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The Use of the SPSA Method in ECG Analysis

Laszl6 Gerencsér*, Gyorgy Kozmann, Zsuzsanna Vagoé, and Kristof Haraszti

Abstract—The classification, monitoring, and compression of the condition of a patient and keeping record of the patient’s his-
electrocardiogram (ECG,) signals recorded of a single patient over tory in a compressed form is required in a number of situations,
a relatively long period of time is considered. The particular ap- such as ambulatory ECG acquiring and processing heart-sig-

plication we have in mind is high-resolution ECG analysis, such . .
as late potential analysis, morphology changes in QRS during ar- nals 24 hours a day (cf. [2]), exercise ECG, ECG taken during

rythmias, T-wave alternants, or the study of drug effects on ven- SUrgery or intensive care, or catheterization. ECG signals vary
tricular activation. We propose to apply a modification of a clas- over time (beat-to-beat, day-to-day) even if the condition of the

sical method of cluster analysis or vector quantization. The nov- patient is stable, due to biological effects (positional changes
elty of our approach is that we use a new distortion measure 10 q,q {5 preathing, variation in pulse rate etc.) and also due to tech-

quantify the distance of two ECG cycles, and the class-distortion . | . fth . . N t
measure is defined using a min-max criterion. The new class-dis- nical reasons (e.g., noise of the measuring equipment). In mos

tortion-measure is much more sensitive to outliers than the usual applications, we are interested in changes beyond the normal
distortion measures using average-distance. The price of this prac- physiological variability. In this paper, we develop a method
tical advantage is that computational complexity is significantly in-  ysing a refined classification procedure that takes into account
creased. The resulting nonsmooth optimization problem is solved v sig|ogical variability. This work has been motivated by our
by an adapted version of the simultaneous perturbation stochastic . ¢ t in elaborating i d si | . d
approximation (SPSA) method of [1]. The main idea is to generate Interest in elaboraling .Improve Sf'gna processing procedures
a smooth approximation by a randomization procedure. The via- {0 enhance the resolution of sophisticated ECG measurements,
bility of the method is demonstrated on both simulated and real such as surface His-bundle ECG or late potential measurements.
data. An experimental comparison with the widely used correla- There are evidences that the tiny details hardly recognizable in
tion method is given on real data. surface ECG signals (or the temporal variation of such signal
Index Terms—Classification, ECG, data-compression, min-max components) carry clinically meaningful indicators of elevated
problems, monitoring, nonsmooth optimization, randomization, risk for malignant arrhytmias [3], [2], [4]. Furthermore, theo-

stochastic approximation, vector quantization. retical studies has proved, that based on an accurate detection
of ventricular breakthrough points, the ill-posed problem of the
l. INTRODUCTION inverse problem of electrocardiology can be transformed into a

HE long-t t and real-ti luation Lell-posed problem [5].
ong-term measurement and real-time evaluation O he main step in solving these problems is to generate a

.bllophysmal S|gnal§ IS an essential task n seyeral areasgy of prototyped signals that represent a large set of real sig-
medicine. In some applications, the characterization and cla

o . ) : o Is measured during the monitoring period. The generation of
fication of the signals is the basic goal, while in other cases t ?ototyped signals is a key mathematical challenge. Classical
early detection of the significant changes is required. Furth

h qf . d archivi f data i iethods of cluster-analysis or vector quantization (cf. [6]-[8])
more, ednee dotr> ct(;]mptrﬁszmg an ?LC I\I/tlrr:g oraa 3 IS an ke not applicable for two main reasons. First, the right metric
creasing demand both in the domain othealth care and reseaygly, . signal space is not Euclidean, in fact we are working in a

Without confining the general applicability of our mathemat-ons,[rained signal space. Second, averaging would mask valu-

ical approach dlscu_ssgd in this paper, we con5|_d_er PIMAILY e information contained in a relatively small percent of data.
the problem of monitoring, compressing and archiving charac-In our procedure, the number of classes is not gargniori,

tgrlsnc ele_ctrocard|ogram_ (ECG) wave pa“eff‘s obtamgd Torir?stead, we define classes by setting an upper bound for the class

single patient over a relatively long period of time. Monltonngjistortion measure. We propose that prototypes or centers are
defined so that the maximum of an appropriate distance func-
tion is minimized. This is a nonsmooth optimization problem

. . , the solution of which is not trivial for large data sets (cf. [9]). We
Manuscript received March 13, 2000. This work was supported by the Na

tional Research Foundation of Hungary (OTKA) under Grant T 032932, Gradfopose a SO|utIOIT| of this prOblem by us_mg an adapt_ed verS|0.n
T 033085, Grant T 030747, and Grant NKFP OM-2/052 and in part by a Bolyaf the so-called simultaneous perturbation stochastic approxi-

Janos Research Fellowsh#sterisk indicates corresponding author mation (SPSA) method given in [1] The convergence proper-

*L. Gerencsér is with the Computer and Automation Institute of thﬁ fthi d izati thod I derstood and
Hungarian Academy of Sciences, Kende u. 13-17, H-1111 Budapest, Hung Pys or this randomization method are well-unaerstood and em-

(e-mail: gerencser@sztaki.huy). pirical evidence suggest that SPSA is applicable to solve dif-
G. Kozmann and K. Haraszti are with the Department of Information Syﬁ-cun optimization problems. A main technical advance is the
tems, University of Veszprém and the Research Institute for Technical Physics .
and Materials Science of the Hungarian Academy of Sciences, Budapest, ,_@ﬁ_tensmn of the SPSA method to nonsmooth prObIems to get
gary. a suboptimal solution, which is certainly satisfactory for the
Z.Vagoé is with the Computer and Automation Institute of the Hungariapresent application. The viability ofthe proposed procedure will

Academy of Sciences, Budapest, Hungary and the Pazmany Péter Catholic Uni- . . .
versity, gudapest Hungary_p gary Y e demonstrated by numerical experiments for the solution of

Publisher Item Identifier 10.1109/TBME.2002.802007. the min-max problem on both simulated and real data.

0018-9294/02$17.00 © 2002 IEEE



GERENCSERet al: USE OF THE SPSA METHOD IN ECG ANALYSIS 1095

The integration of medical expertise into mathematicalf body surface potential mapping as well. In all of these appli-
models can be done right at the start: by choosing an appoations, adequate noise reduction is crucial for analysis.
priate signal representation and by defining an appropriateln these applications, data should be sampled at no less than
metric between ECG signals. A variety of options will be ext000 Hz and they are converted to digital signals with at least
plained in details in Section Il. The approximate reconstructidr®-bit precision. Most frequently, the bipolar, Y, 7 leads are
of the full data is described in [10]. used in the studies. Adequate noise reduction is crucial for anal-

The ECG signal is an analog signal the value of which estisis. In practice, mainly the synchronized signal averaging tech-
mates the potential of the cardiac sources on the body surfagigue is used. According to this approach a new beat should be
Several branches of experimental technologies have been eldlsst aligned to previous beats (template). The program should
rated during the long history of the electrocardiology, includingxclude ectopic or grossly noisy beats. If cross-correlation is
body surface potential mapping as the most complete asseswd for alignment, the correlation should be performed on the
ment of the heart-generated potential fields, as well as simplifigabtest changing part of the QRS at least on a segment of 40
methods, like the most popular standardized 12-lead ECG, ths. In this paper, illustrative realistic computations are based
vector cardiography, VCG, high-resolution ECG, exercise ECGn Simpson-typeX, Y, andZ records.
etc. The most comprehensive review of all these techniques can
be found in [11]. See, also, [12]. Il. DISTORTION MEASURES

The usual duration of computer evaluated ECG records is 10 . . . .
s. Adigital ECG signalis obtained by sampling the analog signalA key problem in generating a set of characteristic ECG-sig-

. . ; nals, taken of a single patient over a longer period of time, is
at a rate of min. 500 Hz, with a usual resolution of 5 mv. Thu% define an appropriate metrics in the signal-space and trans-

the digital signal can be represented as a vector in a vector SPAEE this into a definition of metrics in the data-space. £ b

of dimension min. 10« 500= 5000/lead. With 12 leads the dlg—a digital signal obtained by sampling the analog ECG signal of

g:zﬁdmfgi;ggggviogg (?;Oreggﬁeﬂ:sgzzz szrtgirsoéfdg:teé] single heart-cycle. In what follows, an ECG signal is always

o : SRR P . ysIs 0 identified bys unless otherwise stated. The simplest definition
of this dimension can not be performed without exploiting the . . .

. ) X . . of the distance or theeasure of distortiobetweens and one
structure in data and reducing dimensionality. Several data com- : o
. . .0 ||ts possible representativess

pression methodologies has been reported. The current clinical
routine approaches keep one lead for arrhythmia information, (s — )Ty (g
such as RR distances, while the waveform information is de- pls;v) = (s =) (5= 2).
rlve_d pnly from one rgp_resentatl\_/t_a (o_r averaged) cycle of trl‘-?ere, the diagonal matriX = diag(ds, .. ., d), With dy > 0,
majority cluster. For clinical classification purposes, parameter_ m takes into account the variability of the ECG

tables are filled out with approximately 3215= 180 morpho- ;0| at different phases of the heart cycle. Thus, in defining

logical parameters. Note the dram_at_ic reduction of CpmpleX'EYmilarity of ECG signals, we would, e.g., require higher preci-
60.000 t(_) 180 by moving from full digital to morphological reP<ion for theP-waves and th&-waves than for th@RSsegment.
resentation. Accordingly, we would use larger weights for samples taken of
In ambulatory ECG measurements, the QRS complex Clygg p_aves and thg-waves than for th€@RSsegment. The
ters are extracted and visualized, furthermore, the trend of {j&i5hting matrix could also be used to isolate some special fea-
heart rate (HR), the frequency of the different ectopic beats, afiflas of interest. Initially, we suggest to choose the weights
the trend of ST segment depressions are plotted. Similar fegz.,rqing to the advice of practitioners. Foe= 1, the identity
tures are represented in intensive care unit reports as welldsyrix we get the standard Euclidean distance. Assuming that

during surgery. The recurrent problem in ECG interpretation j§e £ clidean length of the signals do not differ too much from
the qualitative analysis of the QRS complex. The analysis mighii ., other, the abovedividual distortion-measure is approxi-
be very simple, such as the recording of the onset of the Q'ﬁ%tely equivalent to

complex, or the detection if the support of the QRS complex

has widened. A deeper study may reveal phenomena such as corr(s,v) = (s — 5)T (v — )
the morphological variation of the QRS complexes during arry- B
thmias.

Our particular interest is in high-resolution ECG, e.g., lat@here (s, 7) denote sample means over the cycle &sid|v|
potentials or notches and slurs of QRS characterizing fine d&enote the Euclidean length.
tails of intraventricular depolarization. In high-resolution ECG, Assume now that ECG signals are represented by morpho-
the data that we use are the values of the ECG samples. Hiwgical parameters, rather than digital signals obtained by sam-
ever, in our applications, the meaningful diagnostic informatigsiing. Let these morphological parameters be denoteg. et
is hidden in the low amplitude, subnoise level, high-frequenclie signals defined above be obtained by the reconstruction
details of the ECG signal. In these applications, data should pp@cedures = F(+)). Then, the representative signals will also
sampled at no less than 1000 Hz and they are converted to diditaldetermined by similar morphological parameters gsahe
signals with at least 12-bit precision. In late potential measurgistortion-measure, sayin the space of morphological param-
ments, most frequently the bipolaf, Y, Z leads are used. To eters is given by
characterize the bioelectrical tissue properties in a more exten-
sive way, the above philosophy has to be extended to the field o(1,8) = p(F(v), F(8)).



1096 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 10, OCTOBER 2002

lll. V ECTORQUANTIZATION class-distortion measure. The definition of class-distortion mea-
apre givenin (2) is motivated by a probabilistic model. For mon-
Bo_ring purposes, this is not suitable since it is not sensitive to

frequent untypical values which may contain vital medical in-
R{mation. Therefore, we choose to useew class-distortion
dﬂeasure‘or a given class”y, as follows:

The problem of generating typical signals has been ext
sively considered in communication theory, and in speech—pﬂ
cessing in particular. A basic method for this is a procedu
called vector quantization. In vector quantization, we repres
vector-valued random variables with a continuous distributi
by a small number of prototypes so that an overall distortion . = Di.(v) = max p(s;,vg). (4)
measure is minimized. Analogous procedures are also used in ) o #1€Ck ) )
cluster analysis (cf. [6]). In speech-processing, the number 0f€ genter of a given finite data setdn, will be defined as the
classes, which is equal to the number of phonemes, is fixedSution of the problem
advance. For a recent survey of VQ and related procedures see min D} (vg) (5)

[13]. v

Vector quantization in its classical form is defined in terms gind will be called thenin-max centerAn additional complica-
an Euclidean-metric as follows (cf. [7] and [8]). We are giveHOU arises if we use morphological parameters to define a dis-
a data-set;,i = 1,..., N in sayRP that has to be classified t0rtion measure.
into d classes. For this purpose, we choaseepresentatives ~Furthermore, in contrast to vector quantization, the number
v; € RP, which are also called centers or prototypes. Note thaftclasses is not fixed in advance in our application. Rather, we
the representatives; = q(s;,v) are not necessarily memberdix & tolerance or accuracy, say by which the center;, must
of the data set. Vector quantization is a mappjrigom the data epresent the signals in claSy. If the class-distortion measure
set into the set of representatives. Thus, a data-powitl be ~exceeds the prescribed threshold value for séntaen we in-
mapped tov = g(s), wherev = v; for somei = 1,...,d. crease the number of classes. The tolerance is chosen basically

In classical vector quantization, we use the distortion measipé medical experience. o
p(s,v) = (s — v)TE~1(s — v). Then, the overall measure of ltfollows, thatin any iterative method the exact determination

N find just onew, for which D} (vx) < e. The modification of
D = D(v,q) = 1 Z p(si,q(si)), a(s;) € {v1....,vg}. Lloyd'smethodis now straightforward. Atany time, we define a
N i1 classification using the nearest neighbor rule based on the latest

_ o (1) set of centers, .. .,v. If for somek we haveDj (vy) > e,
The problem is then to minimizB with respect to the centers  then we solve the minimization problem (5) to find a solution
and the mapping. of the feasibility problemD/ (v) < e. If this problem has no

It is easy to see that for a fixed set of representatizes solution then we increase the number of classes: all the outliers,
the cost function is minimized if each data-posris mapped to j.e., all the signals that are represented by an accuracy worse
one of itsnearest neighbov, defined by the relation(s,v) <  thane, are collected to form one a more new classes.

q(s,v;) forall ¢ = 1,...,d. The application of this rule then Whenp(s,v) = (s — v)TE"1(s — v), we have

defines a partition of the data space int@lasses. Using the PR _ Te—1

nearest neighbor rule, the overall distortion will depend only on k= Dilv) = Snérlc)i(‘% — ) R (si - ).

the vectorv, and we writeD(v, q) = D(v). On the other hand, The distance-function is convex in hence, its maximum over
take any fixed partition of the data-space into clasSgsk = i, for s; € Cy is also convex inv. However, we face a new
1,...,d. Let the signals belonging to clag$, be represented proplem: the functionD(v) is not differentiable. Although
by a yet unspecified;.. Then, the class-distortion measure fop,in-max problems are standard problems fosnsmooth

classCy is defined by . optimization (cf. [9, Problem (2.2)]), it is known that when the
Dy, = Di(vy) = — Z p(si,v%) ©) cardinality of Cy, is large N, nonsmqoth techniques may preak
|Ch| down. On the other hand, as pointed out above, optimality

5, €CYE
where|C}| denotes the cardinality of the s€%,. For fixed £,
minimizing D;. with respect tas,, we get the optimizing values

can be relaxed to feasibility. In either way, the bottleneck of
the proposed algorithm is the computation of class centers.
This problem will be considered in more generality in Sec-

1
U= > S (3) tions IV-VI.
|Ck| s, €C
i 43
These simple observations justify a common iterative procedure IV. SMOOTHING BY RANDOMIZATION

called thek-means algorithm or Lloyd’s method (cf. [6] and

[7]). Inits off-line version, the data-set 6¢ is fixed. In each step We consider the problem of computing the min-max class

of the iteration, we define a classification of the data-set usiﬁgnters.hWe propose 'to sol_lgéhlseln %iubboptlmal selnse bé/'fusmg
the nearest neighbor rule based on the latest set of centers, whic ct’_Oth apé) r?)li'_mat;??' (t')’ < f fa getr_lera ’ :ﬁn :_f
is then updated using (3). The on-line version of this procedJFeren labie, but Lipschilz-continuous cost function, with a Lip-

is obtained if we allow the data set to be extended in each S@%ﬂtz—con_stgnf(. Asiu_me thalL(¢) has a localstrictly non-
of the iteration. smooth minimunat * in the sense that for somec > 0,

Vector quantization in its classical form is not directly apw — 87| < & implies
plicable to ECG-analysis, in fact, there is a need to redefine the L(6) — L(6") > |6 — 07|. (6)
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For the minimization of.(#), a number of methods are avail-Then, theith component of the gradient estimator at tilmand
able in the theory of nonsmooth optimization (cf. [9]). Howé € D, can be written as
ever, their efficiency depends considerably on the complexity of o sy o
the functionL(#) itself. Here, we develop a new method which Hik, 6) = 205 Ar; (L (6) = Ly (6)). ©)
seems to be applicable for problems of high complexity. We defineH = (Hi,...,H,). In choosingc, there is a
We generate a sufficiently smooth approximatidri?) tradeoff between bias and variance. Large values,ohduce
to L(#) by locally averaging it, which is implemented by asignificant numerical errors in approximating the directional
suitable randomization technique. Litf) be a sufficiently derivatives by finite-difference quotients. On the other hand,
smooth density function with bounded support, $&§) = 0  small values of;, would magnify the effect of the noise that
for [6;| > 6, foralli = 1,..., p, with somes,,, > 0. Then, the is present inL (6) and L;, (6). A careful analyis shows that

approximation ofL(¢) will be defined as the best choice foey, is ¢, = ¢/k'/ (see, e.g., [14]). Then,
_ the truncatedSPSA metho defined as a stochastic gradient
L(#) = /L(9+ 60)h(66)do6. (7)  method using the gradient estimates above and the resetting

L . ) mechanism given below.
The value of the approximating function can be estimated for Let a, be a fixed sequence of positive numbers withde-

eachd as follows: letéf# be a random vector having de”Sitynoting the stepsize at tinde A standard choice for iy, = a/k

functionx(¢). Then, we can write with @ > 0. This choice is justified by the theory of stochastic

L(6) = EL(6 + §6). approximation: the simplest stochastic approximation scheme is
the recursive computation of the mean of a sample, in which the

~ If6,, is small then the probability distribution definedb{f))  step-sizel / shows upin a trivial manner. Let an initial estimate

is concentrated around zero and, hentg) will be a good g he given. We generate a sequence of estimated parameters,

approximation ofL(f). Indeed, it is easy to see th@i(f) —  genoted byoi1, k = 0,1, . ... Attime k we first define a ten-
L(6)| < Ké,,. Onthe other hand, sindg#) has a strictly non- ;ative value

smooth minimum a¢*, it can be shown that for any fixed small g _3 Hk+1.9

8o > 0 the approximating functiod(¢) has a local minimum kol = Uk Gk+1 ( t1 k)- _

inside the sphere of radids aroundd*, if ¢,,, < cdo with some  If fx1- € Do, then we sebyi; = i1 . Otherwise, we

fixed ¢ > 0. Note that ifZ(#) is convex, ther.(#), as a mixture perform aresetting we definefy.11 = 6.

of convex functions is also convex. The advantage of the SPSA method over other stochastic min-
The functionL(6) is not computable explicitly, however, weimization procedures, such as Kiefer-Wolfowitz's method, is

can easily generate a Monte Carlo estimégée) of L(#) for that only two measurements/iteration will be required. Compu-

any fixed# at any timen. For this purpose, take a random pertational evidence shows that the method yields a good subop-

turbationéd,, with density function:(6) and set timal solution fast up to dimensions in the range of several hun-
. dreds variable. Various aspects of convergence have been es-
Ln(0) = L(0 + 86y). (8)  tablished in [1], [14], and [15]. In addition, higher order SPSA

The difficulty in minimizing L(6) is that there is no direct Methods with improved rate of convergence have been devel-

way to estimate the gradient @f(#). Thus, we have to resort 0Ped in [14]. .
to numerical differentiation using the noise-corrupted function The performance of the SPSA method as applied to non-
valuesL,, (6). This can be done in a very effective manner, usingnooth problems is also influenced by the choice of the

a simultaneous random perturbation of the parameters (cf. [§jnoothing parametef,,. The asymptotic results of [1] are
which will be described in Section V. applicable for fixed smoothing parameter, but for decreasing

6, We have a transient behavior that has not yet been analyzed.
V. THE SPSA METHOD

Let k£ denote the iteration time. Then, at tirkewe take a

VI. COMPUTATIONAL EXPERIMENTS

random perturbation vector _Two ECG records_, taken from a healthy subjects and a patient
with frequent ectopic beats were analyzed. These two persons
Ay = (D, ..., Akp)T are referred to as Patient 1 and Patient 2. In the measurements,

whereAy; is a double sequence of independent identically digje orthogonalt, Y', Z leads suggested by Simpson in [2] for

tributed , symmetrically distributed, bounded random variablé§ ntricular late potgnnal studies were useq. The length of the
records were 2.5 min, and from all the technical aspects the mea-

satisfying certain technical conditions (cf. [1, Section IlI]). A ¢ f ith th dati p lated
standard perturbation that will be used is the double sequer?#ﬁg]en S were contorm wi € recommendations formulate
Ay With P(Ag; = +1) = 1/2, P(Ay; = —1) = 1/2wh . . .

ki W (A +1) / (A ) /2 where In the signal preprocessing, at first all the QRS complexes

P denotes the probability-measure. . i . .
Now let0 < C'Z < 1pe ;/fixed sequence of positive numberdvere identified, with the method of Pan and Tompkins [17].

Let Dy C intD be a compact, convex domain, the technic%Ubseql:imly’ til\? e?ch ?nRSnCOT?AeXﬁIT ? t('jm;n']nSta:t ﬁf :r]]el
conditions for which are specified in [14]. At timieand at po- steepest egda ets ope I?'deq | € te feth Igsso ¢ al €
sition @ € Dy, we take two measurements was assigned as temporal fiducial point of the QRS complex.

K R K R Because the quality of the averaged heart cycle is heavily
LZT(G) = Lop—1(0 4+ cxAg) and Ly (8) = Lox (0 — ciAg). influenced by any jitter in the fiducial point localization, a fine
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Fig. 1. The ECG signals of Patient 1. Most of the complexes have a simileig. 3. The ECG signals of Patient 2. Clearly, two types of QRS waveforms

shape. are present in the record.
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Fig. 2. Projected data points and centers of the two covering spheres fé§- 4. Projected data points of Patient 2. Clearly, data belong to two different
Patient 1. Data points corresponding to the two spheres are indicated SH{groups.
different symbols.

ectopic beats and artifacts, and the majority (normal) heart cy-
adjustment of the fiducial point position is usually requirectles.
The routine procedures use correlation coefficients to thisin the case of Patient 1, we first identified two outliers, then
purpose. we fitted two spheres to the remaining 240 points data-points
In Experiment 1, the three leads for the same heart cycle wéeé Fig. 2). The results for Patient 2 are given on Fig. 4. In this
represented by 33 numbers/lead, the middle point representiage, we have no outliers.
the fiducial point of the cycle. Thus, our data sets consistedAs we can see, in all of our ECG examples the QRS patterns
of points in 99 dimension. We can reduce the dimension lbyere clustered in two groups. For Patient 2, the clusters sep-
choosing the signal-values at the fiducial point and four poinégated significantly. A deeper study on the separation and its
before and after it. medical utility seems to be justified but it is beyond the scope
Thus, we get a & 9 = 27-dimensional measurement vectorof this paper.
The number of cycles or data points were 242 and 204, respecin Experiment 2, we compare the min-max classification
tively. In Figs. 1 and 3, we plot superimposed Simpson-typaethod for QRS patterns with the widely used correlation
leads of the two subjects measured. In each graph, the tragimgcedure. Let us repeat that one objective of the classification
of the first third represents the X leads, the second third thetd generate reliable typical signals.
leads, and the last third the Z leads. The superimposed signal8 critical issue in the synchronization and noise reduction of
were time-aligned by the fiducial points of the QRS complexeguasiperiodic biological signals is the selection of signals that
These data sets are analyzed using our classification metheil. be used to form an averaged signal. The samples meet all
Our results revealed that the new method correctly recognizetkrnational criteria [16].
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Fig. 5. Superimposed cycles of a typical ECG record for comparison.

AMPLITUDE [uV]

1200

1000 -

800

D

S

S
T

'S

=1

S
T

N

=1

=3
T

-200

1

T

GORRELATION
COEFFICIENT

0.999 -

0.997

0.996 -

0.995

1099

0.998f]

0.994

—-400

3000

TIME [ms]

160

180 200

L
100

L
120

with « were deleted by the SPSA method.

1
CORRELATION
COEFFICIENT

2500

2000

1500

1000

500

o)

X-LEAD

0.999

0.998

0.997

0.996

0.995

L L
140 160

L L
180 200
NUMBER OF CYCLES

Fig. 7. Correlation coefficients of the first ECG record; the signals marked

0.994

-500

0.9931

-1000 I L L L I L L I

0 20 40 60 80 100 120 140 160
NUMBER OF CYCLES

-1500
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Fig. 6. Superimposed cycles of an ECG record with a few extra beats, usd@sses, and removing the data belonging to the class containing
for comparison in Section V1. less samples. The deleted data-points are marked by

In Fig. 8, the ECG record on Fig. 6, containing five extra

For comparison, we use two records (see Figs. 5 and 6). Tieats, represented by dotted lines, is analyzed. The correlation
firstrecord is an “excellent” sample, (all cycles are very similarjnethod detects these extra beats, but no other cycles are deleted.
while the second record contains five ventricular extra-beats.To get a more homogenous record, we apply min-max clas-
There is a time-window around the fiducial-point, lead by leadjfication with two classes on these preclassified data, as in the
with a length of 66 ms. prveious experiment. An interesting feature of this procedure

For the min-max criterion, the signal obtained during this that the cycles that closely precede or follow the extra beats
time-windows of the three leads are concatenated. Thushae been automatically deleted, although these extra beats are
single cycle will be represented byx3 66 = 198 sampling not present in the preclassified data-set. This is in agreement
point, i.e., one cycle is a point of the 198-dimensional spaasith the common practice that the mentioned cycles are deleted
These strings are shown in Figs. 5 and 6. manually when the correlation method is applied.

In the correlation method, first a reference cycle is calculated The conclusion of Figs. 7 and 8 is that the set of QRS com-
for all the time- windows lead by lead. Subsequently, the cyclptexes that are similar in terms of the correlation method co-
are compared: if a cycle on one of the leads has a correlatigificients may eventually be separated by the SPSA method.
coefficient smaller than 0.98, we drop that cycle from all thre& careful comparison using synchronized averages and second
leads. The threshold value 0.98 meets to international standaddsvatives results in two representative signals that are slightly
[16]. shifted and also different in fine details of their pattern. The bio-

InFig. 7 the ECG-record of Fig. 5is analyzed. The correlatigshysical background of the second derivatives suggest that pat-
coefficient of each cycle is above 0.98, hence, no cycle will iern changes might be due to slight differences in local intraven-
qualified as an outlier. On the other hand, the homogenity of tkricular activation propagation velocities, causing shifts in the
record can be improved using min-max classification with twiiming of collisions of activation wavelets originated in distinct
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points of the Purkinje fiber-endocardial interface. We have to[4] z. w. L, R. EJ, C. JP, K. JA, and M. AJ, “ECG features of microvolt

emphasize that the above interpretation needs further confirma- T-wave alternans in coronary artery disease and long gt syndrome pa-
tients,”J. Electrocardiol, vol. 31, no. (Suppl. , pp. 114-120, 1998.

tion, though previous numerical modeling studies support our(s; £ Greensite, “well-posed formulation of the inverse problem of electro-

hypothesis [18]. cardiology,”Ann. Biomed. Engvol. 22, pp. 172—183, 1994.
These finding indicate that min-max classification may give [6] R Agggfsbe@vc'usmf Analysis for Applications New York: Aca-
emic, .

useful complementary insight to detect minor morphological [7] Y. X. D. Huang and M. Jackdidden Markov Models for Speech Recog-

differences. An advantage of the min-max method is that it al-  nition. Edinburgh, U.K.: Edinburgh Univ. Press, 1990.

lows the user to assign different weights to different coordi- (€] s-;fagb“\gecg-gggztlzatlon,rEEEAcoust, Speech, Signal Processing
nates, or even morph.ologlcf’;ll parameters. Different coordma.te%,] C. Lemarechal, “Nondifferentiable optimization,” kandbooks in Op-
may carry different biomedical content based on the expertise  erations Research and Management Sciencemsterdam, The Nether-

of cardiologists. Tuning these weights is an additional degree of _ lands: Elsevier Science, 1989, pp. 529-572. . _
freed in the hands of the cardiolodist to detect specific ab[_lO] S. Jalaleddine, C. Hutchens, W. Coberly, and R. Strattan, “Compression
reeaom in the g p of holter ECG data,Biomed. Sci. Instrumvol. 24, pp. 35-45, 1988.

normalities. [11] P. W. Macfarlane and T. D. Veitch Lawri€omprehensive Electrocar-
diology. Oxford, U.K.: Pergamon, 1989.
[12] J. L. Willems, P. Arnaud, J. H. Van Bemmel, R. Degani, P. W. Macfar-
VII. DISCUSSION lane, and Chr. Zywietz, “Common standards for quantitative electrocar-
o diography: Goals and main resultdyfeth. Inform. Med. vol. 29, pp.
We have proposed a new procedure for the classification of  263-271, 1990.
ECG signals taken over a longer period of the same patieni13] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessalations:
. . e Applications and algorithms 3IAM Rev.vol. 41, pp. 637-676, 1999.
The pfoc?dure IS Obtameq by modifying the We”'k”F’W” YeCtor' 14] L.Gerencsér, “Rate of convergence of moments for a simultaneuous per-
quantization procedure. First, the center of a class is defined via ~ turbation stochastic approximation method for function minimization,”
a min-max procedure, rather than by averaging signals within |EEE Trans. Automat. Convol. 44, pp. 894-905, May 1999.
the aiven class. Second. the number of classes is not fixed #_L'S] H. Chen, T. Duncan, and B. Pasik-Duncan, “A stochastic approximation
g ) : ! : algorithm with random differences,” iRroc. 13th Triennal IFAC World
advance, instead an upper bound or tolerance for the class dis- Congr, J. Gertler, J. Cruz, and M. Peshkin, Eds., San Francisco, CA,
tortion measure is given. The procedure can be used for monj- 1996, pp. 493-496. _
torin urnoses: an alarm sianal will be aenerated if unt ica[le] G. Breithardt, M. Cain, N. El-Sherif, N. Flowers, V. Hombach, M. Janse,
. g purp : g g9 yp M. Simpson, and G. Steinbeck, “Standards for analysis of ventricular
S|gnals are recorded. late potentials using high resolution or signal-averaged electrocardiog-
A main characteristics of the new procedure is its enhanced _ raphy."Eur. Heart J, vol. 12, pp. 473-480, 1991. .
itivity t tvpical si | d tli Th . f thi [17] J.Pan and W. Tompkins, “A real-time QRS detection algorithiBEE
sen3|' IvVity 10 un yplca. S|.gna S ana outliers. ' e price O !S Trans. Biomed. Engvol. BME-32, pp. 230-236, 1985.
practical advantage is increased computational complexityis] G.Kozmann, Z. Cserjés, M. Tysler, M. Tinova, M. Turzova, and V. Sza-
Class-centers are defined in terms of a nonsmooth optimization t_hméry, "Feasibil_ity ofa_pre_dictive algorithm for identifying _characteris—
bl hich i ived b dificati f th lled ticevents of cardiac activation: Results of a model studyCamputers
problem, which IS solved by a modification of theé so-calle in Cardiology  Piscataway, NJ: IEEE Press, 1994, pp. 801—804.
SPSA method. The basic ingredients of the relevant theorpo] L. Gerencsér, G. Kozmann, and Z. Vagé, “Non-smooth optimization via
and the results Of Computat|ona| expe”ments are glven on SPSA,” inProc. Conf. Mathematical Theory of Networks and Systems,
both simulated and real data. The latter are ECG signals th MTNS'98 Padova, Italy, pp. 803-806.

: . g —, “SPSA for nonsmooth optimization with application in ECG anal-
have been preprocessed for the detection of low-level EC ysis,” in Proc. Conf. Decision and Controlol. CDC 37, 1998, pp.
components, e.g., late potentials. Parts of this paper have been 3907-3908.
published in abridged form in the conference-papers [19], [20].

The proposed approach can be extended in a number of ways.
A primary design parameter of the method are the weidghts
We assumed that these are selected on the basis of medical ex-
pertise. However, an equally sensible procedure is to allow the=
to be tuned within some limits. Another interesting problem |
to see if the classification is stable when the level of toleran:

is adjusted.
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