
Pr
oo

f C
op

y

Multiscale Chaotic SPSA and
Smoothed Functional Algorithms
for Simulation Optimization
Shalabh Bhatnagar
Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012
India
shalabh@csa.iisc.ernet.in

Vivek S. Borkar
School of Technology and Computer Science
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400 005
India

The authors propose a two-timescale version of the one-simulation smoothed functional (SF) al-
gorithm with extra averaging. They also propose the use of a chaotic simple deterministic iterative
sequence for generating random samples for averaging. This sequence is used for generating the N
independent and identically distributed (i.i.d.), Gaussian random variables in the SF algorithm. The
convergence analysis of the algorithms is also briefly presented. The authors show numerical exper-
iments on the chaotic sequence and compare performance with a good pseudo-random generator.
Next they show experiments in two different settings—a network of M/G/1 queues with feedback and
the problem of finding a closed-loop optimal policy (within a prespecified class) in the available bit rate
(ABR) service in asynchronous transfer mode (ATM) networks, using all the algorithms. The authors
observe that algorithms that use the chaotic sequence show better performance in most cases than
those that use the pseudo-random generator.

Keywords: Smoothed functional algorithm, SPSA algorithm, chaotic iterative sequence, simulation
optimization, hidden Markov model

1. Introduction

Perturbation analysis-type simulation optimization
schemes have attracted considerable attention in recent
years [1–4]. These schemes are typically used for obtain-
ing optimal or near-optimal measures of performance in
discrete event systems [5]. Traditional schemes, however,
require data to be aggregated over certain regeneration
epochs [2, 3]. Moreover, an interchange between the “ex-
pectation” and “gradient” operators is needed that severely
constrains in most cases the class of systems to which such
approaches are applicable. In Bhatnagar and Borkar [6, 7],
two alternative schemes, each of which use two timescales,
were proposed. In the algorithm in [6], the parameter is

|
|
|
|

SIMULATION, Vol. 79, Issue 9, September 2003 xxx-xxx
©2003 The Society for Modeling and Simulation International

DOI: xxx

updated at deterministic epochs that are obtained using
two timescales. These epochs are frequent initially while
they become increasingly sparse as time progresses. On the
other hand, in the algorithm in [7], the parameter is updated
at each instant by using two different step-size schedules.
Here, averaging is intrinsically achieved through the use of
coupled stochastic recursions that are individually driven
by different timescales. These algorithms do not require the
above interchange between the gradient and expectation
operators and are thus applicable to a much broader class of
systems than those to which traditional perturbation anal-
ysis schemes apply. However, both of these schemes use
finite difference gradient estimates that require (N+1) par-
allel simulations to estimate an N -vector parameter, which
makes these schemes less efficient computationally when
N is large.

In Spall [8], the simultaneous perturbation stochas-
tic approximation (SPSA) algorithm was proposed. It is

Pr
oo

f C
op

y

Bhatnagar and Borkar

a random-direction version of the Kiefer-Wolfowitz algo-
rithm wherein all parameter components are simultane-
ously perturbed by generating N independent and identi-
cally distributed (i.i.d.) symmetric random variables that
are distributed (commonly) according to the Bernoulli dis-
tribution. The form of the gradient estimate is such that
the algorithm requires only two parallel simulations while
updating all component directions at each instant. In Bhat-
nagar et al. [9], the SPSA variants of the algorithms in
Bhatnagar and Borkar [6, 7] were developed. Numerical
experiments showed a significant improvement in perfor-
mance by using these variants. In high-dimensional set-
tings, however, the variant of [7] has obvious advantages
over the variant of [6] because of regular update epochs in
the former. The Bernoulli random variables in SPSA algo-
rithms (like those with other distributions) are usually gen-
erated by using a pseudo-random number generator. The
quality of the estimates thus depends highly on the quality
of the generated sequence of pseudo-random numbers [10,
11]. Furthermore, most good generators require a nontriv-
ial amount of computation for generating a pseudo-random
sequence. We propose in this article the use of a rapidly
mixing chaotic sequence that uses a simple deterministic
recursion that converges rapidly to the uniform distribu-
tion. Instances of its use are available in the chaos litera-
ture (see, e.g., Boyarski and Gora [12] and the references
therein). We shall use this iterative sequence for generating
the N i.i.d., Bernoulli random variables at each iteration.
While the primary approach in this study corresponds to
Bhatnagar and Borkar [7], we incorporate features of the
approach in Bhatnagar and Borkar [6] by implementing
the slower “parameter update” recursion along a subsam-
ple (even though evenly spaced) of the times at which the
faster “data aggregation” recursion is updated. This is seen
to improve performance.

Next we turn our attention to the smoothed functional
scheme originally due to Katkovnik and Kulchitsky [13]
(see also Rubinstein [14]). Here, the idea is to approxi-
mate the gradient of expected performance by its convo-
lution with a multinormal distribution. Upon integrating
by parts in the latter integral and readjusting terms, one
obtains the same as a scaled version of the convolution of
the multinormal distribution and the expected performance
itself. Thus, by using this scheme, one essentially requires
only one simulation for estimating the gradient of the av-
erage cost, irrespective of the parameter dimension N . In
Bharath and Borkar [15], a two-timescale analog of this
scheme using the algorithm in Bhatnagar and Borkar [7]
was proposed, and experiments were shown for the scalar
parameter case. In this study, we propose a variant of the
above algorithm for vector parameters (particularly those
of higher dimension), which has the added advantage of an
extra averaging (by combining features of both Bhatnagar
and Borkar [6, 7], as explained above) that is not present
in the above algorithm. Furthermore, we propose the use
of the chaotic iterative sequence described above for gen-

erating samples from the multinormal distribution at each
iteration for averaging in the latter algorithm. Our focus
in this study is on developing efficient algorithms that re-
quire less computation, particularly in high-dimensional
settings. We show numerical experiments on the chaotic
generator (proposed here for averaging) and show com-
parisons with a good pseudo-random generator (described
in Park and Miller [16]). We observe that the chaotic gener-
ator shows comparable performance as the pseudo-random
generator. Next we show numerical experiments on a net-
work of M/G/1 queues with feedback with parameters of
varying dimensions using all the (above) proposed algo-
rithms. We observe that in most cases, algorithms that use
the chaotic generator for averaging show improved perfor-
mance than those that use the pseudo-random generator.
In particular, the variant of the SPSA algorithm that uses
the chaotic generator shows the best performance among
all algorithms. Finally, we also consider the problem of
finding the closed-loop feedback optimal policies in the
available bit rate (ABR) service in asynchronous transfer
mode (ATM) networks. This problem has been treated in
detail in Bhatnagar et al. [17]. We consider it here to provide
numerical comparisons on the “optimal” feedback policies
that each of our algorithms computes. We observe again
here that the variant of the SPSA algorithm that uses the
chaotic generator shows the best performance.

The rest of the article is organized as follows: in the next
section, we present the problem formulation. In section 3,
we present the rapidly mixing chaotic sequence that we use
to generate uniform random numbers for averaging and
summarize all the algorithms. Section 4 presents a brief
analysis. Numerical experiments are presented in detail
in section 5. Finally, section 6 provides the concluding
remarks.

2. Problem Formulation

The process that we seek to optimize is a parameter-
ized hidden Markov model (HMM) given by the coupled
iterations:

X(n + 1) = f (X(n), Y (n), ξ(n), θ),

Y (n + 1) = g(X(n), Y (n), ξ′(n), θ), (1)

n ≥ 0. Here {ξ(n)}, {ξ′(n)} are i.i.d. sequences in Rl , Rm,
respectively, independent of each other. Also f : Rp ×
Rq ×Rl ×RN → Rp and g : Rp×Rq ×Rm×RN → Rq

are measurable maps. {Y (n)} is the observation process,
and the process {X(n)} is unobserved. For each fixed (pa-
rameter) θ ∈ RN , the joint process {(X(n), Y (n))} is as-
sumed to be ergodic Markov with transition probabilities
pθ(x, y; dx ′, dy ′). In what follows, we make θ tunable;
that is, the dynamics of (1) is replaced by

X(n + 1) = f (X(n), Y (n), ξ(n), θ̃n),

2 SIMULATION Volume 79, Number 9

Pr
oo

f C
op

y

MULTISCALE CHAOTIC SPSA AND SF ALGORITHMS

Y (n + 1) = g(X(n), Y (n), ξ′(n), θ̃n), (2)

n ≥ 0, and where θ̃n is the value of the param-
eter at instant n. We assume θ takes values in a
compact rectangle C

�= ∏N

i=1[θi,min, θi,max] ⊂ RN .

Let Gn

�= σ(X(j), Y (j), ξ(j), ξ′(j), θ̃j , j ≤ n),
n ≥ 0, represent the natural filtration generated by
{X(j), Y (j), ξ(j), ξ′(j), θ̃j , j ≥ 0}. We assume that any
sequence {̃θj } satisfies the following assumption:

(Assumption 1)

P(X(n + 1) ∈ A, Y (n + 1) ∈ B | Gn)

= pθ̃n
(X(n), Y (n);A,B),

for any A, B Borel in Rp and Rq , respectively.

Our aim is to find a θ ∈ C that minimizes the long-run
average cost

J (θ) = lim
M→∞

1

M

M−1∑
j=0

h(Y (j)), (3)

whereh(·) is a given bounded and continuous cost function.
Note that (3) is well defined because of ergodicity of the
process {(X(n), Y (n))} for each fixed θ. The average cost
J (θ) is assumed to satisfy the following assumption:

(Assumption 2)

J (θ) is continuously differentiable in θ.

Note that (A1) is required to make the tuning of {̃θn}
nonanticipative. All our stochastic approximation algo-
rithms in the next section are easily seen to satisfy this
requirement. (A2) is a standard assumption in stochastic
gradient-based approaches. Verification of (A2) for many
systems is, however, a nontrivial task. A possible approach
is to show that the parameterized stationary distribution of
the process {(X(n), Y (n))} is continuously differentiable
in θ. In the case of systems of finite state Markov processes,
a sufficient condition for the latter is to show that the tran-
sition probability matrix is continuously differentiable in
the parameter. The latter can be shown using the perturba-
tion results of Schweitzer [18] (see, e.g., Bhatnagar et al.
[17]). For systems with general state space, sufficient con-
ditions for differentiability of the stationary distribution are
available in Vazquez-Abad and Kushner [19]. These are,
however, difficult to verify in practice.

Finally, our stochastic approximation algorithms (in the
next section) use two timescales or step-size schedules
{a(n)} and {b(n)}, respectively, with a(n), b(n) ≥ 0, ∀n.
We make the following assumption on these sequences:

(Assumption 3)
∞∑
n=0

a(n) =
∞∑
n=0

b(n) = ∞,

∞∑
n=0

a(n)2,

∞∑
n=0

b(n)2 < ∞,

a(n) = o(b(n)).

(A3) is satisfied by many sequences—for instance,
{a(n)} defined by a(0) = â > 0 and a(n) = â/n, n ≥ 1,
and {b(n)} defined by b(0) = b̂ > 0 and b(n) = b̂/nα, for
some α ∈ (1/2, 1).

3. Algorithms

Let Γ(x) for x = (x1, . . . , xN)
T ∈ RN represent

the projection of x onto the set C. Thus, Γ(x)
�=

(Γ1(x1), . . . ,ΓN(xN))
T , with each Γi (xi), i = 1, . . . , N

defined by Γi (xi) = max(min(xi, θi,max), θi,min). In Bhatna-
gar and Borkar [7], the following two-timescale stochastic
approximation algorithm was proposed and analyzed:

Algorithm 1

• Step 0 (initialize): Fix θ1(0), θ2(0), . . . , θN(0) and form

the parameter vector θ(0)
�= (θ1(0), . . . , θN(0))T . Fix M

large and set n := 0. Form N parameter vectors θ1(0)
�=

(θ1(0) + δ, θ2(0), . . . , θN(0))T , . . . , θN(0)
�= (θ1(0),

. . . , θN−1(0), θN(0) + δ)T . Set Z(0) = Z1(0) = · · · =
ZN(0) = 0.

• Step 1: Generate (N+1)parallel simulations (X(n), Y (n)),
(X1(n), Y 1(n)), . . . , (XN(n), YN(n)), respectively gov-
erned by θ(n), θ1(n), . . . , θN(n). Update

Z(n + 1) = Z(n) + b(n)(h(Y (n)) − Z(n)),

Z1(n + 1) = Z1(n) + b(n)(h(Y 1(n)) − Z1(n)),

.

.

.

ZN(n + 1) = ZN(n) + b(n)(h(YN(n)) − ZN(n)),

and for i = 1, . . . , N ,

θi (n + 1) = Γi

(
θi (n) + a(n)

(
Z(n) − Zi(n)

δ

))
.

Next, set n := n + 1. If n = M , go to Step 2; else,

form parameter vectors θ(n)
�= (θ1(n), . . . , θN(n))T ,

θ1(n)
�= (θ1(n) + δ, θ2(n), . . . , θN(n))T , . . . , θN(n)

�=
(θ1(n), . . . , θN−1(n), θN(n) + δ)T and repeat step 1.

• Step 2 (termination): Terminate algorithm and output

θ(M)
�= (θ1(M), . . . , θN(M))T as the final parameter

vector.

Volume 79, Number 9 SIMULATION 3

Pr
oo

f C
op

y

Bhatnagar and Borkar

Note that because of the fact that a(n) = o(b(n)), the
recursions Z(n), Zi(n), i = 1, . . . , N average out faster
than the parameter updates themselves; as a result, in the
parameter update recursion (last equation in step 1 above),
Z(n),Zi(n), i = 1, . . . , N correspond to cost averages for
the corresponding simulations. The algorithm terminates
after M iterations for some large, arbitrarily chosen value
of M . In practice, one can replace step 2 with other termi-
nation conditions if required. As mentioned, this algorithm
requires N + 1 parallel simulations for any N -vector pa-
rameter like any Kiefer-Wolfowitz algorithm with forward
finite difference gradient estimates. In Bhatnagar et al. [9],
a two-simulation SPSA variant was developed that requires
only two parallel simulations.

3.1 SPSA and C-SPSA Algorithms

The basic algorithm is as follows:

Algorithm 2

• Step 0 (initialize): Set Z−(0) = Z+(0) = 0. Fix θ1(0),
θ2(0), . . . , θN(0) and form the parameter vector θ(0) =
(θ1(0), . . . , θN(0))T . Fix L and (large) M arbitrarily. Set
n := 0 and m := 0. Generate i.i.d. random variables
�1(0), �2(0), . . . , �N(0), with each �j (0) = ±1 w.p.

1/2, j = 1, . . . , N . Set θ1
j
(0)

�= θj (0) −δ�j (0) and

θ2
j
(0)

�= θj (0) + δ�j (0), j = 1, . . . , N , respectively.

• Step 1: Generate simulations (X−
nL+m

, Y−
nL+m

) and

(X+
nL+m

, Y+
nL+m

), respectively governed by θ1(n)
�=

(θ1
1(n), . . . , θ1

N
(n))T and θ2(n)

�= (θ2
1(n), . . . , θ2

N
(n))T .

Next update

Z−(nL + m + 1) = Z−(nL + m) + b(n)(h(Y−
nL+m

)

− Z−(nL + m)),

Z+(nL + m + 1) = Z+(nL + m) + b(n)(h(Y+
nL+m

)

− Z+(nL + m)).

If m = L − 1, set nL := nL + L, m := 0 and go to step
2;

else, set m := m + 1 and repeat step 1.

• Step 2: For i = 1, . . . , N ,

θi (n + 1) = Γi

(
θi (n) + a(n)

[
Z−(nL) − Z+(nL)

2δ�i (n)

])
.

Set n := n + 1. If n = M , go to step 3;

else, generate i.i.d. random variables �1(n), �2(n), . . . ,
�N(n) (independent of previous samples), with each
�j (0) = ±1 w.p. 1/2, j = 1, . . . , N . Set θ1

j
(n) := θj (n)

−δ�j (n), θ
2
j
(n) := θj (n)+ δ�j (n), j = 1, . . . , N , and

go to step 1.

• Step 3 (termination): Terminate algorithm and output

θ(M)
�= (θ1(M), . . . , θN(M))T as the final parameter

vector.

In the above, Z−(nL + m) and Z+(nL + m), m =
0, 1, . . . , L− 1, n ≥ 0, are defined according to their cor-
responding recursions in step 1 and are used for averaging
the cost function in the algorithm. As stated earlier, we
use only two simulations here for any N -vector parameter.
Note that in the above, we also allow for an additional av-
eraging over L (possibly greater than 1) epochs in the two
simulations. Without an additional averaging, for large N ,
the scheme otherwise does not show good performance if
the parameter is updated at every epoch. It was argued in
Bhatnagar et al. [9] that perhaps because we are using only
two simulations, the system finds it difficult to adapt to the
new parameter update before it changes again. The choice
ofL is completely arbitrary, though. In all our experiments,
we found L = 100 to be a good choice.

Generation of �k(n), k = 1, . . . , N , n ≥ 0

Recall that the inverse transform technique is most com-
monly used for generating random variates with a known
cumulative distribution function (c.d.f). Thus, for gener-
ating i.i.d., Bernoulli-distributed random variates �k(n)
above, one first generates i.i.d., uniform random numbers
Uk(n) on (0, 1) and sets

�k(n) = I {Uk(n) ≤ 0.5} − I {Uk(n) > 0.5}, (4)

where I {·} is the indicator function. Thus, �k(n), k =
1, . . . , N , n ≥ 0 are i.i.d., and

P(�k(n) = +1) = P(Uk(n) ≤ 0.5) = 1/2,

P (�k(n) = −1) = P(Uk(n) > 0.5) = 1/2,

as desired. However, the quality of the �k(n) samples cru-
cially depends on the quality of the corresponding Uk(n)
samples. Moreover, generation of Uk(n) samples usually
requires considerable computation.

SPSA Algorithm

In steps 0 and 2 of Algorithm 2, we use the well-known
linear congruential pseudo-random generator whose C-
code is given below (see, e.g., Park and Miller [16, p. 1195])
for generating Uk(n), k = 1, . . . , N , n ≥ 0, which in turn
required for generating �k(n) as described above.

Pseudo-Random Generator

double rnd(seed) /* random number generator */

long *seed;
{
double u;

seed=16807(*seed%127773)-2836*(*seed/127773);

4 SIMULATION Volume 79, Number 9

Pr
oo

f C
op

y

MULTISCALE CHAOTIC SPSA AND SF ALGORITHMS

if (*seed<= 0)
*seed+=2147483647;
u = (double)*seed/2147483647;
return u;
}
It is easy to see that this generator requires substantial

computation.

C-SPSA Algorithm

For generating �k(n), k = 1, . . . , N , n ≥ 0, in steps 0
and 2, respectively, of Algorithm 2, we use a deterministic
iterative sequence {Ûn}, defined as follows [12]:

Chaotic Generator

Choose Û0 randomly (say, according to a given random-
number generator). For any n ≥ 1,

Ûn+1 = (π + Ûn)
5 mod 1. (5)

The sequence Ûn is rapidly mixing and converges in
distribution to an almost uniform distribution (see Boyarski
and Gora [12] for details). Thus, the chaotic SPSA (C-
SPSA) is similar to SPSA, except that here we generate

�k(n) samples in (4) using Ûk(n)
�= ÛNn+k, as in (5), in

place of Uk(n).
Next we describe the smoothed functional (SF) and

chaotic smoothed functional (C-SF) algorithms.

3.2 SF and C-SF Algorithms

We explain the key idea first. For some scalar constant
β > 0, let

DJβ(θ) =
∫

Gβ(θ − η)∇J (η)dη (6)

represent the convolution of the gradient of average cost
with the N -dimensional multinormal p.d.f.

Gβ(θ − η) = 1

(2π)N/2βN
exp

(
−1

2

N∑
i=1

(θi − ηi)
2

β2

)
,

where θ,η ∈ RN with θ
�= (θ1, . . . , θN)

T and η
�=

(η1, . . . ,ηN)
T . Now integrating by parts in (5), it is easy

to see that

DJβ(θ) =
∫

∇θGβ(θ − η)J (η)dη

=
∫

∇ηGβ(η)J (θ − η)dη. (7)

One can easily check that ∇ηGβ(η) = −η

β2
Gβ(η). Sub-

stituting the last [LAST PART?] and η′ = η

β
in (7), one

obtains

DJβ(θ) = 1

β

∫
−η′ 1

(2π)N/2

exp

(
−1

2

N∑
i=1

(η′
i
)2

)
J (θ − βη′)dη′. (8)

In the above, we use the fact that η = βη′ =
(βη′

1, . . . , βη′
N
)T (written componentwise), and hence

dη = βNdη′
1 · · · dη′

N
= βNdη′. Upon substituting η̄ =

−η′, the form of the gradient estimator suggested by (8) is
(for M large) the following:

∇J (θ(n)) ≈ 1

β

1

M

M∑
n=1

η̄(n)J (θ(n) + βη̄(n)),

where η̄(n)
�= (η̄1(n), . . . , η̄N(n))

T , with η̄i (n), i =
1, . . . , N , n ≥ 0, being independent N(0, 1) distributed
random variables.

We propose the following basic algorithm to implement
the above:

Algorithm 3

• Step 0 (initialize): Set Z1(0) = Z2(0) = · · · = ZN(0) =
0. Fix θ1(0), . . . , θN(0) and let θ(0)

�= (θ1(0), . . . ,
θN(0))T denote the initial parameter vector. Fix L, M ,
and β. Set n := 0 and m := 0, respectively. Generate
i.i.d., N(0, 1) distributed random variables η1(0), η2(0),

. . . , ηN(0), and set η(0)
�= (η1(0), . . . ,ηN(0))T .

• Step 1: Generate the simulation (X(nL+m), Y (nL+m))
governed with parameter (θ(n) + βη(n)). Update

Z1(nL + m + 1) = Z1(nL + m) + b(n)(
η1(n)

β
h(Y (nL + m)) − Z1(nL + m)

)
,

Z2(nL + m + 1) = Z2(nL + m) + b(n)(
η2(n)

β
h(Y (nL + m)) − Z2(nL + m)

)
,

.

.

.

ZN(nL + m + 1) = ZN(nL + m) + b(n)(
ηN(n)

β
h(Y (nL + m)) − ZN(nL + m)

)
.

If m = L − 1, set nL := nL + L, m := 0 and go to step
2;

else, set m := m + 1 and repeat step 1.

Volume 79, Number 9 SIMULATION 5

Pr
oo

f C
op

y

Bhatnagar and Borkar

• Step 2: For i = 1, . . . , N , update θi (n) according to

θi (n + 1) = Γi (θi (n) − a(n)Zi(nL)).

Set n := n + 1 and θ(n)
�= (θ1(n), . . . , θN(n))T . If

n = M , go to step 3;

else, generate i.i.d., N(0, 1) distributed random variables
η1(n), . . . , ηN(n), independent of previous samples. Set

η(n)
�= (η1(n), . . . , ηN(n))T and go to step 1.

• Step 3 (termination): Terminate algorithm and output

θ(M)
�= (θ1(M), . . . , θN(M))T as the final parameter

vector.

In the above, Z1(nL + m), . . . , ZN(nL + m), m =
0, 1, . . . , L− 1, n ≥ 0, are defined according to their cor-
responding recursions in step 1 and are used for averaging
the cost function in the algorithm. In Bharath and Borkar
[15], a similar algorithm as above but without the additional
averaging over L epochs was stated for the scalar case. We
observed that for high-dimensional parameters (i.e., large
N), the version without the extra averaging (i.e., L = 1)
does not show good numerical performance. This could
again be because of the fact (as argued in Bhatnagar et al.
[9] for the case of SPSA with two simulations) that since
we use only one simulation here, the system is unable to
adapt to the new parameter update before it changes again.
The value ofL is chosen arbitrarily. We take it as 100 in our
simulations. For generating the Gaussian random variates
in the above basic algorithm, we use the Box-Muller [20]
algorithm below:

Box-Muller Algorithm for N(0, 1) Generation

• Step 1: Generate uniform sample U1 from U(0, 1) and set
Θ = 2πU1.

• Step 2: Generate uniform sample U2 from U(0, 1) and set
E = − ln U2, R = √

2E.
• Step 3: X = R cos Θ, Y = R sin Θ are independent
N(0, 1) samples.

We show briefly that the Box-Muller algorithm gener-
ates N(0, 1) samples. First assume that X and Y are given
independent N(0, 1) random variables. Then (X, Y) has

joint p.d.f.
1

2π
exp(−1

2
(x2 + y2)). Transforming (X, Y)

to polar coordinates (R,Θ), the joint p.d.f. becomes
1

2π
r exp(− r2

2
) on (0,∞) × (0, 2π) when R and Θ are

independent. It is easy to see that S = R2 = X2 +Y 2 is ex-

ponentially distributed with mean 2. Thus, U = exp(−S

2
)

is distributed U(0, 1). The above thus transforms (X, Y)
to (U,Θ) with U and Θ being independent and uniform
random variables on (0, 1) and (0, 2π), respectively. Upon
reversing this transformation, (X, Y) can be seen to be in-
dependent N(0, 1) random variables.

SF Algorithm

This algorithm is the same as Algorithm 3 but with
the uniform random numbers U1 and U2 for obtaining the
N(0, 1) samples (in steps 0 and 2 of Algorithm 3), us-
ing the Box-Muller scheme that is obtained according to
the pseudo-random generator of Park and Miller [16] de-
scribed above.

C-SF Algorithm

This algorithm is again the same as Algorithm 3 but with
the uniform samples U1 and U2 in the Box-Muller scheme
generated according to the chaotic iteration (5), described
in the C-SPSA algorithm above.

We thus propose the use of the chaotic generator for
purposes of averaging in our algorithms. We briefly analyze
our algorithms in the next section.

4. Sketch of Convergence

Consider the following ordinary differential equation
(ODE):

.

θ (t) = Γ̄(−∇J (θ(t))), (9)

where Γ̄(·) is defined by Γ̄(v(y))= lim
ε→0

(
Γ(y + εv(y)) − y

ε

)
for any bounded, continuous v(·). The operator Γ̄(·) lim-
its the trajectory of θ(·) in (9) to evolve within the con-
straint set C. The ODE in (9) is interpreted compo-

nentwise with Γ̄(x)
�= (Γ̄1(x1), . . . , Γ̄N(xN))

T for x =
(x1, . . . , xN)

T . The stable points of this ODE lie in the
set K = {θ ∈ C | Γ̄(∇J (θ)) = 0}, with J (·) itself as the
associated strict Liapunov function. Let for given η > 0,

Kη �= {θ ∈ C | ‖ θ − θ0 ‖< η, θ0 ∈ K} denote the set of
points that are within a distance η from the set K . For al-
gorithms SPSA and C-SPSA, we have the following result
(a similar result is available in Bhatnagar et al. [9] for the
SPSA algorithm; however, we sketch some details here to
explain the convergence for the C-SPSA algorithm).

THEOREM 1. Given η > 0, ∃δ0 > 0 (a function of the
particular algorithm used) such that ∀δ ∈ (0, δ0], {θ(n)},
defined by either of the algorithms SPSA and C-SPSA,
converges to Kη a.s. as M → ∞.

Proof. One can show, as in Theorem 4.4 of Bhatnagar et al.
[9], that

‖ Z−(nL) − J (θ(n) − δ�(n)) ‖,
‖ Z+(nL) − J (θ(n) + δ�(n)) ‖ → 0 a.s.,

as n → ∞. Thus, one can replace the parameter update
recursion in Algorithm 2 (written componentwise) by

6 SIMULATION Volume 79, Number 9

Pr
oo

f C
op

y

MULTISCALE CHAOTIC SPSA AND SF ALGORITHMS

θi (n + 1) = Γi

(
θi (n) − a(n) (10)

(
J (θ(n) + δ�(n)) − J (θ(n) − δ�(n))

2δ�i (n)

)
+ a(n)ε1(n)

)
,

i = 1, . . . , N , where ε1(n) is o(1). Now a Taylor series
expansion in the second term in parentheses on the right-
hand side (RHS) above yields

J (θ(n) + δ�(n)) − J (θ(n) − δ�(n))

2δ�i (n)
= ∇iJ (θ(n))

+
N∑

j=1,j �=i

�j (n)

�i (n)
∇jJ (θ(n)) + o(δ),

whereo(δ) represents the higher order terms. Now forFn

�=
σ(X(m), Y (m), θ(m),�(m − 1),m ≤ n),

E

[
J (θ(n) + δ�(n)) − J (θ(n) − δ�(n))

2δ�i (n)
| Fn

]
= ∇iJ (θ(n))

+E

[
N∑

j=1,j �=i

�j (n)

�i (n)
∇jJ (θ(n)) | Fn

]
+ o(δ)

= ∇iJ (θ(n)) +
N∑

j=1,j �=i

E

[�j (n)

�i (n)

]
∇jJ (θ(n)) + o(δ),

since ∇jJ (θ(n)), j = 1, . . . , N , j �= i, are measurable

w.r.t. Fn and, by definition,
�j (n)

�i (n)
is independent of Fn.

Now from the definition of {�(n)},E
[�j (n)

�i (n)

]
= 0, ∀j �=

i. Thus, (10) can be written as

θi (n + 1) = Γi (θi (n) − a(n)∇iJ (θ(n)) + a(n)M(n + 1)

+ a(n)ε1(n) + a(n)o(δ)),

where E [M(n + 1) | Fn] = 0. If δ = 0, a standard ODE
analysis shows that {θ(n)}, given by Algorithm 2, con-
verges to K a.s. as M → ∞. For δ > 0, we can invoke
the Hirsch lemma (Hirsch [21, Theorem 1, p. 339]) as in
Bhatnagar et al. [9] to conclude that if δ is small enough (de-
pending on η), the iterates converge a.s. toKη asM → ∞.

Note that in the above, the independence of
�j (n)

�i (n)
w.r.t.

Fn plays a crucial role in convergence. In algorithm SPSA,
we use the pseudo-random generator described in Park and

Miller [16] for generating �k(n), k = 1, . . . , N , n ≥ 0,
while in C-SPSA, we use the chaotic sequence (5) for the
same. We show tests for independence and randomness
using both generators (see section 5). The chaotic genera-
tor shows equivalent performance in the tests for indepen-
dence as compared to the pseudo-random generator, and
the values from these tests are close to the expected values.
Hence, we conclude that the samples using both generators
are independent. This completes the proof. �

Remark. The sequence {Ûn}, defined through the it-
erations (5), is shown to be rapidly mixing in Boyarski
and Gora [12]. Thus, the foregoing convergence argument
would go through, even without the explicit verification
of independence, by the “averaging property” of stochas-
tic approximation used in Bharath and Borkar [15] (see
also Benveniste, Metivier, and Priouret [22]). This says
that when an ergodic process enters the driving term of a
stochastic approximation as a parameter, the limiting ODE
sees it averaged w.r.t. its (unique) stationary distribution.
The rapid mixing property also suggests that one could get
closer to the independence hypothesis by using a subsam-
ple {ÛnM} for some M > 1. We found that M = 1 works
fine as is.

Next we turn our attention to the SF and C-SF algo-
rithms. For these algorithms, we have the following con-
vergence result.

THEOREM 2. Given η > 0, ∃β0 > 0 (a function of the
particular algorithm used) such that ∀β ∈ (0, β0], {θ(n)},
defined by either of the algorithms SF and C-SF, respec-
tively, converges to Kη a.s. as M → ∞.

Proof. Let Z(nL)
�= (Z1(nL), . . . , ZN(nL))

T , with
Zi(nL), i = 1, . . . , N , as in Algorithm 3. From the dis-
cussion preceding Algorithm 3, one can show in a simi-
lar manner as in Theorem 4.4 of Bhatnagar et al. [9] that
‖ Z(nL) − DJβ(θ(n)) ‖→ 0 as n → ∞. Now note that
since Gβ(θ − η) in (6) converges to the Dirac-Delta func-
tional in the limit as β → 0,

lim
β→0

DJβ(θ) = ∇J (θ).

One can now replace the parameter update recursion in
step 2 of Algorithm 3 (written in vector notation) by

θ(n + 1) = Γ(θ(n) − a(n)∇J (θ) + a(n)γ1(n)

+ a(n)γ2(n)),

where γ1(n) = ∇J (θ) − DJβ(θ), and γ2(n) = DJβ(θ) −
Z(nL) is o(1). Again, if β = 0, a standard ODE analysis
shows that {θ(n)} converges to K a.s. If β > 0, one can
again invoke the Hirsch lemma (Hirsch [21, Theorem 1,
p. 339]), as in Borkar [23], to conclude that if β is small
enough (depending on η), the iterates converge a.s. to Kη

as the number of iterates M → ∞.

Volume 79, Number 9 SIMULATION 7

Pr
oo

f C
op

y

Bhatnagar and Borkar

Now in algorithm SF, we use the pseudo-random gen-
erator for generating the uniform random variables in the
Box-Muller algorithm, while in algorithm C-SF, we use
the chaotic generator for the same. Also, as shown in sec-
tion 5.1, both chaotic and pseudo-random generators show
comparable performance in terms of randomness and in-
dependence of samples, and thus we conclude that samples
using both generators are i.i.d., U(0, 1) distributed. �

This completes our discussion of the convergence
analysis.

5. Numerical Experiments

We begin with some tests for the chaotic generator (5) and
provide comparisons with the pseudo-random generator
[16] described in section 4.

5.1 Experiments with Generators

We begin with the gaps test for independence (see Ripley
[24, p. 43]) for both the chaotic and the pseudo-random
generators: here one fixes constants 0 < α < γ < 1
and generates a string of numbers using (each of) the gen-
erators. Next one computes the lengths of substrings (of
the individual strings) for which the successive generated
numbers are outside the interval (α, γ). If the generated
sequence is independent, the distribution of lengths of the
substrings must be geometric with parameter γ − α and
must also be independent.

We arbitrarily choose α = 0.4 and γ = 0.6, respec-
tively. Next we generate 10,000 samples using both the
chaotic and the pseudo-random generators, respectively.
We then perform the gaps test over disjoint strings, each of
length 50 samples, and average over these. Thus, from the
10,000 samples in each case, we obtain 200 sets of values
over which we average. Finally, we average over five dif-
ferent simulation runs starting with different initial seeds.
The mean and standard error from these simulations for
both the chaotic and pseudo-random generators, as well as
the corresponding expected values of these, are shown in
Table 1. It is easy to see that both the chaotic and pseudo-
random generators show almost identical performance and
have values that are quite close to the expected values for all
cases. We thus conclude that both the chaotic and pseudo-
random generators generate independent samples.

Next in Figures 1 and 2, we show plots of 10, 000 points
in [0, 1] × [0, 1], each generated using the chaotic and
pseudo-random generators, respectively. Also, Figures 3
and 4 show plots of the multinormal distribution (X, Y)

with p.d.f.
1

2π
exp(−1

2
(x2 + y2)), each generated using

the Box-Muller algorithm with chaotic and pseudo-random
generators, respectively. It thus seems clear that the perfor-
mance of the chaotic generator with a lesser computation
is as good as the pseudo-random generator. Next we show
experiments with the algorithms of this article.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. 10,000 points from the chaotic generator in [0,1] ×
[0,1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. 10,000 points from the pseudo-random generator in
[0,1] × [0,1]

5.2 Experiments with Algorithms

5.2.1 Network of M/G/1 Queues

We first consider a two-node network of M/G/1 queues
with feedback as in Figure 5. Nodes 1 and 2 in the net-
work are fed with independent Poisson external arrival

8 SIMULATION Volume 79, Number 9

Pr
oo

f C
op

y

MULTISCALE CHAOTIC SPSA AND SF ALGORITHMS

Table 1. Gaps test for independence

Gap Length 0 1 2 3 4

Chaotic 2.16 ± 0.009 1.69 ± 0.016 1.34 ± 0.006 1.04 ± 0.012 0.82 ± 0.006
Pseudo-random 2.14 ± 0.016 1.70 ± 0.004 1.33 ± 0.002 1.04 ± 0.001 0.83 ± 0.003

Expected 2.4 1.92 1.54 1.23 0.98

Gap Length 5 6 7 8 >8

Chaotic 0.65 ± 0.0.006 0.50 ± 0.001 0.40 ± 0.002 0.31 ± 0.024 1.10 ± 0.002
Pseudo-random 0.65 ± 0.033 0.50 ± 0.021 0.40 ± 0.002 0.31 ± 0.008 1.06 ± 0.041

Expected 0.79 0.63 0.50 0.40 1.61

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Figure 3. 10,000 Gaussian pairs (X, Y) using the chaotic
generator

streams with rates λ1 = 0.2 and λ2 = 0.1, respec-
tively. The departures from node 1 enter node 2. Further-
more, departures from node 2 are fed back with proba-
bility q = 0.6 to the first node. The service time pro-
cesses {Si

n
(θi)} at the two nodes i = 1, 2 are defined by

Si

n
(θi) = Ui

n

(
1 +

P∏
j=1

|θi

j
(n) − θ̄

i

j
|
)
/Ri , i = 1, 2, n ≥ 1.

Here Ui
n

represents a sample from the uniform distribu-
tion on [0, 1]. Also, θi

1(n), . . . , θi
P
(n) represent the nth up-

date of the parameter components of service time at node
i, and θ̄

i

1, . . . , θ̄
i

P
represent the target parameter compo-

nents. We choose R1 = 10 and R2 = 20 to be given num-
bers. The cost function is chosen to be the sum of waiting
times of individual customers at the two nodes. For the
cost to be minimized, one expects θi

j
(n) to converge to θ̄

i

j
,

j = 1, . . . , P , i = 1, 2, as n → ∞. We assume that

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 4. 10,000 Gaussian pairs (X, Y) using pseudo-random
generator

each θi
j
(n) is constrained according to 0.1 ≤ θi

j
(n) ≤ 0.6,

j = 1, . . . , P , i = 1, 2, ∀n. We set θ̄
i

j
= 0.3 for

all i = 1, 2, j = 1, . . . , P . The initial θ1
j
(0) = 0.4,

j = 1, . . . , P , and θ2
j
(0) = 0.2, j = 1, . . . , P , re-

spectively. The step-size sequences {a(n)} and {b(n)} are
defined according to a(0) = b(0) = 1, a(n) = 1/n,
b(n) = 1/n2/3, n ≥ 1. Also, δ = 0.1 in all algorithms.
We compare the performance of all algorithms SPSA, C-
SPSA, SF, and C-SF, respectively. The value ofL is chosen
to be 100 in all algorithms.

We consider the cases P = 2 and 15, respec-
tively. Thus, the parameter θ corresponds to 4 and
30 dimensional vectors, respectively. We define dis-
tance from optimum to be the performance measure

d(θ(n), θ̄)
�=
(

2∑
i=1

P∑
j=1

(
θi

j
(n) − θ̄

i

j

)2
)1/2

. From the previ-

Volume 79, Number 9 SIMULATION 9

Pr
oo

f C
op

y

Bhatnagar and Borkar

 q = 1-p

p

λ 1 λ 2

Node 1 Node 2

Figure 5. Queuing network

ous discussion, one expects d(θ(n), θ̄) to converge to zero
as n → ∞. In Figures 6 and 7, we plot the trajectories
of d(θ(n), θ̄) for both cases, for all algorithms averaged
over five independent simulation runs with different initial
seeds. We terminate all simulation runs (for all algorithms)
after 6 × 105 function evaluations (or measurements of the
cost function value). Thus, in algorithms SF and C-SF,
which require only one simulation for any value of P , the
parameter is updated 6000 times during the course of the
simulation. On the other hand, for algorithms SPSA and C-
SPSA, which require two simulations each for any value of
P , the parameter is updated 3000 times during the course
of the simulation. The mean and standard error from these
simulations for both cases P = 2 and 15, respectively, at
the termination of the simulations are given in Table 2.

We observe from our experiments that C-SPSA shows
the best performance among all algorithms, both when the
parameter dimension is low (Fig. 6) and high (Fig. 7). Al-
gorithm C-SF shows better performance than SF when
P = 2, while the opposite is true for P = 15. The
use of the chaotic generator thus improves performance
in most cases. The two-simulation algorithms SPSA and
C-SPSA show uniformly better performance than the one-
simulation SF and C-SF algorithms over all cases tried.

5.2.2 Closed-Loop Feedback Control in ABR
Service

We consider the setup in Figure 8. There are two input
streams to the bottleneck node—a controlled stream, which

Table 2. Performance after 6 × 105 function evaluations

d(θ(n),θ)d(θ(n),θ)d(θ(n),θ) d(θ(n),θ)d(θ(n),θ)d(θ(n),θ)
Algorithm P = 2 P = 15

SPSA 0.0358 ± 0.017 0.1999 ± 0.0966
C-SPSA 0.0312 ± 0.0425 0.1646 ± 0.0176

SF 0.1345 ± 0.1070 0.3676 ± 0.0861
C-SF 0.1077 ± 0.0629 0.4045 ± 0.0952

Note. SPSA = simultaneous perturbation stochastic approxima-
tion; C-SPSA = chaotic SPSA; SF = smoothed functional;
C-SF = chaotic SF.

is modelled as a controlled Poisson process, and an un-
controlled stream, which is a Markov-modulated Poisson
process (MMPP). This problem finds applications in the
closed-loop feedback control of ABR service in ATM net-
works [17]. Loosely stated, the basic goal of the control
problem is that the queue should neither get empty (in
which case, the server would idle), nor should there be
a buffer overflow. In the ABR context, this amounts to
maximizing throughput and minimizing delays simultane-
ously. The rate of the controlled Poisson process for the
“next” T instants of time is computed using a feedback
policy at the service end of the system, based on the queue
length process, which is observed every nT , n ≥ 0, time
units. The computed rate information is fed back to the
controlled Poisson (or the ABR) source with a delay Db.
Furthermore, there are propagation delays Df for pack-
ets/customers from the controlled source to reach the node
after being released. We assume the cost function to have
the simple form h(qn) = |qn − N0|, where N0 is a given
constant. We consider simple five-level feedback policies
of the following type:

λc(n) =


λ1 if qn < N0 − 2ε
λ2 if N0 − 2ε ≤ qn < N0 − ε
λ3 if N0 − ε ≤ qn ≤ N0 + ε
λ4 if N0 + ε < qn ≤ N0 + 2ε
λ5 if qn > N0 + 2ε.

(11)

In the above, ε is also a constant in addition to N0. The pa-

rameter to be optimized is thus θ
�= (λ1, . . . ,λ5)

T . We use
our stochastic approximation algorithms SPSA, C-SPSA,
SF, and C-SF for performance comparisons in this setting.
We choose the projection set C to be [0.1, 3.0]5. The ser-
vice times are assumed exponential with rate 1.0. We let
T = 1, Db = 5, Df = 10, N0 = 10, and ε = 1, re-
spectively. Also, L = 100 as before. We assume that the
underlying Markov chain in the MMPP stream has just
two states 1 and 2, respectively, with transition probabil-
ities between these states given by p11 = p22 = 0.4 and
p12 = p21 = 0.6, respectively. The rate of the Poisson
process in the MMPP is 0.05 when in state 1 and 0.15
when in state 2. Thus, under stationarity, the uncontrolled

10 SIMULATION Volume 79, Number 9

Pr
oo

f C
op

y

MULTISCALE CHAOTIC SPSA AND SF ALGORITHMS

0 1 2 3 4 5 6

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Function Evaluations

Di
st

an
ce

 fr
om

 O
pt

im
um

SPSA
C−SPSA
SF
C−SF

Figure 6. Performance comparisons for a 4-vector parameter

0 1 2 3 4 5 6

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Function Evaluations

Di
sta

nc
e

fro
m

 O
pt

im
um

SPSA
C−SPSA
SF
C−SF

Figure 7. Performance comparisons for a 30-vector parameter

packets occupy 10% of the bandwidth. We run all simula-
tions for 200,000 function evaluations for each algorithm.
During the final 5000 evaluations, we also take estimates
of the stationary mean queue length E[q], the stationary
variance of queue length var(q), the stationary probability
(PB) that the queue length is in the band [N0−ε, N0+ε], and
the stationary mean ABR rate λ∗

c
, respectively. We run all

simulations with five different seeds and take averages. In

Tables 3 and 4, we show the values of the optimal rates λ∗
1,

. . . , λ∗
5, as computed by the algorithms and the measures

of performance, respectively.
Upon comparison of the various algorithms in this set-

ting, it can be seen that C-SPSA shows the best per-
formance and is closely followed by SPSA. Bandwidth
utilization is a key performance criterion for ABR ser-
vice, and using C-SPSA, more than 99% of the bandwidth

Volume 79, Number 9 SIMULATION 11

Pr
oo

f C
op

y

Bhatnagar and Borkar

Table 3. [PLS. PROVIDE CAPTION]

Algorithm λ∗
5λ∗
5λ∗
5 λ∗

4λ∗
4λ∗
4 λ∗

3λ∗
3λ∗
3 λ∗

2λ∗
2λ∗
2 λ∗

1λ∗
1λ∗
1

SPSA 0.14 ± 0.01 0.41 ± 0.02 1.28 ± 0.03 1.37 ± 0.03 2.11 ± 0.04
C-SPSA 0.19 ± 0.02 0.36 ± 0.02 1.18 ± 0.02 1.44 ± 0.03 2.23 ± 0.05

SF 0.16 ± 0.04 0.51 ± 0.05 0.97 ± 0.04 0.83 ± 0.04 1.99 ± 0.05
C-SF 0.10 ± 0.02 0.45 ± 0.04 0.87 ± 0.03 0.96 ± 0.03 1.91 ± 0.04

Note. SPSA = simultaneous perturbation stochastic approximation; C-SPSA = chaotic SPSA; SF = smoothed functional;
C-SF = chaotic SF.

Table 4. [PLS. PROVIDE CAPTION]

Algorithm E[q] var(q) PBBB λ∗
cλ∗
cλ∗
c

SPSA 10.95 ± 0.09 22.23 ± 0.08 0.25 ± 0.01 0.88 ± 0.01
C-SPSA 10.91 ± 0.08 21.62 ± 0.07 0.27 ± 0.01 0.89 ± 0.01

SF 7.14 ± 0.07 18.87 ± 0.07 0.20 ± 0.02 0.86 ± 0.01
C-SF 7.01 ± 0.05 17.51 ± 0.06 0.19 ± 0.02 0.85 ± 0.01

Note. SPSA = simultaneous perturbation stochastic approximation; C-SPSA = chaotic SPSA; SF = smoothed functional;
C-SF = chaotic SF.

b

MMPP

Dfλc

λu,i
q

D

Information
Feedback
at times
nT, n=1,2.. .

ABR Source

PP
(n)

n

(Controlled
)

Figure 8. The available bit rate (ABR) model

(including the 10% from the uncontrolled stream) is used.
SF and C-SF do not show as good performance except for
in the variance of queue length measure, which has the
least value in C-SF. However, the latter could also be be-
cause of the low stationary mean queue lengths E[q] in
both algorithms SF and C-SF.

6. Conclusions

We proposed the use of a chaotic iterative sequence for
averaging. We considered the one-simulation smoothed
functional algorithm and developed its two-timescale vari-
ant with an extra averaging required in high-dimensional
settings. We used the chaotic iterative sequence for gen-
erating the N i.i.d., Gaussian random variables at each

instant in the smoothed functional algorithm. We also
used the chaotic sequence for generating the N i.i.d.,
Bernoulli-distributed perturbations at each instant in the
two-timescale SPSA algorithm of Bhatnagar et al. [9]. We
showed numerical experiments on the chaotic sequence
and a good pseudo-random generator. We found that the
chaotic sequence with less computation shows equiva-
lent performance as the pseudo-random generator. We also
showed experiments on a network of M/G/1 queues with
feedback using all the algorithms with both low- and high-
dimensional parameters. We observed that in most cases,
algorithms that use the chaotic iterative sequence for av-
eraging show better performance than those that use the
pseudo-random generator. Moreover, C-SPSA shows the
best performance in both settings. Finally, we also applied

12 SIMULATION Volume 79, Number 9

Pr
oo

f C
op

y

MULTISCALE CHAOTIC SPSA AND SF ALGORITHMS

this approach to computing closed-loop feedback optimal
(within a prespecified class) policies in ABR service in
ATM networks. We observed that C-SPSA shows the best
performance among all algorithms in this setting as well.

Recently, in Bhatnagar et al. [25], other variants of
SPSA-type algorithms that use certain lexicographic and
Hadamard matrix-based deterministic perturbation se-
quences have been developed. These were shown to im-
prove performance over randomized perturbation SPSA
under the settings considered therein. Also, in Spall [26],
a one-simulation form of SPSA has been proposed with its
two-timescale version developed in Bhatnagar et al. [25].
As future work, it would be interesting to see performance
comparisons of these with the algorithms developed in this
article, particularly C-SPSA and C-SF algorithms that use
the chaotic iterative sequence, proposed here for random-
number generation. Moreover, it would be interesting to
explore the possibility of using chaotic iterative sequences
in place of pseudo-random numbers in other simulation-
based schemes such as importance sampling [27] and neu-
rodynamic programming [28].

7. Acknowledgments

The first author thanks Professor G. Koole for inviting
him to the Free University, Amsterdam, on a postdoctoral
fellowship during 2000-2001. The second author thanks
Professor G. Koole for his hospitality at Free University,
Amsterdam, during a summer visit in the course of which
this work was done.

8. References

[1] Chong, E. K. P., and P. J. Ramadge. 1993. Optimization of queues
using an infinitesimal perturbation analysis-based stochastic al-
gorithm with general update times. SIAM Journal on Control and
Optimization 31 (3): 698-732.

[2] Chong, E. K. P., and P. J. Ramadge. 1994. Stochastic optimization
of regenerative systems using infinitesimal perturbation analysis.
IEEE Transactions on Automatic Control 39 (7): 1400-10.

[3] Ho, Y.-C., and X.-R. Cao. 1991. Perturbation analysis of discrete
event dynamical systems. Boston: Kluwer.

[4] Glasserman, P., and Y.-C. Ho. 1990. Gradient estimation via pertur-
bation analysis. Boston: Kluwer.

[5] Cassandras, C. G. 1993. Discrete event systems: Modeling and per-
formance analysis. Boston: Aksen Associates and IRWIN.

[6] Bhatnagar, S., and V. S. Borkar. 1997. Multiscale stochastic ap-
proximation for parametric optimization of hidden Markov mod-
els. Probability in the Engineering and Informational Sciences
11:509-22.

[7] Bhatnagar, S., and V. S. Borkar. 1998. A two time scale stochastic
approximation scheme for simulation based parametric optimiza-
tion. Probability in the Engineering and Informational Sciences
12:519-31.

[8] Spall, J. C. 1992. Multivariate stochastic approximation using a simul-
taneous perturbation gradient approximation. IEEE Transactions

on Automatic Control 37 (3): 332-41.
[9] Bhatnagar, S., M. C. Fu, S. I. Marcus, and S. Bhatnagar. 2001.

Two timescale algorithms for simulation optimization of hidden
Markov models. IIE Transactions 33 (3): 245-58.

[10] Niederreiter, N. 1995. New developments in uniform pseudorandom
number and vector generation. In Monte Carlo and quasi-Monte
Carlo methods in scientific computing, edited by H. Niederreiter
and P. J.-S. Shiue. New York: Springer.

[11] L’Ecuyer, P. 1998. Random number generators and empirical tests.
In BOOK TITLE?, edited by H. Niederreiter, P. Hellekalek,
G. Larcher, and P. Zinthof. New York: Springer.

[12] Boyarski, A., and P. Gora. 1997. Laws of chaos: Invariant measures
and dynamical systems in one dimension. Boston: Birkhauser.

[13] Katkovnik, V. Y. A., and Y. U. Kulchitsky. 1972. Convergence of a
class of random search algorithms. Automation Remote Control
8:1321-6.

[14] Rubinstein, R. Y. 1981. Simulation and the Monte Carlo method.
New York: John Wiley.

[15] Bharath, B., and V. S. Borkar. 1998. Robust parameter optimiza-
tion of hidden Markov models. Journal of the Indian Institute of
Science 78:119-30.

[16] Park, S. K., and K. W. Miller. 1988. Random number generators:
Good ones are hard to find. Communications of the ACM 31:1192-
1201.

[17] Bhatnagar, S., M. C. Fu, S. I. Marcus, and P. J. Fard. 2001. Op-
timal structured feedback policies for ABR flow control using
two-timescale SPSA. IEEE/ACM Transactions on Networking 9
(4): 479-91.

[18] Schweitzer, P. J. 1968. Perturbation theory and finite Markov chains.
Journal of Applied Probability 5:401-13.

[19] Vazquez-Abad, F. J., and H. J. Kushner. 1992. Estimation of the
derivative of a stationary measure with respect to a control pa-
rameter. Journal of Applied Probability 29:343-52.

[20] Box, G. E. P., and M. E. Muller. 1958. A note on the generation
of random normal deviates. Annals of Mathemathical Statistics
29:610-1.

[21] Hirsch, M. W. 1989. Convergent activation dynamics in continuous
time networks. Neural Networks 2:331-49.

[22] Benveniste, A., M. Metivier, and P. Priouret. 1990. Adaptive algo-
rithms and stochastic approximations. Berlin: Springer Verlag.

[23] Borkar, V. S. 1997. Stochastic approximation with two time scales.
Systems and Control Letters 29:291-4.

[24] Ripley, B. D. 1987. Stochastic simulation. New York: John Wiley.
[25] Bhatnagar, S., M. C. Fu, S. I. Marcus, and I.-J. Wang. 2003. Two

timescale simultaneous perturbation stochastic approximations
using deterministic perturbation sequences. ACM Transactions
on Modeling and Computer Simulation 13 (2): 1-30.

[26] Spall, J. C. 1997. A one-measurement form of simultaneous pertur-
bation stochastic approximation. Automatica 33:109-12.

[27] Srinivasan, R. 2002. Importance sampling. New York: Springer
Verlag.

[28] Bertsekas, D. P., and J. N. Tsitsiklis. 1996. Neuro-dynamic program-
ming. Belmont, MA: Athena Scientific.

Shalabh Bhatnagar is (POSITION?) in the Department of Com-
puter Science and Automation at the Indian Institute of Science,
Bangalore, India.

Vivek S. Borkar is (POSITION?) in the School of Technology and
Computer Science at the Tata Institute of Fundamental Research,
Mumbai, India.

Volume 79, Number 9 SIMULATION 13

