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Convergence of Simultaneous Perturbation Stochastic
Approximation for Nondifferentiable Optimization

Ying He, Michael C. Fu, and Steven I. Marcus

Abstract—In this note, we consider simultaneous perturbation
stochastic approximation for function minimization. The standard as-
sumption for convergence is that the function be three times differentiable,
although weaker assumptions have been used for special cases. However,
all work that we are aware of at least requires differentiability. In this
note, we relax the differentiability requirement and prove convergence
using convex analysis.

Index Terms—Convex analysis, simultaneous perturbation stochastic ap-
proximation (SPSA), subgradient.

I. INTRODUCTION

Simultaneous perturbation stochastic approximation (SPSA),
proposed by Spall [15], has been successfully applied to many
optimization problems. Like other Kiefer–Wolfowitz-type stochastic
approximation algorithms, such as the finite-difference based sto-
chastic approximation algorithm, SPSA uses only objective function
measurements. Furthermore, SPSA is especially efficient in high-di-
mensional problems in terms of providing a good solution for a
relatively small number of measurements of the objective function
[17].

Convergence of SPSA has been analyzed under various conditions.
Much of the literature assumes the objective function be three times dif-
ferentiable [3], [5], [8], [10], [15], [16], [18], though weaker assump-
tions are found as well, e.g., [1], [4], [12], [14], and [19]. However, all
of them require that the function be at least differentiable. Among the
weakest assumptions on the objective function, Fu and Hill [4] assume
that the function is differentiable and convex; Chenet al. [1] assume
that the function is differentiable and the gradient satisfies a Lipschitz
condition. In a semiconductor fab-level decision making problem [7],
we found that the one-step cost function is continuous and convex
with respect to the decision variables, but nondifferentiable, so that the
problem of finding the one-step optimal action requires minimizing a
continuous and convex function. So the question is: does the SPSA al-
gorithm converge in this setting? The answer is affirmative, and the
details will be presented.

Gerencséret al. [6] have discussed nonsmooth optimization. How-
ever, they approximate the nonsmooth function by a smooth enough
function, and then optimize the smooth function by SPSA. Thus, they
take an indirect approach.

In this note, we consider function minimization and show that the
SPSA algorithm converges for nondifferentiable convex functions,
which is especially important when the function is not differentiable at
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the minimizing point. First, similar to [19], we decompose the SPSA
algorithm into four terms: a subgradient term, a bias term, a random
direction noise term and an observation noise term. In our setting, the
subgradient term replaces the gradient term in [19], since we assume
that the function does not have to be differentiable. Hence, we need to
show the asymptotic behavior of the algorithm follows a differential
inclusion instead of an ordinary differentiable equation. Kushner
and Yin [9] state a theorem (Theorem 5.6.2) for convergence of a
Kiefer–Wolfowitz algorithm in a nondifferentiable setting. However,
this theorem is not general enough to cover our SPSA algorithm. We
will prove a more general theorem to establish convergence of SPSA.

The general approach for proving convergence for these types of al-
gorithms requires showing that the bias term vanishes asymptotically.
In the differentiable case, a Taylor series expansion or the mean value
theorem is used to establish this. These tools are not applicable in our
more general setting, but we are able to use convex analysis for this
task, which is one new contribution of this note. For the random di-
rection noise term, we use a similar argument as in [19] to show the
noise goes to zero with probability 1 (w.p. 1), except that now the term
is a function of the subgradient instead of the gradient. For the obser-
vation noise term, the conditions for general Kiefer–Wolfowitz algo-
rithms given in [9, pp. 113–114] are used, and we also show it goes to
zero w.p. 1.

To be more specific, we want to minimize the functionE[F (�; �)] =

f(�) over the parameter� 2 H � Rr , wheref(�) is continuous and
convex,� is a random vector andH is a convex and compact set. Let
�k denote thekth estimate of the minimum, and letf�kg be a random
sequence of column random vectors with�k = [�k;1; . . . ;�k;r]

T .
�1;�2; . . . are not necessary identically distributed. The two-sided
SPSA algorithm to update�k is as follows:

�k+1 = �H �k � �k ��1k
F+

k � F�k
2ck

(1)

where�H denotes a projection onto the setH , F�k are observations
taken at parameter values�k � ck�k, ck is a positive sequence con-
verging to zero,�k is the step size multiplier, and [��1k ] is defined as
[��1k ] := [��1k;1; . . . ;�

�1

k;r]
T .

Write the observation in the form

F
�

k = f (�k � ck�k) + �
�

k

where��k are observation noises, and define

Gk :=
f (�k + ck�k)� f (�k � ck�k)

2ck
: (2)

Then, the algorithm (1) can be written as

�k+1 = �H �k � �k ��1k Gk + �k ��1k
��k � �+k

2ck
: (3)

The convergence of the SPSA algorithm (1) has been proved
under various conditions. One of the weakest conditions on the
objective function is thatf(�) be differentiable and convex [4].
Under the differentiability condition, one generally invokes a
Taylor series expansion or the mean value theorem to obtain
f(�k � ck�k) = f(�k) � ck�

T
krf(�k) + O(jckj

2j�kj
2). There-

fore, Gk = �T
krf(�k) + O(jckk�kj

2), which meansGk can be
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approximated by�T

krf(�k). Then, supposeH = Rr , the algorithm
(3) can be written as

�k+1 = �k � �krf (�k) + �k I � ��1k �T
k rf (�k)

+�k ��1k
��k � �+k

2ck

where a standard argument of the ordinary differential equation (ODE)
method implies that the trajectory of�k follows the ODE

_� = �rf(�):

In our context, however, we only assume thatf(�) is continuous and
convex�rf(�) may not exist at some points, so a Taylor series expan-
sion or the mean value theorem is not applicable. Instead, using convex
analysis we show thatGk is close to the product of�T

k and asubgra-
dientof f(�).

II. SUBGRADIENT AND REFORMULATION OF THESPSA ALGORITHM

First, we introduce some definitions and preliminary results on
convex analysis, with more details in [11].

Let h be a real-valued convex function onRr ; a vectorsg(x) is a
subgradientof h at a pointx if h(z) � h(x) + (z � x)T sg(x), 8z.
The set of all subgradients ofh atx is called thesubdifferential ofh at
x and is denoted by@h(x) [11, p. 214]. Ifh is a convex function, the
set@h(x) is a convex set, which means that�z1+(1��)z2 2 @h(x)
if z1 2 @h(x), z2 2 @h(x) and0 � � � 1.

Theone-sided directional derivativeofh atxwith respect to a vector
y is defined to be the limit

h0(x; y) = lim
�#0

h(x+ �y)� h(x)

�
: (4)

According to [11, Th. 23.1, p. 213], ifh is a convex function,h0(x; y)
exists for eachy. Furthermore, according to [11, Th. 23.4, p. 217], at
each pointx, the subdifferential@h(x) is a nonempty closed bounded
convex set, and for each vectory the directional derivativeh0(x; y) is
the maximum of the inner productshsg(x); yi assg(x) ranges over
@h(x). Denote the set ofsg(x) on whichh0(x; y) attains its maximum
by @hy(x). Thus, for allsgy(x) 2 @hy(x) andsg(x) 2 @h(x)

h0(x; y) = yT sgy(x) � yT sg(x):

Now, let us discuss the relationship betweenGk defined by (2) and
subgradients.

Lemma 1: Consider the algorithm (1), assumef(�) is a continuous
and convex function,limk!1 ck = 0, f�kg has support on a finite
discrete set. Then,8" > 0, 9 sg(�k) 2 @f(�k) and finiteK such that

Gk ��T
k sg (�k) < " w:p:1 8k � K:

Proof: Since f(�) is a continuous and convex function,
for fixed �k = z, both f 0(�k; z) and f 0(�k;�z) exist. By (4)
and limk!1 ck = 0, 8" > 0, 9 K1(z), K2(�z) < 1 s.t.
jf 0(�k; z) � (f(�k + ckz)� f(�k))=ckj < ", 8k � K1(z), and
jf 0(�k;�z) � (f(�k � ckz)� f(�k))=ckj < ", 8k � K2(�z).
Let K = maxz fK1(z);K2(�z)g. Sincef�kg has support on a
finite discrete set, which implies it is bounded,K exists and is finite,
8k � K

f 0 (�k;�k)�
f (�k + ck�k)� f (�k)

ck
<" w:p:1

f 0 (�k;��k)�
f (�k � ck�k)� f (�k)

ck
<" w:p:1:

SinceGk = (f(�k + ck�k)� f(�k � ck�k))=(2ck)

Gk �
1

2
f 0 (�k;�k)� f 0 (�k;��k) < " w:p:1: (5)

In addition, forf 0(�k;�k), there existssg� (�k) 2 @f� (�k) such
that

f 0 (�k;�k) = �T
k sg� (�k) : (6)

Similarly, for f 0(�k;��k), there existssg�� (�k) 2 @f�� (�k)
such that

f 0 (�k;��k) = (��k)
T sg�� (�k) : (7)

Combining (5), (6), and (7), we conclude that8 " > 0, 9 finite K
andsg� (�k), sg�� (�k) 2 @f(�k) such that

Gk ��T
k

1

2
sg� (�k) +

1

2
sg�� (�k) <" w:p:1

k �K: (8)

Note that@f(�k) is a convex set, sosg(�k) := 1=2sg� (�k) +
1=2sg�� (�k) 2 @f(�k), andjGk ��T

k sg(�k)j < " w:p:1:
Define �k = �T

k sg(�k) � Gk. The SPSA algorithm (3) can be
decomposed as

�k+1 = �H �k � �ksg (�k) + �k I � ��1k �T
k sg (�k)

+�k ��1k �k + �k ��1k
��k � �+k

2ck
: (9)

SupposeH = Rr, and if we can prove that the third, fourth, and fifth
terms inside of the projection go to zero ask goes to infinity, the tra-
jectory of�k would follow the differential inclusion [9, p. 16]

_� 2 �@f(�):

According to [11, p. 264], the necessary and sufficient condition for a
givenx to belong to the minimum set off (the set of points where the
minimum off is attained) is that0 2 @f(x).

III. B ASIC CONSTRAINEDSTOCHASTICAPPROXIMATION ALGORITHM

Kushner and Yin [9, p. 124] state a theorem (Theorem 5.6.2) for
convergence of a Kiefer–Wolfowitz algorithm in a nondifferentiable
setting. However, this theorem is not general enough to cover the SPSA
algorithm given by (9). So, we establish a more general theorem.

Note that the SPSA algorithm given by (9) is a special case of the
stochastic approximation algorithm

�k+1 =�H �k + �k sf (�k) + �k bk + �k ek (10)

=�k + �k sf (�k) + �k bk + �k ek + �k Zk (11)

whereZk is the reflection term,bk is the bias term,ek is the noise term,
andsf(�k) can be any element of�@f(�k). Similar to (9), we need to
show thatbk, ek andZk go to zero.

As in [9, p. 90], letm(t) denote the unique value ofk such that
tk � t < tk+1 for t � 0, and setm(t) = 0 for t < 0, where the time
scaletk is defined as follows:t0 = 0, tk = k�1

i=0 �i.
Define the shifted continuous-time interpolation�k(t) of �k as

follows:

�k(t) = �k +

m(t+t )�1

i=k

�isf (�i) +

m(t+t )�1

i=k

�ibi

+

m(t+t )�1

i=k

�iei +

m(t+t )�1

i=k

�iZi: (12)
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DefineBk(t) =
m(t+t )�1
i=k �ibi, and defineMk(t) andZk(t)

similarly, with ek andZk, respectively, in place ofbk. Since�k(t) is
piecewise constant, we can rewrite (12) as

�k(t) = �k +
t

0

sf �k(s) ds

+Bk(t) +Mk(t) + Zk(t) + �k(t) (13)

where

�k(t) =
t

t

sf �m(t+t )(s) ds

��m(t+t ) sf �m(t+t ) :

Note that�k(t) is due to the replacement of the first summation in (12)
by an integral, and�k(t) = 0 at the jump timestk of the interpolated
process, and�k(t)! 0, since�k goes to zero ask goes to infinity.

We require the following conditions, similar to those of [9, Th. 5.3.1,
pp. 88–108].

A.1) �k ! 0, �k = 1.
A.2) The feasible regionH is a hyperrectangle. In other words,

there are numbersai < bi, i = 1; . . . ; r, such thatH =
fx : ai � xi � big.

A.3) For some positive numberT1

lim
k!1

sup
jtj�T

Bk(t) = 0 w:p:1:

A.4) For some positive numberT2

lim
k!1

sup
jtj�T

Mk(t) = 0 w:p:1:

Forx 2 H satisfying A.2), define the setC(x) as follows. Forx 2
H0, the interior ofH , C(x) contains only the zero element; forx 2
@H , the boundary ofH , letC(x) be the infinite convex cone generated
by the outer normals atx of the faces on whichx lies [9, p. 77].

Proposition 1: For the algorithm given by (11), wheresf(�k) 2
@f(�k), assume@f(�) is bounded8� 2 H and A.1)–A.4) hold. Sup-
pose thatf(�) is continuous and convex, but not constant. Consider the
differential inclusion

_� 2 �@f(�) + z; z(t) 2 �C(�(t)) (14)

and letSH denote the set of stationary points of (14), i.e., points inH
where0 2 �@f(�) + z. Then,f�k(!)g converges to a point inSH ,
which attains the minimum off .

Proof: See the Appendix.

IV. CONVERGENCE OF THESPSA ALGORITHM

We now use Proposition 1 to prove convergence of the SPSA algo-
rithm given by (9), which we first rewrite as follows:

�k+1 = �k � �ksg (�k) + �k I � ��1k �T
k sg (�k)

+�k ��1k �k + �k ��1k
��k � �+k

2ck
+ �k ~Zk (15)

where ~Zk is the reflection term.
Note that the counterparts ofbk and ek in (11) are[��1k ]�k and

er;k + eo;k, respectively, where the latter quantity is decomposed into
a random direction noise termer;k := (I � [��1k ]�T

k )sg(�k) and an
observation noise termeo;k := ([��1k ]=2ck)(�

�
k � �+k ).

Lemma 2: Assume that

E
�k;i

�k;j
j �0; . . . ;�k�1; �0; . . . ; �k�1 = 0; i 6= j

andfsg(�k)g, f�kg andf[��1k ]g are bounded. Then,er;k = (I �
[��1k ]�T

k )sg(�k) is a martingale difference.

Proof: By the boundedness assumption, each element of the se-
quencefsg(�k)g is bounded by a finiteBk. Using a similar argument
as in [19], defineMk = k

l=0(I � [��1l ]�T
l )sg(�l), so er;k =

Mk �Mk�1.

E [Mk+1 jMl; l � k]

=E Mk + I � ��1k+1 �T
k+1 sg (�k+1) j Ml; l � k

=Mk +E [er;k+1 jMl; l � k]

and the absolute value ofE[er;k+1 j Ml; l � k]

E [er;k+1 j Ml; l � k]

� jBkj � E I � ��1k+1 �T
k+1

�1 jMl; l � k

= jBkj � E j[�k�1 j Ml; l � k]j

=0

where�1 is a column vector with each element being 1, and

�k =

0
�

�
. . .

�

�

�

�
0 . . .

�

�

...
...

...
�

�
. . .

�

�
0

:

fEjMkjg is bounded sincefsg(�k)g, f�kg and f[��1k ]g are
bounded. Thus,er;k is a martingale difference.

For the observation noise termeo;k, we assume the following con-
ditions.

B.1) ��k � �+k is a martingale difference.
B.2) There is aK < 1 such that for a small
, all k, and each

component(��k � �+k )j of (��k � �+k ),

E e
(� �� ) j �0; . . . ;�k�1; �0; . . . ; �k�1 � e
 K=2:

B.3) For each� > 0, k e
��c =� < 1.

B.4) For someT > 0, there is ac1(T ) <1 such that for allk,

sup
k�i<m(t +T )

�

c

�

c

� c1(T ):

Examples of condition B.2) and a discussion related to B.3) and B.4)
can be found in [9, pp. 110–112]. Note that the moment condition on
the observation noises��k is not required in [1]. For other alternative
noise conditions, see [2].

Lemma 3: Assume that A.1) and B.1)–B.4) hold andf[��1k ]g is
bounded. Then, for some positiveT , limk!1 supjtj�T jM

o;k(t)j = 0

w.p. 1, whereMo;k(t) :=
m(t+t )�1
i=k �ieo;i.

Proof: Define ~Mk(t) :=
m(t+t )�1
i=k (�i=2ci)(�

�
i � �+i ).

By A.4) and B.1)–B.4), there exists a positiveT such that
limk!1 supjtj�T j

~Mk(t)j = 0 w.p. 1, following the same ar-
gument as the one in the proof of [9, Ths. 5.3.2, 5.3.3, pp. 108–110].
f[��1k ]g is bounded, sojMo;k(t)j � Dkj ~M

k(t)j, whereDk is the
bound of[��1k ].

Thus,limk!1 supjtj�T jMo;k(t)j = 0 w.p. 1.
Proposition 2: Consider the SPSA algorithm (9), where

sg(�k) 2 @f(�k): Assume@f(�k) is bounded8�k 2 H , A.1)–A.2)
and B.1)–B.4) hold,f�kg has support on a finite discrete set,f[��1k ]g
is bounded, andE[�k;i=�k;j j �0; . . . ;�k�1; �0; . . . ; �k�1] = 0
for i 6= j. Suppose thatf(�) is continuous and convex, but not
constant. Consider the differential inclusion

_� 2 �@f(�) + z; z(t) 2 �C(�(t)) (16)

and letSH denote the set of stationary points of (16), i.e., points inH
where0 2 �@f(�) + z. Then,f�k(!)g converges to a point inSH ,
which attains the minimum off .
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Proof: Since f[��1k ]g is bounded andlimk!1 �k = 0 by
Lemma 1,limk!1[��1k ]�k = 0 w.p. 1, which implies that A.3)
holds.

By Lemma 3,limk!1 supjtj�T jM
o;k(t)j = 0 w.p. 1. So, A.4)

holds foreo;k.
Since f�kg has support on a finite discrete set,fsg(�k)g and

f[��1k ]g are bounded,Ejer;kj2 < 1. Using the martingale conver-
gence theorem and Lemma 2, we get

lim
k!1

sup
jtj�T

jM r;k(t)j = 0 w:p:1

whereMr;k(t) :=
m(t+t )�1
i=k �ier;i. So, A.4) holds forer;k.

So all conditions of Proposition 1 are satisfied, and all its conclusions
hold.

V. CONCLUSION

In this note, we use convex analysis to establish convergence of con-
strained SPSA for the setting in which the objective function is not
necessarily differentiable. As alluded to in the introduction, we were
motivated to consider this setting by a capacity allocation problem in
manufacturing, in which nondifferentiability appeared for the case of
period demands having discrete support rather than continuous. Sim-
ilar phenomena arise in other contexts, e.g., in discrete event dynamic
systems, as observed by Shapiro and Wardi [13]. Clearly, there are nu-
merous avenues for further research in the nondifferentiable setting.
We believe the analysis can be extended to SPSA algorithms with non-
differentiable constraints, as well as to other (non-SPSA) stochastic
approximation algorithms for nondifferentiable function optimization.
For example, the same basic analysis could be used for random di-
rections stochastic approximation algorithms as well. We specifically
intend to consider global optimization of nondifferentiable functions
along the line of [10]. On the more technical side, it would be desirable
to weaken conditions such as A.2) and B.4), which are not required in
[1].

APPENDIX

PROOF OFPROPOSITION1

Define Gk(t) =
t

0
sf(�k(s))ds, and letB be the bound of

sf(�k(s)), which exists due to the boundedness of@f(�). Then, for
eachT and" > 0, there is a� which satisfies0 < � < "=B, such that
for all k

sup
0<t�s<�;jtj<T

Gk(t)�Gk(s)

� sup
0<t�s<�;jtj>T

s

t

sf �k(u) du < "

which meansGk(�) is equicontinuous.
By A.3) and A.4), there is a null setO such that for sample points

! =2 O,Mk(!; �) andBk(!; �) go to zero uniformly on each bounded
interval in (�1;1) ask !1. Hence,Mk(�) andBk(�) are equicon-
tinuous and their limits are zero.

By the same argument as in the proof of [9, Th. 5.2.1, pp. 96–97],
Zk(�) is equicontinuous.
�k(�) is equicontinuous sinceMk(�), Bk(�), Gk(�) andZk(�) are

equicontinuous.
Let ! =2 O and letkj denote a subsequence such that

�k (!; �); Gk (!; �)

converges, and denote the limit by (�(!; �); G(!; �)). The existence of
such subsequences is guaranteed by Arzela–Ascoli theorem.

Sincef is convex, according to [11, Cor. 24.5.1, p. 234],8" > 0,
9 � > 0, if j�k (!; s) � �(!; s)j < �, then�@f(�k (!; s)) �
N"(�@f(�(!; s))), whereN"(�) means"-neighborhood.

Furthermore, sincelimj!1 �k (!; s) = �(!; s) for fixed ! ands,
8" > 0, 9 finite J , if j � J ,�@f(�k (!; s)) � N"(�@f(�(!; s))),
i.e., for eachsf(�k (!; s)) 2 �@f(�k (!; s)) and " > 0, there
is finite J and ~g(!; s) 2 �@f(�(!; s)) such that if j � J ,
jsf(�k (!; s))� ~g(!; s)j < ".

Since sf(�) and ~g(!; �) are bounded functions on [0,t], by the
Lebesgue dominated convergence theorem

lim
j!1

t

0

sf �k (!; s) ds =
t

0

~g(!; s)ds

which meansG(!; t) =
t

0
~g(!; s)ds.

Thus, we can write�(!; t) = �(!; 0) +
t

0
~g(!; s)ds + Z(!; t);

where~g(!; s) 2 �@f(�(!; s)).
Using a similar argument as in [9, p. 97],Z(!; t) = z(!; s)ds,

wherez(!; s) 2 �C(�(!;s)) for almost alls.
Hence, the limit�(!; �) of any convergent subsequence satisfies the

differential inclusion (14).
Note thatSH is the set of stationary points of (14) inH . Following

a similar argument as in the proof of [9, Th. 5.2.1, pp. 96–97], we
can show thatf�k(!)g visitsSH infinite often,SH is asymptotically
stable in the sense of Lyapunov due to the convexity off , and thus
f�k(!)g converges toSH w.p. 1. Sincef is a convex function andH
is a nonempty convex set, by [11, Th. 27.4, pp. 270–271], any point in
SH attains the minimum off relative toH .
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Robust Adaptive Tracking for Time-Varying Uncertain
Nonlinear Systems With Unknown Control Coefficients

Shuzhi Sam Ge and J. Wang

Abstract—This note presents a robust adaptive control approach for a
class of time-varying uncertain nonlinear systems in the strict feedback
form with completely unknown time-varying virtual control coefficients,
uncertain time-varying parameters and unknown time-varying bounded
disturbances. The proposed design method does not require anya priori
knowledge of the unknown coefficients except for their bounds. It is proved
that the proposed robust adaptive scheme can guarantee the global uniform
ultimate boundedness of the closed-loop system signals and disturbance at-
tenuation.

Index Terms—Robust adaptive control, time-varying nonlinear systems.

I. INTRODUCTION

Adaptive nonlinear control has seen a significant development in
the past decade with the appearance of recursive backstepping design
[1]–[3]. A great deal of attention has been paid to tackle the uncertain
nonlinear systems with unknown constant parameters [1], [4]–[6]. In
this note, we consider a class of single-input–single-output (SISO) un-
certain time-varying nonlinear systems with time-varying disturbances
in the strict feedback form

_xi = gi(t)xi+1 + �
T
i (t) i(�xi) + d

T
i (t)�i(�xi)

_xn = gn(t)u+ �
T
n (t) n(x) + d

T
n(t)�n(x)

y =x1 (1)

where i = 1; . . . ; n � 1, x = [x1; . . . ; xn]
T 2 Rn is the state

vector, �xi = [x1; . . . ; xi]
T , i = 1; . . . ; n � 1, u 2 R is the con-

trol, �i(t) 2 Rpi are vectors of uncertain and time-varying parameters
belonging to known compact sets
i � Rpi, di(t) are vectors of un-
known time-varying bounded disturbance evolving inRqi,  i and�i,
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i = 1; . . . ; n are known dimensionally compatible smooth nonlinear
functions,gi(t) 6= 0, i = 1; . . . ; n are bounded uncertain time-varying
piecewise continuous functions, and they are referred to as virtual con-
trol coefficients, in particular,gn(t) is referred to as the high-frequency
gain. For simplicity, let
i be a closed ball of known radiusr
 cen-
tered in the origin.

Based on the cancellation backstepping design, as termed in [7],
many well-known results have been developed for systems with con-
stant virtual control coefficients by seeking for a cancellation of the
coupling terms related tozizi+1 in the next step of the cancellation
based backstepping design. When virtual control coefficientsgi = 1
and�i(t) are unknown constants, robust adaptive control for a class of
systems similar to system (1) have been developed in [8]–[10]. In the
presence of time-varying parameters and time-varying disturbance, ro-
bust adaptive tracking control was presented in [11] and boundedness
of all the signals and arbitrary disturbance attenuation can be achieved.
Whengi ’s are unknown constants, several excellent adaptive control
algorithms have also been developed in the literature for nonlinear sys-
tems. In [1], under the assumption of unknown constantsgi ’s but with
known signs ofgi ’s, adaptive control was presented for strict feed-
back nonlinear systems without disturbances. With the aid of neural
networks [12], [13] adaptive control is expanded to much larger class
of systems, uncertain strict-feedback and pure-feedback nonlinear sys-
tems, where the unknown virtual control coefficientsgi ’s are functions
of states and the signs ofgi as well as the upper bounds ofgi are as-
sumed to be known.

When the signs ofgi are unknown, the adaptive control problem
becomes much more difficult. The first solution was given in [14] for
a class of first-order linear systems, where the Nussbaum-type gain
was originally proposed. Using Nussbaum gains, adaptive control
was given for first-order nonlinear systems in [15], for a class of
strict feedback nonlinear systems with unknown constant parameters
and without disturbances in [16] and [17], and nonlinear systems
with completely unknown control coefficients, constant parametric
uncertainties and uncertainties in [18] using decoupled backstepping
(which, in contrast to cancellation based backstepping, decoupleszi

from zi+1 using Young’s inequality and seeks for the boundedness
of zi+1 in the next step as said in [7]). Thus far, little attention has
been paid to the robust adaptive control problem for systems in (1)
in the literature, except for the work in [19]. Reference [19] studied
the regulation problem for a class of time-varying uncertain nonlinear
systems with time-varying unknown control coefficients under the
assumption that uncertain system functions satisfy an additive bound
condition. However, when nonlinear systems involve time-varying
uncertain parameters and disturbances as well as unknown virtual
control coefficients, the solution remains open, and the problem
becomes much more difficult due to the presence of the time-varying
uncertainties.

In this note, robust adaptive control is presented for system (1) with
completely unknown time-varying control coefficients, uncertain time-
varying parameters with known bounds, and unknown time-varying
disturbances. It is proved that the proposed robust adaptive scheme can
guarantee the global uniform ultimate boundedness of the closed-loop
system signals and disturbance attenuation. In addition, for systems
with unknown constant parameters and without disturbance, asymp-
totical tracking of the output can be achieved. The main contributions
of the note lie in the following aspects: 1) through introduction of a
new technical lemma and the use of Nussbaum gain, stable adaptive
control is presented for a class of strict feedback nonlinear system
with time-varying uncertain parameters and unknown disturbance; 2)
asymptotic output tracking control is achieved when the disturbances

0018-9286/03$17.00 © 2003 IEEE
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