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Abstmet-The simultaneous perturbation stochastic ap- 
proximation (SPSA) algorithm has proven very effective for 
difficult multivariate optimization problems where it is not 
possible to obtain direct gradient information. As discussed 
to date, SPSA is based on a highly efficient gradient 
approximation requiring only two measurements of the loss 
function independent of the number of parameters being 
estimated. This note presents a form of SPSA that requires 
only one function measurement (for any dimension). Theory 
is presented that identifies the class of problems for which 
this one-measurement form will be asymptotically superior to 
the standard two-measurement form. 0 1997 Elsevier 
Science Ltd. All rights reserved. 

1. Introduction 
The simultaneous perturbation stochastic approximation 
(SPSA) algorithm has recently attracted considerable 
attention for multivariate optimization problems where it is 
difficult or impossible to obtain a gradient of the objective 
function with respect to the parameters being optimized (see 
e.g. Alessandri and Parasini, 1995; Hill and Fu, 1995; Smith 
and Chin, 1995; Maeda et al., 1995; Rezayat, 1995). SPSA is 
for problems in the multivariate Kiefer-Wolfowitz SA 
setting, where only (possibly noisy) measurements of the 
objective (say, loss) function are assumed available. The 
essential feature of SPSA is its highly efficient gradient 
approximation. As described in Spa11 (1987, 1992) the 
gradient approximation requires only two loss function 
measurements, regardless of the problem dimension. This 
contrasts with the 2p function measurements required in 
conventional finite-difference methods, where p is the 
problem dimension (the number of parameters being 
optimized). The central theoretical result in Spa11 (1992) is 
that in many practical problems this p-fold savings in 
function evaluations per gradient approximation translates 
directly into a p-fold savings in function evaluations to solve 
the optimization problem (i.e., the algorithms take the same 
number of iterations to achieve a given level of mean-square 
accuracy in the optimization parameters, but SPSA takes p 
times fewer measurements per iteration). 

This note introduces a variant of SPSA that requires only 
one function evaluation to construct the gradient approxima- 
tion. Theory is presented that provides guidelines on when it 
is advantageous to use this one-measurement form versus the 
‘standard’ two-measurement form mentioned above. The 
implications of the theory are illustrated in a numerical study 
for a small-scale problem involving a multivariate polynomial 
loss function. For convenience, we shall refer to the one- 
and two-measurement forms of SPSA as SPSAl and SPSA2 
respectively. 
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Perturbation 

2. Algorithm 
Our fundamental aim is to minimize a loss function L(B), 

where 19 is some p-dimensional vector of adjustable 
parameters. Consistent with the usual framework for 
nonlinear continuous optimization, we seek a minimum B* 
such that g(0) = X.(0)/a@ = 0. (This paper deals with the 
local unconstrained optimization problem only; for SPSA2, 
an extension to the constrained optimization problem is 
given in Sadegh (1996) and an extension to the global 
problem of multiple roots to g(8) =0 is given in Chin 
(1994).) It is assumed that only measurements of L(B) 
(typically with additive noise) are available and that no direct 
measurements (with or without noise) of g(0) are available. 
This is identical to the well-known framework of 
Kiefer-Wolfowitz SA (Ruppert, 1983). 

SPSA has the standard iterative form 

h,+t = 8, - a*k?,(O,), (1) 
where ck represents a scalar gain coefficient and &(.) 
represents the SP approximation to the unknown gradient 
g(.). In Spa11 (1987, 1992), &.(.) is represented by a 
two-measurement approximation. For this paper, we propose 
the following gradient approximation based on one 
measurement of the loss function: 

where 
^ 

y, = z_(e, + gA,) + ek, ck is a positive scalar, 
Ak = (A,,, A,,, . , AC)’ is a Vector of zero-mean indepen- 
dent random variables (typically generated by Monte Carlo), 
and Q is the measurement noise. Note that l k is not 
necessarily independent of 8, or Ak, but it does satisfy a 
weaker Martingale-type condition, as given in Section 3 
below. 

To see intuitively why fk(.) above is reasonable, note, by a 
Taylor expansion of the Ith element about an arbitrary 
parameter value 0, that 

i?kde) = 
w + CkAk) + Ek _ Jw) I Ckg(@)TAk 

‘dk, Wb CkAk, 

+ C:AH(e)Ak+C:L'"(8k)Ak~Ak~A,+E, 

&&, %2&d c&' 
(3) 

where H(0) is the Hessian matrix of L(0) and L’“(8,) is the 
third derivative of L with respect to BT evaluated at some 
point between 8 and 0 + c,A, (as in Spall, 1992, Lemma 1). 
Then, under the same assumptions on the distribution of the 
{A*;} given in Spa11 (1992) (particularly independence+ 
symmetry and finite inverse moments), we have from (2.3) 

_qq,,(e)=g,(e)+o(~:) w=i, 2,...,p, 

i.e. &(.) is an unbiased estimator of the true (unknown) 
gradient to within an O(c:) bias. A fundamental difference in 
the two-measurement and one-measurement forms of SPSA 
is that for the two-measurement form, contributions due to 

109 



110 Technical Communiques 

L(0) and H(6) (the first and third terms on the right-hand 
side of (3)) are identically 0 (versus simply mean 0) as a result 
of cancellation effects. This plays a significant role in the 
efficiency analysis and suggests why, despite taking twice the 
number of measurements, SPSA2 is generally the better 
algorithm to use in most practical applications. However, 
there are situations where SPSAl will be the more efficient 
algorithm, and the theory in Section 3 considers this. 

3. Eficiency 
This section analyzes the relative efficiency of SPSAl and 

SPSA2. The arguments here closely follow those of Spa11 
(1992), which were based on an asymptotic distribution 
theory in Fabian (1968) (the author is unaware of any formal 
distribution theory for the finite-sample case). We shall find 
that one cannot make a universal claim that either SPSAl or 
SPSA2 is the more efficient algorithm but that it is possible 
to identify classes of problems for which SPSAl will be 
(asymptotically) more efficient than SPSA2. The fundamen- 
tal measure of efficiency here is the number of loss function 
measurements (not number of iterations per se), since it is 
loss function evaluations that represent the primary cost in 
the optimization process. 

For the most part, the regularity conditions here are 
identical to those in Spa11 (1992) and hence will not be 
repeated.? The only difference is that, because of the 
different gradient approximations, two of the conditions on 
the measurement noise are altered slightly. In particular, we 
assume 

E(Q 1 &, AJ = 0 Vk 

var ( ek) -+ 0: as k-+ m for some (~2 

(frequently var (ek) = uf Vk) 

(these contrasts with the corresponding noise conditions on 
pp. 333 and 335 respectively) of Spall, 1992. Then, following 
the arguments of Proposition 1 in Spa11 (1992) we have the 
following convergence result: 

8, -+ 6 a.s., k+m 

For the asymptotic distribution result that is critical to the 
efficiency analysis, we consider gain sequences of the 
standard form uk = a/(k + 1 + A)” and ck = c/(k + l)?, a, c, 
(Y, y >O, A s-0, and let p = (Y - 2y. Then, following the 
assumptions and proof of SPSA2, 

kP’*(& - 6*)=N(p, PM,PT), k+m, (4) 

where p and P are as in Spa11 (1992, Proposition 2) (the 
detailed definitions are not critical to the analysis here) and 
M, (the subscript 1 is used to contrast with the corresponding 
expression M2 used below for SPSA2) is given by 

M, = uZc~2pZ{u~diag [(2h, -PI)-‘, , 

PA, - P+)-‘I + ue*)*o, (5) 

with EAF,~+ p* as k + 3~ VI, A; is the ith eigenvalue of the 
matrix uH(El*), and /3+ = {p if cy = 1; 0 if a < 1). 

Since p, p and P are identical in SPSAl and SPSA2, the 
difference in efficiency centers on the difference between MI 
and M2, where 

M2 = fu*c-*p*g* diag [(2h, - p+)-‘, , (24 - P+)-‘I, (6) 

with a* representing the variance of the sum of the two noise 
terms entering the SPSA2 gradient approximation (if the 
noise terms are uncorrelated then u* = 2~2,). Note from (5) 
and (6) that M, will tend to be larger (in the matrix sense) 

t Let us take this opportunity to clarify two slightly 
ambiguous conditions in Spa11 (1992). In Lemma 1, one of 
the statements should read as follows: ‘. . . suppose that VB in 
an open ball about 6,whose radius is not a function of k or 
W, L@‘(B) I a3L/aeT aeT aeT exists continuously. . . ’ (bold 
italics highlight change). In Proposition 1, Condition A3 
should read: sup, 11 &Jk 11 -c m a.s. 

than Mz owing to the presence of the L(F)*1 contribution 
(i.e. d> +a’). However, since SPSAl uses only half the 
measurements of SPSA2 per iteration, efficiency gains are 
still possible, as discussed below. 

We aim to address the following question: To achieve the 
sume level of mean-square accuracy in estimating 8, what is 
the relative number of loss function measurements needed by 
SPSAl and SPSA2? The asymptotic distribution results in (4) 
and Spa11 (1992, Proposition 2) provide the machinery for 
answering this question, provided that the absolute number 
of measurements in both algorithms is sufficiently large. Let 
k, and k2 denote the number of iterations and n, and n2 the 
number of loss function evaluations in SPSAl and SPSAZ 
respectively. Then from (4) and Spa11 (1992, Proposition 2) 
we seek the ratio 

“‘:krB(tr PM,PT+ pTp) = k;P(trPM2PT+ CLTCL), 
*2 

since the terms being equated represent the asymptotically 
based approximation to E I/ok - 0*1/* for SPSAl and SPSA2 
(this, of course, is under the standard conditions-e.g. 
uniform integrability-that the second moments of the 
asymptotic distributions correspond to the second moments 
of the corresponding random process). From the fact that 
k, = n,, k2 = $n2, 

as the number of measurements for both procedures 
becomes large. 

The expression (7) provides a powerful means for 
analyzing the relative asymptotic efficiency (analogous to 
(4.2) in Spa11 (1992) for analyzing the efficiency of SPSA and 
the classical Kiefer-Wolfowitz finite-difference method). In 
particular, by specifying values of terms that are used in the 
algorithm (a, c etc.) and that represent properties of the 
measurements (a’., H(B*) etc.), one can determine if nl/n2 
5 or > 1 as a guide to when SPSAl or SPSA2 is the more 
efficient alaorithm for a given scenario. 

To make (7) more concrete, let us consider an important 
special case. Suppose u* = 2u$ (as mentioned earlier) and I 
that L(B*) = 0 (this may be true in certain mean-square 
minimization or tracking problems or in cases where an 
equivalent loss function can be formed by subtracting a 
known value of the original loss function at 0*). Further, 
suppose that both algorithms run with the same gain 
coefficients a and c and that /3 = $ (corresponding to the 
asymptotically optimal a = 1 and y = $,; see e.g. Fabian 
(1971) or Chin (1997)). Then, from (5) and (6), Ml = 2M2 
(since M2 is now identical to M, except that or is replaced by 
2~:). Under these conditions, (7) reduces to 

3’2 

From (8) we find that as pTp/tr PM2PT ranges from 0 to m, 
n,/n2 ranges from fi to $. In particular, pTp/tr PM2PT = 
0.7024 is the point under or over which n,/nz is greater than 
or less than one. Qualitatively, this makes sense, since the or. 
contribution for both SPSAl and SPSAZ is identical for a 
given number of iterations (see (4)); hence, as the p part 
dominates, one would expect SPSAl to be the more efficient 
algorithm. 

Obviously, the analysis associated with (8) is no longer 
valid if L(B*) #O. Then one should appeal to the more 
general form in (7). In such settings, the range of problems 
for which n,/nz is asymptotically less than one is smaller. 

4. Numericul example 
This section provides an illustration of SPSAl to a simple 

quartic function with p = 5. Let 

L(e) = eTe + 0.15 e: + 0.01 i ep, 
,=1 i=l 

which has 8* = 0. The measurement noise is independently 
normally distributed with mean 0 and u< = 0.01, and 
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8, = (0.1, 0.1, 0.1, 0.1, O.l)‘r. All simulations were conducted 
with MATLAB on a UNIX-based workstation. 

We shall consider the setting where (8) applies, and shall 
present numerical results for two settings: one where 
(asymptotically) n,/nr > 1 and one where nl/nz < 1. Consis- 
tent with practical guidelines given in Spa11 (1996), we take c 
of magnitude similar to a, (we take c = 0.06 for both SPSAl 
and SPSA2, somewhat larger than the c i= a, suggested in 
Spa11 (1996) to accommodate the greater variability inherent 
in a one-measurement form of the gradient approximation 
and the greater rate of decay implies by the associated y 
coefficient (y = 0.16667 here versus y = 0.101 suggested in 
Spall, 1996)). The ALi values were independently Bernoulli 
*l distribued for all k and i. Also, for both algorithms, we 
include the additive constant A in the denominator of uk to 
enhance numerical stability in the early iterations (i.e. we 
take al, = a/(20 + k)), which, of course, has no effect on the 
asymptotic theory. 

With n =0.17, (8) implies that the asymptotic ratio 
n1/n2 = 0.7606, while with a =0.27, the asymptotic ratio 
implies the opposite in terms of efficiency, namely 
n,/nr = 1.414. We ran numerical studies for both of these 
cases. For n =0.17, we took n, =3042 and nZ=4000 (the 
round number for n, was selected, and n, was then derived 
based on the ratio value 0.7606). The value of a was chosen 
to be slightly greater than the lower bound to a for this loss 
function of &, as derived from the conditions in Fabian (1%8) 
or Spa11 (1992). The theory associated with (8) suggests that 
the mean-square errors (MSEs) associated with these two 
sample sixes will be equal, and, in fact, that is nearly what 
happened. The ratio of observed MSEs (SPSAl/SPSA2) was 
0.98, based on an average of the terminal observed MSEs 
over 508 realizations for each algorithm. For a = 0.27, we 
take n, = 4000 and nz = 2828, consistent with the ratio 1.414 
mentioned above. The ratio of observed MSEs here was 0.91 
(so SPSAl performed slightly better than asymptotic theory 
would predict). 

There were some other observations associated with the 
relative behavior of SPSAl and SPSA2. Although we found 
that SPSAl could outperform SPSA2 in certain cases (as 
above), we also found that it was more sensitive to small 
changes in the underlying data-generating process and to the 
choice of initial conditions. In fact, for certain initial 
conditions not close to the solution, SPSAl diverged while 
SPSA2 converged, including cases where, based on 
asymptotic thery, SPSAl is the more efficient algorithm. The 
reason for this relative lack of robustness is apparent by 
comparing the Taylor expansion in (3) with the analogous 
expansion for SPSA2: for SPSA2, the terms involving L(8) 
and H(B) disappear versus merely having mean 0 in SPSAl. 
When 8 is far from fJ*, these terms may significantly degrade 
the gradient estimate (hence the greater sensitivity to initial 
conditions). These numerical results suggest that although 
SPSAl can be more efficient than SPSA2 in some 
implementations, one should exercise caution in its 
implementation, since nonasymptotic effects may have a 
greater detrimental impact. 

5. Concluding remarks and extensions 
This paper has presented an extension of the SPSA 

algorithm of Spa11 (1987, 1992). The primary contribution is 
to reduce from two to one the number of loss function 
measurements needed per iteration (to approximate the 
gradient of the loss). Theory has been presented that 
identifies the class of problems for which this twofold savings 
in measurements per iteration translates into a measurement 
savings over the course of the complete optimization process. 
In particular, asymptotic results have been presented that 
identify settings where the one- and two-measurement 
forms of SPSA yield the same level of mean-square accuracy 
but where SPSAl takes less than twice the number of 
iterations of SPSA2 to achieve this accuracy (and hence uses 
fewer loss function measurements). 

Maeda, Y. (19%). Time difference simultaneous perturbation 
method. Electron. Lett., 32, 1016-1018. 

Maeda, Y., H. Hirano and Y. Kanata (1995). A learning rule 
of neural networks via simultaneous perturbation and its 
hardware implementation. Neural Networks, 8,251-259. 

Polvak. B. T. and A. B. Juditskv (1992). Acceleration of 
stochastic approximation by averaging.’ SIAM J. Control 
Optim., 30,838-855. 

Polyak, B. T. and A. B. Tsybakov (1992). On stochastic 
approximation with arbitrary noise (the K-W case). Adu. 
Soviet Math., l2, 107-113. 

Rezayat, F. (1995). On the use of an SPSA-based model-free 
controller in quality improvement. Automatica, 31, 
913-915. 

Ruppert, D. (1983). Kiefer-Wolfowitz procedure. In N. L. 
Johnson and S. Katz (Eds), Encyclopedia of Statistical 
Sciences. Vol. 4. DD. 379-381. Wilev. New York. 

One of the areas for which SPSAl seems most appropriate Ruppert, D. (1988). Efficient estimators from a slowly 
is in feedback control problems. As described in, say, Spa11 
and Cristion (1994, 1995) or Rezayat (1995) one can use 

convergent Robbins-Monro process. Technical Report 
781, School of Operations Research and Industrial 

SPSA to build controllers without the need to build a model Engineering, Cornell University. 

of the process. Although this can be very effective for the 
control of complex (nonlinear stochastic) systems, there is 
the potential for difficulty if the process dynamics change 
dramatically in the course of collecting the two measure- 
ments for the SPSA2 gradient approximation. SPSAl has 
obvious potential advantages in such settings, since it 
approximates the gradient based on one instantaneous 
measurement. Other topics of potential interest are to 
explore the connection of SPSAl and SPSA2 to the one- and 
two-measurement algorithms of Polyak and Tsybakov (1992) 
and Maeda (1996), to evaluate whether the iterate averaging 
idea of Ruppert (1988, 1991) and Polyak and Juditsky (1992) 
might enhance convergence properties, and to determine 
how constrained optimization might be implemented (Sadegh 
(19%) treats the SPSA2 case). 

In summary, for most problems, the two-measurement 
form of SPSA previously introduced will be the preferred 
algorithm. Asymptotic theory suggests that it will generally 
be the more efficient algorithm (in terms of total function 
evaluations required), and empirical evidence suggests that it 
is also a more robust algorithm (to changes in initial 
conditions, gain coefficients, noise levels etc.). However, 
there is a class of problems for which the one-measurement 
form of SPSA is (asymptotically) more efficient, and it is for 
this class that the algorithm of this paper should be 
considered. This is especially the case in feedback control 
applications, where nonstationarities may make the 
instantaneous aspect of the one-measurement gradient 
approximation especially appealing. 
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APPENDIX 
Correction to Expression (5) in 

“A One-Measurement Form of Simultaneous Perturbation Stochastic Approximation” 
 

The Issue 

As shown in expression (4) of Spall (1997), the covariance matrix in the asymptotic 
distribution for the normalized one-measurement SPSA—i.e., for / 2 ˆ( )kkβ ∗−θ θ —is PM1PT, 
where P is an orthogonal matrix (PP 

T = I). (All notation here is directly out of Spall, 1997.) 
However, the expression M1 in (5) of Spall (1997) is not presented correctly for the general case 
where L(θ∗) ≠ 0. In particular, there is a term “ +L(θ∗)2

 ” that should be placed differently in the 
expression. The results are summarized below. 
 
Current Expression for M1: 

{ }2 2 2 2 1 1 2
1 1diag 2 , , 2( ) ( ) ( )pa c L− − −

ε + +
∗ = ρ σ λ − β λ − β +  θM I .                   (A1) 

 
Correct Expression for M1: 

2 2 2 2 2 1 1
1 1diag 2 , , 2[ ( ) ] ( ) ( )pa c L− − −

ε + +
∗  = ρ σ + λ − β λ − β θM .                     (A2) 

 
Note that the issue above does not affect the efficiency analysis in (7) and (8) of Spall (1997), 
which shows the relative asymptotic accuracy of one-measurement SPSA and standard two-
measurement SPSA (Spall, 1992).   
 
Derivation 
 Let us use the main theorem in Fabian (1968) to show that (A2) is the correct expression, 
replacing (A1) (which is the same as (5) in Spall, 1997). In particular, following the notation of 
Fabian (1968),  
 

( ) / 2 / 2
1

ˆ ˆ ,( )( )k k k k k kk k k−α − α+β −α−β
+

∗ ∗− = − − − +θ θ Γ θ θ ΦI V T  
 

where 
 
Γk = 1 2

T
k k kpa−   h h h  and row vector T

kjh  represents the jth row of the Hessian 
matrix H(θ) evaluated at a value of θ on the line segment between ˆ

kθ  and θ∗ (the point of 
evaluation may change by row; hence Γk may not be symmetric for finite k);  

Φk = Φ = – aI; 

Vk = ( )ˆ ˆ ˆˆ ( ) ( ) ( )k k k k kk −γ  − + θ θ θg g b ;  

and Tk = / 2 ˆ( )k ka kβ− θβ .  
 



As discussed Spall (1997), it is known that ˆ
kθ  → θ∗ a.s. under standard SPSA conditions 

(see Spall, 2003, Sect. 7.3). Likewise, it is known that (a.s.) we have the following convergence 
results: Γk → – aH(θ∗) and ( )T

k k kE ℑV V  → 2 2 2 2( )c L−
ε

∗ ρ σ + θ I  = Σ, where kℑ  = 
0

ˆ{θ , 1θ̂ ,…, ˆ ;kθ  0 1 1, ,..., }k−∆ ∆ ∆  for k ≥ 1.  
From Fabian (1968), the covariance matrix in the asymptotic normal distribution for 

/ 2 ˆ( )kkβ ∗−θ θ  is PM1PT, where the ijth entries in M1 are 
 

1

1;
 if  ,

=
0  if  ,

[ ] (2 )T T
ii i

ij
i j

i j

− λ − β =


≠

+ΦΣΦP PM                                      (A3) 

 
and where λi is the ith eigenvalue of aH(θ∗) and β+ = β if α = 1 and β+ = 0 if α ≠ 1. (The mean 
in the asymptotic normal distribution is µ, but µ is unaffected by the issue with M1 above.) Given 
the diagonal forms above for Φ and Σ, we have [ ]T T

iiΦΣΦP P  = 2 2 2 2( )c L−
ε

∗ ρ σ + θ  for all i. 
Then, from (A3), it is known that the corrected form in (A2) follows.  
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