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Convergence of Simultaneous Perturbation Stochastic  the minimizing point. First, similar to [19], we decompose the SPSA

Approximation for Nondifferentiable Optimization algorithm into four terms: a subgradient term, a bias term, a random
_ _ direction noise term and an observation noise term. In our setting, the
Ying He, Michael C. Fu, and Steven I. Marcus subgradient term replaces the gradient term in [19], since we assume

that the function does not have to be differentiable. Hence, we need to
Abstract—in this note, we consider simultaneous perturbation fShOW ,the gsymptotlc behavpr of the, algom,hm follows .a differential
stochastic approximation for function minimization. The standard as- inclusion instead of an ordinary differentiable equation. Kushner
sumption for convergence is that the function be three times differentiable, and Yin [9] state a theorem (Theorem 5.6.2) for convergence of a
although weaker assumptions have been used for special cases. Howevelkjefer—\Wolfowitz algorithm in a nondifferentiable setting. However,

all work that we are aware of at least requires differentiability. In this . . .
note, we relax the differentiability requirement and prove convergence this theorem is not general enough to cover our SPSA algorithm. We

using convex analysis. will prove a more general theorem to establish convergence of SPSA.
Index Terms—Convex analysis, simultaneous perturbation stochastic ap- T_he genera! approach for proving gonvergence.for these types. of al-
proximation (SPSA), subgradient. gorithms requires showing that the bias term vanishes asymptotically.

In the differentiable case, a Taylor series expansion or the mean value
theorem is used to establish this. These tools are not applicable in our
. INTRODUCTION more general setting, but we are able to use convex analysis for this

Simultaneous perturbation stochastic approximation (SPSA?]SK, which is one new contribution of this note. For the random di-
proposed by Spall [15], has been successfully applied to maffgtion noise term, we use a similar argument as in [19] to show the
optimization problems. Like other Kiefer—Wolfowitz-type stochastié0ise goes to zero with probability 1 (w.p. 1), except that now the term
approximation algorithms, such as the finite-difference based sf§-2 function of the subgradient instead of the gradient. For the obser-
chastic approximation algorithm, SPSA uses only objective functigfition noise term, the conditions for general Kiefer-Wolfowitz algo-
measurements. Furthermore, SPSA is especially efficient in high-&thms givenin [9, pp. 113-114] are used, and we also show it goes to
mensional problems in terms of providing a good solution for &ro wW.p. 1.
relatively small number of measurements of the objective function T0 be more specific, we want to minimize the functispF'(6, x)] =
[17]. f(#) over the parametér € H C R", wheref(-) is continuous and

Convergence of SPSA has been analyzed under various conditidi#§)vex,x is a random vector an# is a convex and compact set. Let
Much of the literature assumes the objective function be three times dfif-denote théith estimate of the minimum, and Ief\; } be a random
ferentiable [3], [5], [8], [10], [15], [16], [18], though weaker assumpSequence of column random vectors with = [Ag 1. ..., Ax,]".
tions are found as well, e.g., [1], [4], [12], [14], and [19]. However, ald1; Az, ... are not necessary identically distributed. The two-sided
of them require that the function be at least differentiable. Among ti>SA algorithm to updat@. is as follows:
weakest assumptions on the objective function, Fu and Hill [4] assume
that the function is differentiable and convex; Chetral. [1] assume _ 11 BF—Fy

S X . o . : Okt1 = Mp <‘9k_04k (AL ]—>
that the function is differentiable and the gradient satisfies a Lipschitz 2¢k
condition. In a semiconductor fab-level decision making problem [7],
we found that the one-step cost function is continuous and conv@Kerell;; denotes a projection onto the J&t F,f[ are observations
with respect to the decision variables, but nondifferentiable, so that t&en at parameter valués + ¢, A, ¢, is a positive sequence con-
problem of finding the one-step optimal action requires minimizing erging to zerog,. is the step size multiplier, and\; '] is defined as
continuous and convex function. So the question is: does the SPSA[@I-ZL] = [A;,ll’ e AZ,HT-
gorithm converge in this setting? The answer is affirmative, and thewrite the observation in the form
details will be presented.

Gerencséet al.[6] have discussed nonsmopth optimization. How- Fkﬁ; — F(Be£erA) + éf
ever, they approximate the nonsmooth function by a smooth enough
function, and then optimize the smooth function by SPSA. Thus, th
take an indirect approach.

In this note, we consider function minimization and show that the ) )

SPSA algorithm converges for nondifferentiable convex functions, G = F Bk t+enle) = f (0 = cuAi)
which is especially important when the function is not differentiable at 2¢k

1)

e , . )
V\%ereéf are observation noises, and define

. @)

Then, the algorithm (1) can be written as
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approximated byAZ V £(4,.). Then, suppos# = R", the algorithm  SinceGr. = (f(8r + cxAx) — F(8r — cxAx))/(2¢1)
(3) can be written as 1
G — 5 (f/ (B Ak) - f’ (Or; —Ak)) < e w.p.l. (5)
B = b — an ¥ (00) + an (T = [A."] AL) V£ (81)

In addition, for f'(8x; Ax), there existsiga, (6x) € 0fa, (85) such

S =P that

<

Ck

o (8]
’ . et 1 3
where a standard argument of the ordinary differential equation (ODE) POk Ak) = Bisga, (Ox) - ©)

method implies that the trajectory 6f follows the ODE Similarly, for £'(6; —Ay), there existssg_a, () € 9f—a, (f1)

= _V(6). such that

(G —A) = (=AR)T sg_a, (8r). 7
In our context, however, we only assume tlfét) is continuous and (e K =( ©) 59— (i) )
convex—V f(-) may not exist at some points, so a Taylor series expan-Combining (5), (6), and (7), we conclude that > 0, 3 finite K
sion or the mean value theorem is not applicable. Instead, using con¥@sga, (A1), sg—a, (0x) € f(8x) such that

analysis we show thaf}, is close to the product i’ and asubgra-

dientof f(-). <z w.p.l

; 1 1
Gp — AL (5‘?{1Ak (fr) + 359, ((‘M))

Il. SUBGRADIENT AND REFORMULATION OF THESPSA A .GORITHM k2K )

First, we introduce some definitions and preliminary results on NOte thatdf(¢:) is a convex set, sfi(,e’“) = 1/2sga,.(61) +
convex analysis, with more details in [11]. 1/259-a,(0x) € afﬁ’v")‘ and|Gy — Agsg(6e)] <= wpl. O
Let . be a real-valued convex function @#'; a vectorsg(x) is a Define b = A 59(fk) — Gr. The SPSA algorithm (3) can be
subgradieniof h at a pointz if h(z) > h(z) + (2 — )7 sg(z), Vz. decomposed as
The set of all subgradients bfatz is called thesubdifferential of: at - iy
« and is denoted bgh(x) [11, p. 214]. Ifh is a convex function, the fr+1 = Il | 0 — awsg (6k) + ax (I - [AL7] Ak) 59 (k)
setdh(x) is a convex set, which means that; + (1 — \)z2 € Oh(x)
if z1 € Oh(x), z2 € Oh(x)andd < X < 1.
Theone-sided directional derivativef / atx with respect to a vector

4 17 %% —oF
+(kk» [A]\ ] (Sk + (095 [AI. ] 20\) . (9)
y is defined to be the limit

Supposed = R", and if we can prove that the third, fourth, and fifth
terms inside of the projection go to zero/agoes to infinity, the tra-

hx+ Ay) — h(x)
) jectory ofé,;, would follow the differential inclusion [9, p. 16]

3 )

h(xiy) =1
W (x5y) lim

Accordingto[11, Th. 23.1, p. 213], iis a convex function}’ (x; y) 6 € -0f(h).

exists fqr eacly. Furthermort_e, accorcﬁng to [11, Th. 23.4, p. 217], a/E\ccording to [11, p. 264], the necessary and sufficient condition for a
each point:, the subdifferentiabh () ISa _nonempty clpsed bour_‘dedgiven,r to belong to the minimum set ¢f (the set of points where the
convex set, and for each vectpthe directional derivativé’ (z; y) is minimum of  is attained) is tha € f(x).
the maximum of the inner productsg(x),y) assg(x) ranges over
Oh(x). Denote the set ofy() on whichh'(x: y) attains its maximum [ll. B ASIC CONSTRAINED STOCHASTIC APPROXIMATION ALGORITHM
by 8h, (). Thus, for allsg, (x) € dh,(x) andsg(x) € dh(x) '
Kushner and Yin [9, p. 124] state a theorem (Theorem 5.6.2) for
W (xy) =y sgy(x) >y sg(x). convergence of a Kiefer—Wolfowitz algorithm in a nondifferentiable
) ) ] ] setting. However, this theorem is not general enough to cover the SPSA
Now, let us discuss the relationship betweéndefined by (2) and aigorithm given by (9). So, we establish a more general theorem.

subgradients. _ _ _ Note that the SPSA algorithm given by (9) is a special case of the
Lemma 1: Consider the algorithm (1), assunfi¢ ) is a continuous  siochastic approximation algorithm

and convex functiorlimy ., ¢ = 0, {Ax} has support on a finite N
discrete set. Thewz > 0,3 5g(0x) € 07 () and finite X' such that O =1y (9k +ar sf () + ar by + ax (’A) (10)
Ge— Alsg(0)| <2 wpl  VE>K. =t tonsfO)tarbitarer+anZe (1)

whereZy, is the reflection termiy, is the bias termy, is the noise term,
Proof: Since f(-) is a continuous and convex function,andsf () can be any element efd f (6 ). Similar to (9), we need to

for fixed Ax = =z, both f'(6x;z) and f'(6x; —z) exist. By (4) show thath., e, andZ; go to zero.

andlimy_cocr, = 0,Ve > 0,3 Ki(z), Ka(—2) < oo st As in [9, p. 90], letm(¢) denote the unique value &f such that

[f'(Ors2) = (fF(Br +crz) = f(OR)/er] < &, Vk > Ki(z), and ¢, <t < tz14 fort > 0, and setn(t) = 0 for t < 0, where the time

|F'(Ors=2) = (f(Ox — crz) = f(0k)) /x| < e, Yk > Ka(=z). scalet, is defined as followsto = 0, t, = 35— a.

Let K = max. {K;(z), K2(—=z)}. Since{A,} has support on a Define the shifted continuous-time interpolatiéfi(+) of ¢, as

finite discrete set, which implies it is boundel, exists and is finite, follows:

Yk Z K m(t4ty)—1 . m(t4tg)—1
. Ny 0 () = x + a;sf (i) + a;b;
P ag = Lo tadd 27O oy ; ;
Ck
m(t+iy)—1 m(t+t)—1
f/ (ek. _Ak) _ f ((')lc - CkAk,) - f (Hk) <= VV.p.l. =+ Z wie; + Z ~; Z;. (12)
Ck i=k 1=k
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Define B*(t) = S )7" o,b;, and definedl*(¢) and Z*(t) Proof: By the boundedness assumption, each element of the se-
similarly, with ez and Zy, respectively, in place dfy. Sinced” (t) is quence{sy(f.)} is bounded by a finitd3, . Using a similar argument
piecewise constant, we can rewrite (12) as as in [19], defineM;, = S (I — [A;YA])59(61), soe, 1 =

. My — My_,.
k(t) = o (0%(5)) ds
67(t) _9“+/() of (9 (5)) ds E[Msy | Mi1< K]
+B (1) + M () + Z*(t) + p" (1) (13) =B [ My + (1= [Agh] Al ) 59 (0us) | Mi1 < ]
where =My + Eler py1 | My, 1 < K]
() = /l F (em(tthlc)(s)) ds and the absolute value @f[e, ry1 | Mi,1 < k]
t

m(t+ty,)

)E[er,k-H | My, 1< k]‘

o _ . <|Bi|-|E [(I— (AL A{H) 1|M.i< k”
Note thatp” (¢) is due to the replacement of the first summation in (12) B EIA | M1 <E
by an integral, an@” () = 0 at the jump times,, of the interpolated =|Bil - E[[AL | Mi 1< K|
process, angd® (t) — 0, sinceay, goes to zero ak goes to infinity. =0

We require the following conditions, similar to those of [9, Th. 5.3.3yhere is a column vector with each element being 1, and
pp. 88-108].

§O<'m(f,+tk )

;}: (9777,(t+fk)) ‘ .

0 Akt1,1 Apti,1
Al) ap — 0,Y ar = . R ‘ Apyi,2 ikJrl.r
A.2) The feasible regiorH is a hyperrectangle. In other words, ﬁ 0 ﬁ
there are numbers; < b,,i = 1,...,r, such thatd = A=
{z:a; < <0} N : N :
A.3) For some positive numbéF el v 0
lim sup Bk(f)r =0 w.p.l. {E|My|} is bounded since{sg(6x)}, {Ax} and {[A[']} are
k=oo |t|<my bounded. Thus;, . is a martingale difference. d
A.4) For some positive numbé#, For the observation noise terty ;, we assume the following con-
ditions.
Jim  sup M) =0 wp.lL B.1) 67 — ¢; is a martingale difference.
tI<Te B.2) There is ak’ < oo such that for a smali, all k, and each
Forz € H satisfying A.2), define the sé&t () as follows. Forr € component{¢, — (b;:)j of (¢, — (,bj),

H°, the interior ofH, C(x) contains only the zero element; fore (b= =¥ , J2K /2

OH ,the boundary off, letC'(«) be the infinite convex cone generated E [e' FTOY | Aoy A o "/9"—‘] se :

by the outer normals at of the faces on which lies [9, p. 77]. B.3) For each: > 0, 3" o=HE o < o
Proposition 1: For the algorithm given by (11), wheref(8;) € ' _ Lok N

9f(0r), assumeé () is bounded’d € H and A.1)-A.4) hold. Sup- B.4) Forsomél’ > 0, there is &: (T) < oo such that for alk,

pose thaff (-) is continuous and convex, but not constant. Consider the &

differential inclusion sup = <o (T).

. k<i<m(tp+T) -
0e—-0f(8 , z(t)e =C(o(t 14 . . .
€—0f0) += )€ 6®) (14) Examples of condition B.2) and a discussion related to B.3) and B.4)
and letSy denote the set of stationary points of (14), i.e., point&in can be found in [9, pp. 110-112]. Note that the moment condition on
where0 € —9f(#) + =. Then,{#(w)} converges to a point if;;, the observation noises; is not required in [1]. For other alternative

which attains the minimum of . noise conditions, see [2].
Proof: See the Appendix. O Lemma 3: Assume that A.1) and B.1)-B.4) hold affiA; ']} is
bounded. Then, for some positi¥glimy o sUpjs| <7 [M® () =0
IV. CONVERGENCE OF THESPSA A GORITHM w.p. 1, whered:*(t) ;= S e o
. L ATk . oGt =1 o Noa— 4t
We now use Proposition 1 to prove convergence of the SPSA al%o- ;rzof. %ef'gelMB(i) _h Zi:k’. ) (O"/Q.L.:/)F(@i h(’bih).
rithm given by (9), which we first rewrite as follows: oY A ) an : )_k 4), there exists a posm such that
limy— oo sup <7 M7 ()] = 0 w.p. 1, following the same ar-
Ori1 = 01 — ar5g (0r) + g (I _ [A,jl] Af) 57 (61) gument as the one in the proof of [9, Ths. 5.3.2, 5.3.3, pp. 108-110].

{[A; 1]} is bounded, spM*(t)| < Dy |M*(t)|, whereDy, is the

- _ + - -
tai, [AT] 6k 4+ ar [AF] O Z0k Lo 2, (15) bound of[A;"]. A
2¢k Thus,limg—oc sup), <y, | M (#)] = 0 w.p. 1. d
whereZ; is the reflection term. Proposition 2: Consider the SPSA algorithm (9), where

Note that the counterparts f ande; in (11) are[A; '] and 59(6x) € 0f(#x). Assumedf(#s) is boundedvt € H, A.1)-A.2)
er.k + €0, respectively, where the latter quantity is decomposed infd B.1)-B.4) hold{ A; } has support on a finite discrete sgty ]}
a random direction noise tera ; := (I — [A;']A] )sg(6) and an IS bounded, andE[Ay i /Ax; | Ao, ... s Ag—1,00,...,0k—1] = 0

observation noise term, ; := ([A;']/2c1) (6, — 671). for i # j. Suppose thaff(-) is continuous and convex, but not
Lemma 2: Assume that constant. Consider the differential inclusion
E |25 Agveo Arrbor by | = 0.0 £ fe-aj)+=  =t)e-CHm) (16)
Ak,] H s — Ll L) - ’

and letSy denote the set of stationary points of (16), i.e., point&in
and{sg(8x)}, {Ar} and{[A; ']} are bounded. Them, , = (I — where0 € —3f(#) + =. Then,{8,(w)} converges to a point if g,
[A7'1AT)59(8,) is a martingale difference. which attains the minimum of .
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Proof: Since {[A; ']} is bounded andimj;—..6: = 0 by Furthermore, sinclm;_ .. 8% (w, s) = #(w, s) for fixed w ands,
Lemma l,limk_x[A?]ék = 0 w.p. 1, which implies that A.3) V= > 0, 3 finite J, if j > .J, —af(H"i (w,5)) C Ne(=0f(0(w,s))),
holds. i.e., for eachsf(6%i(w,s)) € —9f(%(w,s)) ande > 0, there

By Lemma 3 limy.— o supy, < [M®* ()] = 0 w.p. 1. So, A4) is finite J and g(w.s) € —af(A(w.s)) such that ifj > J,
holds fore,, . |sf(9kf(£,/s)) —glw,s)] < =.

Since {Ax} has support on a finite discrete sd&g(f«)} and  Sincesf(-) and j(w,-) are bounded functions on [8], by the

{[a7']} are boundedE|e...|* < oc. Using the martingale conver- | ehesgue dominated convergence theorem
gence theorem and Lemma 2, we get

3 3
. — k., .
lim sup [M™*#)|=0 w.p.l lim / sf (07 (w,8))ds = / g(w, s)ds
fim sup DIAI= 0w Jim [ sf (68 s = |
whereM™*(t) := ST o6 So, A.4) holds for, . which meani?(w.,t). = Jy 9w, s)ds. L
So all conditions of Proposition 1 are satisfied, and all its conclusions Thus, we can writd(w, t) = #(w,0) + J; g(w, s)ds + Z(w, 1),
hold. 0 Whereg(w,s) € —=0f(8(w,s)).

Using a similar argument as in [9, p. 99 (w,t) = [ z(w, s)ds,
wherez(w, s) € —C(f(w, s)) for almost alls.

Hence, the limi#(w, -) of any convergent subsequence satisfies the

In this note, we use convex analysis to establish convergence of cdifferential inclusion (14).
strained SPSA for the setting in which the objective function is not Note thatSy is the set of stationary points of (14) fif. Following
necessarily differentiable. As alluded to in the introduction, we weke similar argument as in the proof of [9, Th. 5.2.1, pp. 96-97], we
motivated to consider this setting by a capacity allocation problem gan show tha{é,. (w)} visits Sy infinite often, Sy is asymptotically
manufacturing, in which nondifferentiability appeared for the case efable in the sense of Lyapunov due to the convexity ofind thus
period demands having discrete support rather than continuous. S{#(w)} converges t&x w.p. 1. Sincef is a convex function andl
ilar phenomena arise in other contexts, e.g., in discrete event dynaisia nonempty convex set, by [11, Th. 27.4, pp. 270-271], any point in

V. CONCLUSION

systems, as observed by Shapiro and Wardi [13]. Clearly, there are 8y- attains the minimum of relative toH . O
merous avenues for further research in the nondifferentiable setting.
We believe the analysis can be extended to SPSA algorithms with non- ACKNOWLEDGMENT
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vol. 43, pp. 1745-1749, Dec. 1998. andd; (¢) are unknown constants, robust adaptive control for a class of
systems similar to system (1) have been developed in [8]-[10]. In the
presence of time-varying parameters and time-varying disturbance, ro-
bust adaptive tracking control was presented in [11] and boundedness
of all the signals and arbitrary disturbance attenuation can be achieved.
Wheng;'s are unknown constants, several excellent adaptive control
Robust Adaptive Tracking for Time-Varying Uncertain algorithms have also been developed in the literature for nonlinear sys-
Nonlinear Systems With Unknown Control Coefficients  tems. In [1], under the assumption of unknown constayissbut with
known signs ofy;’s, adaptive control was presented for strict feed-
Shuzhi Sam Ge and J. Wang back nonlinear systems without disturbances. With the aid of neural
networks [12], [13] adaptive control is expanded to much larger class
. . of systems, uncertain strict-feedback and pure-feedback nonlinear sys-
Abstract—This note presents a robust adaptive control approach for a . - .
class of time-varying uncertain nonlinear systems in the strict feedback tems, where the unknown virtual control coefficients are functions

form with completely unknown time-varying virtual control coefficients, ~ Of states and the signs ¢f as well as the upper bounds afare as-
uncertain time-varying parameters and unknown time-varying bounded sumed to be known.

disturbances. The proposed design method does not require argy priori . .
knowledge of the unknown coefficients except for their bounds. Itis proved  YWhen the signs of;; are unknown, the adaptive control problem

that the proposed robust adaptive scheme can guarantee the global uniform becomes much more difficult. The first solution was given in [14] for
ultimate boundedness of the closed-loop system signals and disturbance at-a class of first-order linear systems, where the Nussbaum-type gain
tenuation. was originally proposed. Using Nussbaum gains, adaptive control
Index Terms—Robust adaptive control, time-varying nonlinear systems. was given for first-order nonlinear systems in [15], for a class of
strict feedback nonlinear systems with unknown constant parameters
and without disturbances in [16] and [17], and nonlinear systems
with completely unknown control coefficients, constant parametric
Adaptive nonlinear control has seen a significant development @ficertainties and uncertainties in [18] using decoupled backstepping
the past decade with the appearance of recursive backstepping de@igich, in contrast to cancellation based backstepping, decouples
[1]-[3]. A great deal of attention has been paid to tackle the uncertdl®m zi+1 using Young's inequality and seeks for the boundedness
nonlinear systems with unknown constant parameters [1], [4]-[6]. ¥ zi+:1 in the next step as said in [7]). Thus far, little attention has
this note, we consider a class of single-input—single-output (SISO) digen paid to the robust adaptive control problem for systems in (1)
certain time-varying nonlinear systems with time-varying disturbancésthe literature, except for the work in [19]. Reference [19] studied

|. INTRODUCTION

in the strict feedback form the regulation problem for a class of time-varying uncertain nonlinear
systems with time-varying unknown control coefficients under the
B0 = gi(Daipr + 07 (O (2:) + dF ()b (1) assumption that uncertain system functions satisfy an additive bound

. T T condition. However, when nonlinear systems involve time-varying

= g (£) A+ B ()00 () + diy (1) 6n () uncertain parameters and disturbances as well as unknown virtual

Y= (1) control coefficients, the solution remains open, and the problem
becomes much more difficult due to the presence of the time-varying

€ R" is the state uncertainties.

,i=1,....,n —1,u € R is the con- In this note, robust adaptive control is presented for system (1) with

wherei = 1,...,n — 1,2 = [x1,...,2n
vector,#; = [x1,..., 2]
trol, 8;(t) € R?* are vectors of uncertain and time-varying parametemmpletely unknown time-varying control coefficients, uncertain time-
belonging to known compact ses C RP’, d;(t) are vectors of un- varying parameters with known bounds, and unknown time-varying
known time-varying bounded disturbance evolvindiff, ¢; andé;, disturbances. Itis proved that the proposed robust adaptive scheme can
guarantee the global uniform ultimate boundedness of the closed-loop
Manuscript received February 6, 2002; revised October 14, 2002 and MarS stem signals and disturbance attenuatiqn. In a(.:Idition, for systems
10, 2003. Recommended by Associate Editor P. Datta. with unknown constant parameters and without disturbance, asymp-
S. S. Ge is with the Department of Electrical and Computer Engineeriri@tical tracking of the output can be achieved. The main contributions
National University of Singapore, Singapore 117576, Singapore (e-maif the note lie in the following aspects: 1) through introduction of a
elegesz@nus.edu.sg). new technical lemma and the use of Nussbaum gain, stable adaptive

J. Wang was with the Department of Electrical and Computer Engineerin . . .
National University of Singapore. He is now with University of Central Florida,cq(?mrc_)I IS pres_ented for z_a class of strict feedback nonllnear system
Orlando, FL 32816 USA. with time-varying uncertain parameters and unknown disturbance; 2)
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