at the fiducial point and four points
before and after it.

Thus, we get a 3 9 27-dimensional measurement vector.
The number of cycles or data points were 242 and 204, respec-
tively. In Figs. 1 and 3, we plot superimposed Simpson-type
leads of the two subjects measured. In each graph, the tracing
of the first third represents the X leads, the second third the Y
leads, and the last third the Z leads. The superimposed signals
were time-aligned by the fiducial points of the QRS complexes.

These data sets are analyzed using our classification method.
Our results revealed that the new method correctly recognized

Fig. 3. The ECG signals of Patient 2. Clearly, two types of QRS waveforms
are present in the record.

Fig. 4. Projected data points of Patient 2. Clearly, data belong to two different
subgroups.

ectopic beats and artifacts, and the majority (normal) heart cy-
cles.

In the case of Patient 1, we first identified two outliers, then
we fitted two spheres to the remaining 240 points data-points
(cf. Fig. 2). The results for Patient 2 are given on Fig. 4. In this
case, we have no outliers.

As we can see, in all of our ECG examples the QRS patterns
were clustered in two groups. For Patient 2, the clusters sep-
arated significantly. A deeper study on the separation and its
medical utility seems to be justified but it is beyond the scope
of this paper.

In Experiment 2, we compare the min-max classification
method for QRS patterns with the widely used correlation
procedure. Let us repeat that one objective of the classification
to generate reliable typical signals.

A critical issue in the synchronization and noise reduction of
quasiperiodic biological signals is the selection of signals that
will be used to form an averaged signal. The samples meet all
international criteria [16].
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Fig. 5. Superimposed cycles of a typical ECG record for comparison.

Fig. 6. Superimposed cycles of an ECG record with a few extra beats, used
for comparison in Section VI.

For comparison, we use two records (see Figs. 5 and 6). The
first record is an “excellent” sample, (all cycles are very similar),
while the second record contains five ventricular extra-beats.
There is a time-window around the fiducial-point, lead by lead,
with a length of 66 ms.

For the min-max criterion, the signal obtained during the
time-windows of the three leads are concatenated. Thus, a
single cycle will be represented by 3 66 sampling
point, i.e., one cycle is a point of the 198-dimensional space.
These strings are shown in Figs. 5 and 6.

In the correlation method, first a reference cycle is calculated
for all the time- windows lead by lead. Subsequently, the cycles
are compared: if a cycle on one of the leads has a correlation
coefficient smaller than 0.98, we drop that cycle from all three
leads. The threshold value 0.98 meets to international standards
[16].

In Fig. 7 the ECG-record of Fig. 5 is analyzed. The correlation
coefficient of each cycle is above 0.98, hence, no cycle will be
qualified as an outlier. On the other hand, the homogenity of the
record can be improved using min-max classification with two

Fig. 7. Correlation coefficients of the first ECG record; the signals marked
with � were deleted by the SPSA method.

Fig. 8. Correlation coefficients of the second ECG record; the signals marked
with � were deleted by the SPSA method.

classes, and removing the data belonging to the class containing
less samples. The deleted data-points are marked by.

In Fig. 8, the ECG record on Fig. 6, containing five extra
beats, represented by dotted lines, is analyzed. The correlation
method detects these extra beats, but no other cycles are deleted.

To get a more homogenous record, we apply min-max clas-
sification with two classes on these preclassified data, as in the
prveious experiment. An interesting feature of this procedure
is that the cycles that closely precede or follow the extra beats
have been automatically deleted, although these extra beats are
not present in the preclassified data-set. This is in agreement
with the common practice that the mentioned cycles are deleted
manually when the correlation method is applied.

The conclusion of Figs. 7 and 8 is that the set of QRS com-
plexes that are similar in terms of the correlation method co-
efficients may eventually be separated by the SPSA method.
A careful comparison using synchronized averages and second
derivatives results in two representative signals that are slightly
shifted and also different in fine details of their pattern. The bio-
physical background of the second derivatives suggest that pat-
tern changes might be due to slight differences in local intraven-
tricular activation propagation velocities, causing shifts in the
timing of collisions of activation wavelets originated in distinct
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points of the Purkinje fiber-endocardial interface. We have to
emphasize that the above interpretation needs further confirma-
tion, though previous numerical modeling studies support our
hypothesis [18].

These finding indicate that min-max classification may give
useful complementary insight to detect minor morphological
differences. An advantage of the min-max method is that it al-
lows the user to assign different weights to different coordi-
nates, or even morphological parameters. Different coordinates
may carry different biomedical content based on the expertise
of cardiologists. Tuning these weights is an additional degree of
freedom in the hands of the cardiologist to detect specific ab-
normalities.

VII. D ISCUSSION

We have proposed a new procedure for the classification of
ECG signals taken over a longer period of the same patient.
The procedure is obtained by modifying the well-known vector-
quantization procedure. First, the center of a class is defined via
a min-max procedure, rather than by averaging signals within
the given class. Second, the number of classes is not fixed in
advance, instead an upper bound or tolerance for the class dis-
tortion measure is given. The procedure can be used for moni-
toring purposes: an alarm signal will be generated if untypical
signals are recorded.

A main characteristics of the new procedure is its enhanced
sensitivity to untypical signals and outliers. The price of this
practical advantage is increased computational complexity.
Class-centers are defined in terms of a nonsmooth optimization
problem, which is solved by a modification of the so-called
SPSA method. The basic ingredients of the relevant theory
and the results of computational experiments are given on
both simulated and real data. The latter are ECG signals that
have been preprocessed for the detection of low-level ECG
components, e.g., late potentials. Parts of this paper have been
published in abridged form in the conference-papers [19], [20].

The proposed approach can be extended in a number of ways.
A primary design parameter of the method are the weights.
We assumed that these are selected on the basis of medical ex-
pertise. However, an equally sensible procedure is to allow them
to be tuned within some limits. Another interesting problem is
to see if the classification is stable when the level of tolerance
is adjusted.
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