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ABSTRACT

This paper addresses the optimisation of particle filtering methods
aka Sequential Monte Carlo (SMC) methods using stochastic ap-
proximation. First, the SMC algorithm is parameterised smoothly
by a parameter. Second, optimisation of an average cost function
is performed using Simultaneous Perturbation Stochastic Approx-
imation (SPSA). Simulations demonstrate the efficiency of our al-
gorithm.

1. INTRODUCTION

Many data analysis tasks revolve around estimating the state of
a dynamic model where only inaccurate observations are available.
As many real world models involve non-linear and non-Gaussian
elements, optimal state estimation is a problem that does not typ-
ically admit a closed form solution. Recently, there have been a
surge of interest in SMC methods to solve this estimation/filtering
problem numerically. These methods utilise a large number say
N > 1 of random samples (or particles) to represent the poste-
rior probability distribution of interest. Numerous algorithms have
been proposed in literature; see [1] for a book-length review. Al-
though most algorithms converge asymptotically (N — o) to-
wards the optimal solution, their performance can vary by an or-
der of magnitude for a fixed V. Current algorithms are designed to
optimise certain local criteria such as the conditional variance on
the importance weights or the conditional variance of the number
of offspring. The effects of these local optimisations are unclear
on standard performance measures of interest such as the average
Mean Square Error (MSE).

In [2], a principled approach to optimise performance of the
SMC methods is proposed. Assuming the SMC algorithm is pa-
rameterised “smoothly” by a parameter § € © where © is an open
subset of R™. Under stability assumptions on the dynamic model
of interest [3], the particles, their corresponding weights, the true
state and the observation of the system form a homogenous and
ergodic Markov chain. Performance measure can thus be defined
as the expectation of a cost function with respect to the invariant
distribution of this Markov chain which is parameterised by 8. The
minimising 8 for the cost function is obtained using the Robbins-
Monro Stochastic Approximation (RMSA) technique. The RMSA
technique requires one to be able to derive an estimate of the gradi-
ent; see [2] for details. However, this method suffers from several
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drawbacks. It involves a so-called score function whose variance
increases over time and needs to be discounted. For some inter-
esting parametrizations of the SMC algorithm, the computational
complexity is of O (N?) which is prohibitive. Finally one would
need to develop alternative gradient estimation techniques to in-
corporate non-differentiable stratified/systematic resampling steps
or Metropolis-Hastings steps.

In this paper, we are proposing another stochastic approxima-
tion method namely the SPSA as an alternative means to optimise
the SMC methods. SPSA is an efficient technique introduced by
Spall [4] where the gradient is approximated using a randomized
finite difference method. Contrary to standard finite difference
method, one needs to compute only 2 estimates of the performance
measure instead of 2m estimates; m being the dimension of 8. The
use of the SPSA technique results in a very simple optimisation al-
gorithm for the SMC methods.

The rest of the paper will be organized as follows: In section 2,
a generic SMC algorithm is described and the performance mea-
sures of interest are introduced. In section 3, we describe the SPSA
technique and show how it can be used to optimize the SMC algo-
rithm. Finally, two examples are used in section 4 to demonstrate
the efficiency of the optimisation procedure.

2. SMCMETHODSFOR OPTIMAL FILTERING

2.1. State space model and a generic SMC method

Let {Xn},>oand {Y,}, -, be R? and R?-valued stochastic pro-
cesses. The_signals {Xn};ZO is modelled as a Markov process of
initial density p (zo) and transition density f (zn|zn—1). The ob-
servations {Yx}, -, are assumed to be conditionally independent
given {X, }n>o0 and Y;, admits a marginal density g (Yn|zn). We
denote for any process {Z, }n>0, Z" = (Zo, 21, - ,Zn). We
are interested in estimating the signal X,, given the observation
sequence Y™. The filtering distribution Pr ( X,, € dz,|Y ™) =
P (zn|Y™) dzy, i.e. the conditional distribution of X, given Y™,
satisfies the following recursion

p(ealt™) = [ £ @altns)p (ncaV" ) dnes,
oY) = 9 (Yalzn) p (za]Y™71)
P ) = T Walen) p (en Y1) dan”

Except in very simple cases, this recursion does not admit a closed
form solution and one needs to perform numerical approximations.




SMC methods seek to approximate the true filtering distribu-
tion recursively with the weighted empirical distribution of a set of
N > 1samples X, = (Xn.1,Xn.2,--- , Xn,n), termed as parti-
cles with associated importance weights
Wn = (Wn,l, Wn,2, T ;Wn,N), Wn,k >0, Eivzl Wn,k =1

N
Py(Xn €dza|Y") =) Wardyg | (dza).
k=1

The particles are generated and weighted accordingly via a se-
quence of importance sampling and resampling steps. Assum-
ing at time n — 1, a set of particles X,—; with weights W,_1
approximating Pr(X,—1 € dzn,—1|Y™ ") is available. Let us
introduce an importance sampling density, ¢ where new particles
X, =(Xn1,Xn2, -, X, ) are sampled independently from

Xn,k ~q (Xn—l,k, Yn; .)
New normalized weights W,, = (Wy.1, W2, , Wa,n) are

then evaluated to account for the discrepancy with the “target” dis-
tribution

g <Yn| Xnk) f (Xn,k‘Xn—l,k)

Wn,k X V/anl,k N ~
a (Zno10, Yo, Kt

In the resampling step, the particles X, are then multiplied/ elim-
inated accordingly to obtain X, i.e.

where Xn,k is copied I,, , times. The random variables I,, =
(In,1,In,2, -+ ,In,n) are sampled from a probability distribution
Pr(I, = i| W,) where i = (i1,42,--- ,in). Several algorithms
such as multinomial and systematic resampling have been pro-
posed. These algorithms ensure that the number of particles is
kept constant; i.e. Zszl I, = N. In the standard approaches,

the weights Wn,k are then set to V1. However it is also possible
to resample with weights proportional to say W' ;. In this case,

the weights after resampling are proportional to W;;a.

This algorithm converges as N — oo under very weak con-
ditions [5]. However, for a fixed N, the performance is highly
dependent on the choice of ¢ and the resampling scheme. We as-
sume here that one can parameterise smoothly the SMC algorithm
by 8 € © C R™. For example, this parameter can correspond to
some parameters of the importance sampling density. The optimi-
sation method described in this paper is based on the generic SMC
algorithm outlined. However, one can easily extend the optimisa-
tion method to other complex algorithms such as the auxiliary par-
ticle filter or to algorithms including Markov chain Monte Carlo
(MCMC) moves.

2.2. Performance measure

In this subsection, we define the performance measure to optimize
with respect to 8. The key remark is that the current state Xy, the
observation Y;,, the particles X, and the corresponding weights
W, form a homogenous and ergodic Markov chain under some
stability assumptions on the dynamic model of interest [3]. By as-
suming that this holds for any § € ©, we can define a meaningful
time average cost function .J (8) for the system

J(8) = Ee [f (Y,X,X,V”V)],

where the expectation is with respect to the invariant distribution
of the Markov chain (Yn,Xn,Xn,Wn). We are interested in
estimating

6" = argmin J (6).

We emphasize here that these cost functions are independent of the
observations; the observation process being integrated out. This
has several important practical consequences. In particular, one
can optimize the SMC algorithm off-line by simulating the data
and then use the resulting optimized algorithm on real data. We
consider here the following two cost functions to minimize but
others can be defined without modifying the algorithm.

e Mean Square Error (MSE)

N 2
f(Yna X"a X"a Wn) = (Xn - Z Xn,kWn,k> .
k=1

It is of interest to minimize the average MSE between the true state
and the Monte Carlo estimate of E [ X,,|Y™]. As discussed pre-
viously, although the true state X, is unknown, one can simulate
data in a training phase to estimate * and then use the optimised
SMC filter on real data.

o Effective Sample Sze (ESS)

N -1
f(Yn;Xn;Xn;Wn) == (Z Wf,k) :
k=1

An appealing measure for the accuracy of a particle filter is its “ef-
fective sample size”; i.e. a measure of the uniformity of the impor-
tance weights. The larger the ESS is, the more particles are con-
centrated in the region of interest and hence the better the chance
of the algorithm to respond to fast changes. The maximum value
for ESS is N and is maximised when W,, , = N~ for all .
We are interested in maximizing the ESS, that is minimizing its

~ -1
opposite given by — (EQI:I W,f,k) .

3. OPTIMISATION OF SMC USING SPSA

3.1. Simultaneous Perturbation Stochastic Approximation

The problem of minimising a differentiable cost function J(0),
where § € © C R™ can be translated into finding the zeros of the
gradient V.J (8) . A recursion procedure to estimate 8* such that
VJ (8) = 0 proceeds as follows

On =6n_1— ’an/;Tn (1)

where V.J,, is the “noise corrupted” estimate of gradient V.J (6)
estimated at the point 6,1 and {~y, } denotes a sequence of posi-
tive scalars such that v, — 0 and }°>° | v, = co. Under appro-
priate conditions, the iteration in (1) will converge to * in some
stochastic sense (usually “almost surely”); see [4].

The essential part of (1) is how to obtain the gradient estimate
VJ,. The gradient estimation method in [2] can be computation-
ally very intensive, as discussed in the introduction. \We propose
here to use the SPSA technique where the gradient is approxi-
mated via a finite difference method using only the estimates of the
cost function of interest. The SPSA technique is a proven success
among other finite difference methods with reduced number of es-
timates required for convergence; see [4]. The SPSA technique re-
quires all elements of 8,,—1 to be varied randomly simultaneously



to obtain two estimates of the cost function. Only two estimates
are required regardless of the dimension m of the parameter. The
two estimates required are of the form J(6,_1 % perturbation)
for a two-sided gradient approximation. In this case, the gradient

— — — T
estimate VJ,, = (VJn,1, ... ,VJn,m> is given by

f(an—l + CnAn) - j(en—l - CnAn)
chAn,z

Vi =

where {c, } denotes a sequence of positive scalars such that ¢, —
0and A, = (An1,An 2, -+, Ap,m) is @ m-dimensional ran-
dom perturbation vector. Careful selection of algorithm parame-
ters vy, ¢, and A, is required to ensure convergence. The v, and
cn sequence generally take the form of v, = a/(A + n)® and
Cn = c/nﬂ respectively with non-negative coefficients a, ¢, A,
a and 3. The practically effective values for o and 3 are 0.602
and 0.101. Each components of A,, is usually generated from a
symmetric Bernoulli £1 distribution. See [6] for guidelines on
coefficient selection.

3.2. Optimisation Algorithm using SPSA

We present here how to incorporate an optimisation algorithm us-
ing two-sided SPSA within a SMC framework. To optimise the
parameters of a parametrised importance density, the algorithm
proceeds as follows at time n:

Step 1: Sequential importance sampling
eForn =1t N, sample X,,  ~ qs,_,(Xn—1,k, Yn,®).
e Compute the normalized importance weights as

g (Ynl)?nk> f (Xnk‘ Xn—l,k)
46,1 (Xn—l,k,Ynan,k>
Step 2: Cost function evaluation
e Generate a m-dimensional simultaneous perturbation vec-
tor A,,.
e Compute (6p—1 + crAp ) and (6,—1 — ¢ Ay).
e For k =1to N, sample X ~ G0, _14entn (Xn—1,k; Yn,®).
e Compute the normalized |mportance weights as
g (Yal %) £ (K] %nor)

40, _1+cnlAn (Xn—l,k:Yn, X}j)

Wn,k X Wn_1,k

Wi o« Wao1k

eFork =1t N, sample X; ~ go, _;—cna,(Xnz1k, Yn,®)
e Compute the normalized importance weights as

o () £ (56 %)

Wk_ 0.8 Wn_1,k N —_
46,,_1—cnln (anl,kyynan )

e Evaluate cost function J (85, —14+cn,Arn) and J(0r,—1—cnAy)
from {f(ﬁ I7V+} and {)?‘,VV‘} respectively.

Step 3: Gradient approximation

e For : = 1 to m, evaluate gradient components as

J(an—l + CnAn) - J(an—l - CnAn)

VJn,z' - 2ann,z

Step 4: Parameter update
e Update §,,—1 to new value 8,, as

an = 9n—1 - 'an/-fn

Step 5: Resampling
e Multiply/discard partlcles X, with respect to high/low im-
portance weights W, to obtain N particle X,,.

It is possible to improve the algorithm in many ways for example
by using iterates averaging or common random numbers. The idea
behind common random numbers is to introduce a strong corre-
lation between our estimates of J(6,—1 — c,A,) and J(6,-1 +
cnAy,) S0 as to reduce the variance of the gradient estimate; see
[7] for details.

4. APPLICATION

We present two examples to illustrate the performance improve-
ment brought by optimisation. The performance of the optimised
filter is then compared to its un-optimised counterpart using the
same signal and observation sequence. The following standard
highly non-linear model [8] is used

1 Xn
Xp==Xn,_1+25—2274 1.2 s
5 1+ 51+(Xn—) + 8cos(1.2n) + V,
X2
Yn—%"'Wn,
where Xo ~ N(0,5) , Vi, %% N(0,10) and W, “%% A(0,1).

For this model, we use the importance function obtained from local
linearisation to incorporate the information from the observation

qe (Xn—l,ky Yn; Xn,k) = N (Xn,k : Mn,k(e); En,.’c(e))
where © = R? and

My, 1 (8) = Sk () f(Xn—1,8) [i + w—] ,

2/ -1
Sil0) = [ + o]

f(anl,k) _Xn 1,k + 61% + SCOS(]. 2n)

14+(X

The parameter 8 = (81, 62) forms part of the mean and the
variance of the importance function. First, the SMC filter is opti-
mised with respect to the ESS performance measure and then with
respect to the MSE performance measure. Common random num-
bers method and systematic resampling scheme are employed in
all simulations.

4.1. ESSoptimisation

In Fig. 1, the optimum values of (61, 62) are considerably different
from the “un-optimised” values of (25, 10) although 8 has been
initialised to (25, 10). There is substantial improvement in terms
of ESS, see Fig. 2, as 8 converges to 6*.

4.2. M SE optimisation

In Fig. 3, the optimum value of 8, is slightly larger than the initial
value of 25. But, the optimum value of 8- is significantly different
from the initial value of 10. Improvement in terms of MSE is
observed in Fig. 4. However, the optimum values for (61, 62) in
term of MSE are considerably different from the values observed
in section 4.1, ESS optimisation.
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5. DISCUSSION

In this paper, we have demonstrated how to optimise in a prin-
cipled way SMC methods. The minimising parameter for a par-
ticular performance measure can be easily obtained online by in-
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Fig. 4. Sequence of average MSE estimates over time

corporating SPSA technique. No direct calculation of gradient is
required. Advantages of SPSA over standard gradient estimation
techniques can be summarised as such: relative ease of implemen-
tation and reduction in computational burden.

There are several potential extensions to this work. From an
algorithmic perspective, it is of interest to speed up convergence
by developing variance reduction methods for our gradient esti-
mate. From a methodological perspective, the next logical step
is to develop a self-adaptive algorithm where the parameter is not
fixed but dependent on the current states of the particles. This is
currently under study.
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